BACHELOR OF ENGINEERING (ELECTRICAL ENGINEERING) 5^{TH} YEAR 1^{ST} SEMESTER EXAMINATION, 2024

Subject: DIGITAL CONTROL TECHNIQUES Time: Three Hours Full Marks: 100

Use a separate Answer-script for each Part

Part I (50 marks)

Question		Question 1 is compulsory	Marks	
No.		Answer Any Two questions from the rest (2×20)	11141110	
Q1	Answer any Two of the following:			
	(a)	Classify the types of signals associated with discrete-time systems based on sampling and quantization and draw their time-domain representations.	5	
	(b)	Obtain z-Transform of unit step functions that is delayed by 1 sampling period.	5 .	
	(c)	State and prove the "Initial Value Theorem" in respect of Discrete-time Systems.	5	
	(d)	Show how the left half of the s-plane will be mapped into the z-plane.		
		Briefly discuss the concepts of "Primary Strip" and "Complementary Strip" in respect of the mapping from s-plane to z-plane.	5	
Q2	(a)	What is an Impulse Sampler? Why is it also referred to as an Impulse Modulator?	2+4	
	(b)	(i) What is a Data Hold Circuit? Show how Zero Order Hold can be used to reconstruct analog signals from their sampled versions.	2+2	
		(ii) Derive the transfer function of the Zero Order Hold circuit assuming an Impulse function at $t=0$ as the input.	6	
	(c)	Draw the output response of a real sampler with First Order Hold circuit for a unit step input.	4	
Q3	(a)	(i) Define Convolution Summation for discrete-time systems?	4	
		(ii) Derive the expression for Pulse Transfer Function for a discrete-time system.	4	
	(b)	Obtain the Pulse Transfer Function of a continuous-time system given by		
		$G(s) = \frac{1}{s+a}$	4	
		Assume an Impulse Sampler at the input of the continuous-time system.		
	(c)	Show how the followings will be mapped from the left half of the s-plane to the z-plane:	3+5	
		(i) constant frequency (ω) loci, (ii) constant damping ratio (ζ) loci.		

Ref. No.: Ex/EE/5/T/512A/2024

4

2

5

5

- Q4 (a) State and prove the "Final Value Theorem" in respect of Discrete-time Systems. 6
 - (b) Determine, using the Final Value theorem, the value of $x(\infty)$ for X(z) given as

$$X(z) = \frac{1}{1 - z^{-1}} - \frac{1}{1 - e^{-aT}z^{-1}}, \quad a > 0$$

Justify your answer by obtaining the value of x(t) as $t \to \infty$.

(c) Obtain, with the help of starred Laplace Transform, the transfer function C(z)/R(z) for the closed loop configuration shown in Figure Q4(c).



Figure Q4(c)

- Q5 (a) (i) State Jury's Stability Test for a closed-loop discrete-time system.
 - (ii) Determine the stability of a discrete-time system having the characteristic equation

$$Q(z) = z^3 - 1.8z^2 + 1.05z - 0.20 = 0$$

(b) Derive the expressions for the Static Position, Velocity and Acceleration Error

Constants for the discrete-time control system shown in Figure Q5(b).

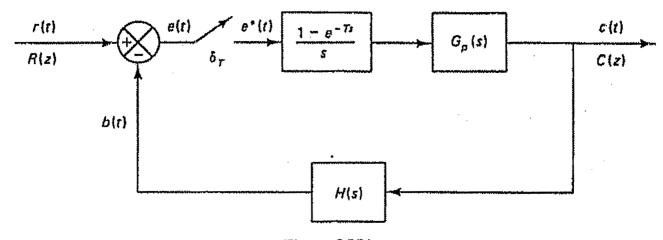


Figure Q5(b)

