Bachelor of Engineering In Information Technology 2nd Year 1st Semester, Supplementary Exam - 2024

Subject Name -(IT/PC/B/T/213) Database Management Systems

Full Marks=100

	r Name –(11/PC/B/1/213) Database Managem	- Circ Dysteins	run ma	1113 100			
CO1							
[10]	(b) What is Referential Integrity, and why is it important in database management systems?						
	(c) What is the advantage of DBMS over file pr	ocessing system	?				
	Or						
	Explain the difference between logical data independence and physical data independence in a DBMS.						
				[3+3+4=	=10]		
CO2	Q2.		Work				
[20]	(a) Identify all functional dependencies that	Incharge	Department	Experience			
	can hold on to the given instance Work?	S. Roy	Production	5			
		A. Bera	Sales	2			
		S. Roy	HR	5			
		S. Rai	Development	3			
		B. Mallik	Testing	4			
		S. Sinha	Testing	4			
		b. brima	reporting	**	j		
	(b) Consider the following relational schema: s	mart_phone (na	me, <u>model</u> , manuf	acturer, battery).			
	The following functional dependencies hold: FD1: model → name						
	FD2: model → manufacturer, battery						
	FD3: model, manufacturer → battery						
	Identify all candidate key(s) for the above relation.						
	What is the highest normal form of smart_phone?						
	(c) What is normalization, and why is it important in database design? [6+(3+3)+8]						
CO3							
[20]	Suppliers(sID, sName, address)						
	Parts(pID, pName, colour)						
	Catalog(sID, pID, price)						
	Write down the relational algebra expression equivalent to the following statement given below.						
	i) Find the names of suppliers who supply parts in both red and blue colours.						
	ii) Find the projection of the Catalog relation on attributes sID and price.						
	(b) Consider the following schema given below:						
	Emp(eid: integer, ename: string, age: integer	, salary: real)					
	Works(eid: integer, did: integer, pct_time: in	teger)					
	Dept(did: integer, budget: real, managerid: in	nteger)					
	Write down the SQL query equivalent to the	following staten	nent given below:				
	i. Find the names of all employees whose age is	greater than 30.					
	ii. Find the names of employees along with the i	names of the dep	artments they work	c in.			
	iii. Show the department name with the highest budget. (c) Differentiate between where clause and group by clause using a suitable example.						
	Or						
	Describe the difference between an inner join ar	nd a full outer joi	n	[6+9+5=	:20]		

CO4 **Q4**.

[20]

- (a) Distinguish between: i) Primary and Secondary indexing with a suitable example.
- (b) Let us consider the following statistics for searching for a condition in a given relation.

Number of blocks containing record of the relation (b) = 500

Time to transfer one block $(t_b) = 0.5$ milliseconds

Time for one seek $(t_s) = 5$ milliseconds

Find out the cost of selection query on a key attribute using linear search file scan.

- (c) Justify this statement "In a secondary index file, all the search key values must be presented".
- (d) Explain insertion and search operation in **B**+ trees?

[6+5+4+5=20]

CO5 **Q5.**

[20]

(a) Consider the following schedule S involving three transactions T₁, T₂, T₃.

T_1	T_2	Тз
R(X)		
		R(Z)
		W(Z)
W(Y)		
W(X)		
-		W(X)
	W(Z)	

R(X) denotes read operation on data item X by transaction T_i .

W(Y) denotes write operation on data item Y by transaction T_i.

Identify the possible number of conflict serializable schedule(s) if any and their correct order of execution of the above schedule S.

(b) Consider the following example of a log of four transactions, where an immediate database modification scheme is used.

(i) If a crash occurs just after step 10 and the recovery of the system is successfully completed, which of the following transactions need to do redo, undo and no action?

(ii) Write down the final values of X, Y, Z and P data items after completion of recovery.

steps	Details of log
1	$\langle TO, start \rangle$
2	⟨TO, X, 300, 400⟩
3	⟨T1,start⟩
4	⟨T1,Y,600,200⟩
5	$\langle checkpoint\{T0,T1\} \rangle$
6	$\langle T2, start \rangle$
7	(T2,Z,500,1500)
8	(T2,commit)
9	(T3, start)
10	(T3,P,900,1200)

(c) What is transaction? Explain the ACID Properties of transactions?

[7+7+6=20]

CO6

[10]

(a) Define Decentralized Database and Data Warehouse.

(b) Compare the Homogeneous and Heterogeneous Distributed Database.

[(2+2)+6=10]

Ref. No. : Ex/IT/PC/B/T/213/2024(S)

(IT/PC/B/T/213) Database Management Systems

After completing this course the students should be able to:

CO1: Explain the basic Database concepts and different data models. (K2)

CO2: Find the available functional dependencies to apply normalization concepts in typical scenarios. (K3)

CO3: Design queries using relational algebra operations and SQL. (K3)

CO4: Explain principles of Physical Data Storage and Query Optimization. (K3)

CO5: Comprehend transaction processing and concurrency control techniques and apply them in various problems (K3)

CO6: Discuss different types of advanced databases. (K2)