Ex/ET/PC/B/T/215/2024(S)

B.E. ELECTRONICS AND TELE-COMMUNICATION ENGINEERING SECOND YEAR FIRST SEMESTER SUPPLEMENTARY EXAM - 2024

ANALOG CIRCUITS- I

Time: Three hours

Full Marks: 100

(All parts of the same question must be answered together)

Module I [Answer any one (1×10=10)] CO1

1.	a) Explain the working of negative clamper circuit. Draw the required waveforms.b) Explain the working of series clipping circuit to clip the input sinusoidal signal above reference level. Draw the waveforms and transfer characteristics.	[3+2] [5]	
2.	a) Draw full-wave rectifier circuit and explain its operation.b) Find the approximate expression for ripple factor of half wave rectifier without capacitor filter.	[2+4] [4]	
Module II [Answer any one (1×10=10)] CO2			
3.	a) Consider symmetrical square wave input applied to a low-pass RC circuit. Sketch the input and output waveforms and obtain the expression for maximum and minimum values of output voltage.	[8]	
	b) Explain low pass filter as an integrator.	[2]	
4.	Describe the problem of uncompensated attenuator and find condition for perfect compensation. Draw output waveforms for over, under and perfect compensation.	[3+4+3]	
Module III [Answer any two (2×20=40)] CO3			
5.	 a) What do you understand by transistor biasing? Draw load line on output characteristics and show operating point. b) For an emitter bias circuit, derive an expression for stability factors S_{Ico}, S_{VBE}, and S_β. c) Calculate S_{Ico}, S_{VBE}, and S_β for R_C = 3.3kΩ, R_B = 220kΩ, R_E = 1kΩ, V_{CC} = 10V, β = 150. 	[5] [9] [6]	
6	 a) Explain the effect of coupling capacitances on voltage gain at low frequency. b) Consider npn BJT in common emitter configuration working with self bias, bypassed emitter resistance mode. Obtain expressions for input impedance, output impedance and voltage gain. Draw the small signal model(g_m-r_π). 	[3] [9]	
	c) Determine voltage gain, input impedance and output impedance of a self bias, bypassed source resistance mode MOSFET amplifier with $R_{\rm D}$ =1 $k\Omega$, $R_{\rm S}$ = 220 Ω , $V_{\rm DD}$ = 5 V , $V_{\rm DS}$ = 2 V , $V_{\rm GS}$ = 1 V , Kn=1mA/ V^2 and $V_{\rm Th}$ =0.5 V .	[8]	
7.	 a) Write advantages and disadvantages of MOSFET amplifier over BJT amplifiers. b) The data sheet of N channel JFET gives the following details. I_{DSS}=10mA and pinch off voltage 	[4]	
	of -4.8V. Determine i) V _{GS} at I _D =2.5mA and ii) transconductance, g _m at this drain current. c) Explain Miller effect associated with CS mode FET amplifier with the help of small signal	[3+3]	
	model? Explain Cascode amplifier to avoid Miller effect.	[5+5]	

Ex/ET/PC/B/T/215/2024(S)