Ref. No.: Ex/EE/5/T/512A/2024

B.E. ELECTRICAL ENGINEERING 5^{TH} YEAR 1^{ST} SEMESTER EXAMINATION, 2024

Subject: DIGITAL CONTROL TECHNIQUES Part: II Full Marks: 50

-	stion Io.	Question 1 is compulsory AnswerAny Twoquestions from the rest (2×20)	Marks	
Q1 Answer any TWO Questions (2 × 5=10)				
	(a)	Given a pulse transfer of a discrete-time system, show that the state-space representation of the system is not unique.	5	
	(b)	Obtain the state-variable model of the system described by the difference equation $y(k+2)+2y(k+1)+0.25y(k)=u(k+1)+2u(k)$	5	
		where, $u(k)$ is the input and $y(k)$ is the output of the system.		
	(c)	Consider the following discrete time state model		
		$\begin{bmatrix} x_1(k+1) \\ x_2(k+1) \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(k)$	5	
		Obtain the pulse transfer function. Consider an asymptotically stable continuous-time system.		
	(d)	Derive the solution of the linear-time-invariant discrete-time state equation		
		x(k+1) = Gx(k)	5	
		in terms of the State Transition Matrix.		
Q2	(a)	What is Similarity Transformation? Show that the Pulse Transfer Function is invariant under Similarity Transformation.	2+4	
	(b)	Obtain the state space representation of the following difference equation using direct programming method.	:	
		y(k+2) + y(k+1) + 0.16y(k) = u(k+1) + 2u(k)		
*		Where, $u(k)$ is the input and $y(k)$ is the output of the system.	. 4	
		(i) Obtain the state-variable model in Diagonal Canonical Form.	2	
	, ,	(ii) Draw the corresponding simulation diagram.	-	
	(c)	Obtain the state transition matrix of the above discrete-time system.	8	
Q3	(a)	Define complete state controllability and output controllability for a discrete-time system. State the necessary and sufficient condition for the complete state controllability and observability.	2+2+4	
	(b)	The discrete-time system is defined by		
		$\begin{bmatrix} x_1(k+1) \\ x_2(k+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -0.16 & -1 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + \begin{bmatrix} 1 \\ 0.5 \end{bmatrix} u(k)$	4+4+4	
	٠	$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ is completely state controllable. Determine a sequence of control signal		

Ref. No.: Ex/EE/5/T/512A/2024

$$u(0)$$
 and $u(1)$ such that the state $x(2)$ becomes, $\begin{bmatrix} x_1(2) \\ x_2(2) \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$

Q4 (a) Define State Transition Matrix of discrete-time system.

Consider the following discrete-time system,

$$\begin{bmatrix} x_1(k+1) \\ x_2(k+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -0.24 & -1 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k)$$
 2+6

$$y(k) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix}$$
. Assume that the following outputs are observed, $y(0) = 1$, $y(1) = 2$

The control signals are given by u(0) = 2, u(1) = -1. Determine the initial state x(0). Also determine state x(1) and x(2).

(b) Consider a system given by the pulse transfer function

4+4+4

$$G(z) = \frac{1 + 0.8z^{-1}}{1 - z^{-1} + 0.5z^{-2}}$$

Obtain the state and output equations of the system in the

- (i) Controllable Canonical Form,
- (ii) Observable Canonical Form and
- (iii) Diagonal Canonical Form.

Q5 (a) Consider the following oscillatory system

4+4

6

6

$$\frac{y(s)}{u(s)} = \frac{\omega^2}{s^2 + \omega^2}$$
, Obtain the continuous-time state space representation of the system.

Then discretized the system and obtain the discrete-time state space representation of the system.

(b) Derive the expression for state feedback gain matrix, 'K', commonly called Ackermann's Formula.

(c) Consider the system
$$x(k+1) = Gx(k) + Hu(k)$$
, where,

$$G = \begin{bmatrix} 0 & 1 \\ -0.16 & -1 \end{bmatrix}$$
, $H = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Assume that the following control scheme is used.

$$u = -Kx$$

Determine the state feedback gain matrix, 'K' such that the system will have closed loop poles at z = 0.2 + j0.3, z = 0.2 - j0.3.