Ref. No.: Ex/ET/PC/B/T/413/2024

## Name of the Examinations: B.E. ELECTRONICS AND TELE-COMMUNICATION ENGINEERING FOURTH YEAR FIRST SEMESTER - 2024

Department of Electronics and Telecommunication Engineering, Jadavpur University Answer question no1 which is compulsory and any five questions from the rest ( from Q2 to Q9). The figures in the right hand margin indicate marks. Symbols carry usual meaning. Time: Three hours **Subject: VLSI Design and Algorithms** Full Marks: 100

| Q1. Choose the correct answer(s) out of four given answers [ | [0.5x10 = 5] | ı |
|--------------------------------------------------------------|--------------|---|
|--------------------------------------------------------------|--------------|---|

- Load Capacitance in CMOS inverter is function of:
  - (a) fan-out, wire length & transistor size
    - (b) fan-out, frequency & transistor size
  - (c) How often, on average, do wires switch? (d)none of a, b or c
- (ii). Find the percentage reduction in the channel length if the bias voltage  $V_{DS}$ = 5V and  $V_{SB}$ = 0V for a channel length of 3.0 µm.
  - (a) 35.38%
- (b) 39.67%
- (c) 37.37% (d) 41.47%
- (iii). Another component of leakage currents which occurs in CMOS circuit is the subthreshold current, which due to:
  - (a). carrier diffusion between the source and the drain region of the transistor in weak inversion
  - (b). carrier diffusion between the source and the drain region of the transistor in strong inversion
  - (c). carrier drift between the source and the drain region of the transistor in weak inversion
  - (d). carrier drift between the source and the drain region of the transistor in strong inversion
- Shot circuit power dissipation( in CMOS inverter), Psc is eliminated (iv).
  - (a). If  $V_{DD} < V_{THn} + |V_{THp}|$ ,
- (b). If  $V_{DD} < (V_{THn} |V_{THp}|)$ ,
- (c). If  $V_{DD} > (|V_{THp}| + V_{THn})$ ,
- (d). none of the a, b or c
- When the uncertainty principle is considered, it is not possible to locate a photon in space more precisely than about one wavelength. Consider a photon having wavelength  $1\mu m$  and determine the uncertainty in the energy of photon. (a). 0.192eV, (b). 0.198eV, (c). 0.164eV , ( d). None
- For the n- channel enhancement type MOSFET of Fig A gate current is negligible,  $I_{DON} = 10$ mA and  $V_T =$ (vi). 4V. If  $R_S=0$  ,  $R_1=50 K\Omega$  ,  $V_{dd}=15$  V,  $V_{GSQ}=3 V$ , and  $V_{DSQ}=9 V$ . Determine  $R_2$

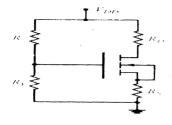



Fig. A

- (a) 200 KΩ (b) 440KΩ
- (c) 225KΩ
- (d) 294KΩ
- (vii). In a charge sharing circuit shown in Fig.B, Q<sub>T</sub> during switched on condition of transmission gate depends on

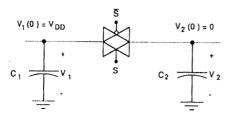



Fig. B

- (a).  $C_2$  and  $C_1$
- (b). C<sub>2</sub>
- (c).  $C_1$
- (d). does not depend on C1 and C2

- (viii): The built in potential in a p-n junction increases with
  - (a) band gap energy of the semiconductor employed
- (b) fall in temperature

(c) doping levels of two sides

(d) all of the above factors.

- (ix). In active load nMOS inverter:
  - a). load transistor is depletion type and switching transistor is enhancement type
  - b). load transistor is enhancement type and switching transistor is depletion type
  - a). load transistor is depletion type and switching transistor is also depletion type
  - d). load transistor is enhancement type and switching transistor is also enhancement type
- If donor concentration is doubled in a p\*-n junction with all other parameters remaining unchanged, the (x). Junction

capacitance, Built-in potential and Breakdown voltage for the resulting junction respectively

- (a) increases, decreases and decreases
- (b) increases, increases and decreases
- (c) increases, decreases and increases
- (d) increases, increases and increases
- Q2(a). Why low power has become an important issue in the present day VLSI circuit realization?
- (b) Distinguish between constant field and constant voltage feature size scaling? Compare their advantages and disadvantages.
- (c). What is channel length modulation effect? How the voltage current characteristics are affected because of this effect?
- (d). What is noise margin? Find out the noise margin from the actual characteristics of an inverter. 3+ 7 +5+4=19
- Q3.(a) How one nMOS and one pMOS transistor are combined to behave like an ideal switch?
- (b) What is glitching power dissipation? Explain with two examples how can it be minimized?
- (c) List various sources of leakage currents, Briefly discuss various mechanisms responsible for this leakage current? 5+6+8=19
- Q4 (a). With the help of an example explain how gray coding helps to reduce power dissipation?
- Q4(b) Prove that the charging of a capacitor C in n steps to a voltage Vdd instead of a conventional single-step charging reduces the power dissipation by a factor of n.
- (c) Implement two-input(i) XOR and (ii) NOR gates with GDI logic. Explain their operations. 6+5+ (4+ 4)= 19
- Q5(a) How is a CMOS inverter different from a resistive load inverter? Which is preferred and why?
  - (b). For inverter design, why depletion load n-MOS inverter is preferred?
  - (c). What is pass transistor? Write its advantages and disadvantages. Realize a NAND and a XOR Gates using Pass transistors and explain their operation. 4+2+13=19
- Q6(a) What are different power dissipations in a CMOS circuits? Write the names of different parameters that control those power components. Explain how those parameters can be adjusted to reduce various power dissipation
  - b). Describe with necessary diagram, how will you reduce the propagation delay of an inverter? 15 + 4 = 19
  - Q7(a) Explain pseudo and Ganged CMOS logic. Realize some (two for each type) Logic functions using them.
    - b). Using equivalent NOT gate, drive the threshold voltage of a two-input NAND gate.
    - c). Describe single-rail and dual -rail logic circuits
- 10 +6+3 = 19
- Q8 Give the justification with proper explanation and diagram if any (related to Low power VLSI) for the following comments:
  - i). "Minimize activity on long bus"
  - ii). "Dynamic Power Consumption is Data Dependent"
  - iii). "Use reduced supply voltage in sleep mode."
  - IV). "Low Vth for speed critical circuits"
  - "Lost performance can be compensated by parallelism" 3+4+4+4+4 = 19
  - Q9 (a) Why NAND is preferred over NOR?
    - (b) Write notes on any four:
      - (i) Transient Electronics, (ii) Organic Semiconductors, (iii) ASIC
      - (iv) Microfluidic Biochips and their applications, (v) Nonthreshold logic
      - (vi) Double Pass Logic(DPL)