B.E. ELECTRONICS AND TELE-COMMUNICATION ENGINEERING SECOND YEAR FIRST SEMESTER SUPPLEMENTARY EXAM - 2024

ANALOG CIRCUITS- I

Time: Three hours

Full Marks: 100

Module IV [Answer any one (2×15=30)] CO4

 b) Explain origin of input offset voltage, input bias current of a practical op-amp. c) How do CMRR and Slew rate influence the performance of an op-amp? d) Explain a balanced differential amplifier using BJT a) Analyze the circuit diagram of an Instrumentation amplifier using op-amp. Derive the expression for the output voltage. b) The datasheet of Op Amp gives the following values. Open loop Gain= 175,000, commonmode gain =0.18 and slew rate= 0.5V/µs. Determine the CMRR in decibels. 9. a) Define line and load regulation of a voltage regulator. b) Explain the short circuit protection circuit in a series voltage regulator. c) Draw and explain the output waveform of an integrator circuit for a triangular input. Module V [Answer any one(10)] CO5 10 a) Design a Zener voltage regulator to provide regulated output voltage of 5.6 V for a variable load resistance that varies from 300Ω to 6kΩ. Zener diode parameters are I_{Zmin}= 0.25 mA and P_Z= 280mW. The input voltage is considered as constant at 15V. 	[3]
 c) How do CMRR and Slew rate influence the performance of an op-amp? d) Explain a balanced differential amplifier using BJT a) Analyze the circuit diagram of an Instrumentation amplifier using op-amp. Derive the expression for the output voltage. b) The datasheet of Op Amp gives the following values. Open loop Gain= 175,000, commonmode gain =0.18 and slew rate= 0.5V/µs. Determine the CMRR in decibels. 9. a) Define line and load regulation of a voltage regulator. b) Explain the short circuit protection circuit in a series voltage regulator. c) Draw and explain the output waveform of an integrator circuit for a triangular input. Module V [Answer any one(10)] CO5 10 a) Design a Zener voltage regulator to provide regulated output voltage of 5.6 V for a variable load resistance that varies from 300Ω to 6kΩ. Zener diode parameters are I_{Zmin}= 0.25 mA and P_Z= 280mW. The input voltage is considered as constant at 15V. 	[4]
 a) Analyze the circuit diagram of an Instrumentation amplifier using op-amp. Derive the expression for the output voltage. b) The datasheet of Op Amp gives the following values. Open loop Gain= 175,000, commonmode gain =0.18 and slew rate= 0.5V/μs. Determine the CMRR in decibels. 9. a) Define line and load regulation of a voltage regulator. b) Explain the short circuit protection circuit in a series voltage regulator. c) Draw and explain the output waveform of an integrator circuit for a triangular input. Module V [Answer any one(10)] CO5 10 a) Design a Zener voltage regulator to provide regulated output voltage of 5.6 V for a variable load resistance that varies from 300Ω to 6kΩ. Zener diode parameters are I_{Zmin}= 0.25 mA and P_Z= 280mW .The input voltage is considered as constant at 15V. 	[4]
 expression for the output voltage. b) The datasheet of Op Amp gives the following values. Open loop Gain= 175,000, common-mode gain =0.18 and slew rate= 0.5V/μs. Determine the CMRR in decibels. 9. a) Define line and load regulation of a voltage regulator. b) Explain the short circuit protection circuit in a series voltage regulator. c) Draw and explain the output waveform of an integrator circuit for a triangular input. Module V [Answer any one(10)] CO5 10 a) Design a Zener voltage regulator to provide regulated output voltage of 5.6 V for a variable load resistance that varies from 300Ω to 6kΩ. Zener diode parameters are I_{Zmin}= 0.25 mA and P_Z= 280mW . The input voltage is considered as constant at 15V. 	[4]
 mode gain =0.18 and slew rate= 0.5V/µs. Determine the CMRR in decibels. 9. a) Define line and load regulation of a voltage regulator. b) Explain the short circuit protection circuit in a series voltage regulator. c) Draw and explain the output waveform of an integrator circuit for a triangular input. Module V [Answer any one(10)] CO5 10 a) Design a Zener voltage regulator to provide regulated output voltage of 5.6 V for a variable load resistance that varies from 300Ω to 6kΩ. Zener diode parameters are I_{Zmin}= 0.25 mA and P_Z= 280mW. The input voltage is considered as constant at 15V. 	[4+8
 b) Explain the short circuit protection circuit in a series voltage regulator. c) Draw and explain the output waveform of an integrator circuit for a triangular input. Module V [Answer any one(10)] CO5 a) Design a Zener voltage regulator to provide regulated output voltage of 5.6 V for a variable load resistance that varies from 300Ω to 6kΩ. Zener diode parameters are I_{Zmin}= 0.25 mA and P_Z= 280mW. The input voltage is considered as constant at 15V. 	[3]
 b) Explain the short circuit protection circuit in a series voltage regulator. c) Draw and explain the output waveform of an integrator circuit for a triangular input. Module V [Answer any one(10)] CO5 a) Design a Zener voltage regulator to provide regulated output voltage of 5.6 V for a variable load resistance that varies from 300Ω to 6kΩ. Zener diode parameters are I_{Zmin}= 0.25 mA and P_Z= 280mW. The input voltage is considered as constant at 15V. 	[4]
 C) Draw and explain the output waveform of an integrator circuit for a triangular input. Module V [Answer any one(10)] CO5 a) Design a Zener voltage regulator to provide regulated output voltage of 5.6 V for a variable load resistance that varies from 300Ω to 6kΩ. Zener diode parameters are I_{Zmin}= 0.25 mA and P_Z= 280mW. The input voltage is considered as constant at 15V. 	[6]
 a) Design a Zener voltage regulator to provide regulated output voltage of 5.6 V for a variable load resistance that varies from 300Ω to 6kΩ. Zener diode parameters are I_{Zmin}= 0.25 mA and P_Z= 280mW. The input voltage is considered as constant at 15V. 	[5]
load resistance that varies from 300Ω to $6k\Omega$. Zener diode parameters are $I_{Zmin}=0.25$ mA and $P_Z=280$ mW. The input voltage is considered as constant at 15V.	
P_Z = 280mW . The input voltage is considered as constant at 15V.	
	[5]
b) Design an Op Amp circuit to get the output according to the given expression. VO =-	£ 5.1
[0.3V1+3V2+V3] where V1,V2 and V3 are the inputs to op-amp.	[5]
Design a Voltage divider circuit for a silicon transistor with hfe=100 and S≤8. The desired Q-	Γ1 Λ 1
point is $V_{CE}=5V$, $I_{C}=1mA$. Assume $V_{CC}=10V$ and $R_{E}=1k\Omega$.	[10]