B.E.Tel.E. 2nd YEAR SUPPLEMETARY EXAMINATION, 2024

(1st Semester)

ELECTRO MAGNETIC THEORY

Time: Three hours		Full Marks 100	
No. of questions		Marks	
	Answer any five questions. Consider ϵ_0 =8.854X10 ⁻¹² F/m and μ_0 =4 π X10 ⁻⁷ H/m Values of other universal physical constants may be assumed, if necessary. All symbols carry their usual meanings.		
l.(a) (b)	Prove that $\nabla \times (a\vec{B}) = \nabla a \times \vec{B} + a\nabla \times \vec{B}$ Convert $3\hat{x} + 4\hat{y} + 5\hat{z}$ to spherical co-ordinates.	10 10	
2.(a) (b) (c)	Define electrostatic potential and equipotential surfaces. What is the nature of equipotential surfaces due to a point charge? What is the difference between conservative and dissipative fields? Site one example of each. Derive the fields due to an infinitesimal static electric dipole.	6 4 10	
3.(a) (b)	State and prove Gauss' Law of electrostatics. Derive an appropriate expression for density of stored energy in electric field.	8 12	
4.(a) (b) (c)	Define an irrotational field. Is a magnetic field rotational or irrotational? Justify why a magnetic potential is vector rather than a scalar. Consider $\varphi=\pi/4$ plane defined in cylindrical coordinates. Find the amount of magnetic flux crossing the portion between $0.01 < \rho < 0.05m$ and $0 < z < 2m$ due to a current filament of 2.5A along the z-axis in +z direction.	4 2	
5.(a) (b) (c)	For a time harmonic field propagating through a good dielectric, determine the attenuation constant and phase velocity. Repeat the same for a good conductor. How do you demarcate between a good dielectric and a good conductor?	8 8 4	
6.(a) (b)	What are parallel and perpendicular polarizations? For both of them, find an appropriate expression for the reflection coefficient at a dielectric-dielectric interface.	4 8+8	
7.(a) (b) (c)	Prove Snell's law for electromagnetic fields. A current sheet $K=9\hat{y}$ a/m is located at z=0. Region 1 at z<0 has μ_{r1} =4 and region 2 at z>0 has μ_{r2} =3. Given that H_2 =14.5 \hat{x} +8 \hat{z} A/m, find H_1 .	8	
8. (a) (b) (c)	Write notes on any <i>two</i> of the followings. Total internal reflection Inductance and capacitance Method of images and fundamental problem of electrostatics	10 X 2	