Bachelor of Engineering (Electrical Engineering) Examination, 2024

(4th Year, 1st Semester, Supplementary)

ELECTRICAL MACHINES - III

Time: Three Hours Full Marks: 100

(50 marks for each part) Use a separate Answer-Script for each Part

PART - I

Answer *any three* questions from this part. *Two* marks are for neat and well organised answer.

1.	a)	Explain the double revolving field theory for single phase induction motor and also prove that a single phase induction motor cannot produce starting torque. Show that this motor can be forced to run in either direction.	12
The state of the s	b)	What are the various methods of starting of single phase induction motor?	4
2.	a)	Derive the equivalent circuit of a single phase induction motor with the help of double revolving field theory.	10
	b)	Explain how the equivalent circuit parameters of a single phase induction motor can be determined experimentally.	6
3.	a)	Develop an expression for the resultant torque of a single phase induction motor when running with slip s.	8
	b)	Explain the working principle of Capacitor split phase motor. For Capacitor Split Phase Motor find the value of total Cacacitance required for the starting winding to get maximum starting torque.	8
4.	a)	What is single phase series motor? Explain its working principle. Draw and explain the phasor diagram of a single phase series motor.	10
	b)	What is Compensated single phase series motor?	6
5.	Wr	ite a note on Construction, Principle of Operation and Applications of Shaded Pole	16

[Turn over

Ref. No. : Ex/EE/5/T/411/2024(S)

BACHELOR OF ENGINEERING (ELECTRICAL ENGINEERING) FOURTH YEAR FIRST SEMESTER SUPPLEMENTARY EXAM 2024

SUBJECT: - ELECTRICAL MACHINES-III

Time: Two hours/Three hours/ Four hours/ Six hours

Full Marks 100 (50 marks for each part)

	Use a separate Answer-Script for each part			
PART II				
6.	Justify any four:	4x2.5		
	a) Mmf method to determine voltage regulation of an alternator is more accurate than emf method.b) Hydro alternators are fitted with damper bars.			
	c) A cylindrical rotor synchronous machine has smaller D/L ratio compared to a salient pole synchronous machine of same rating.d) Short circuit characteristic of an alternator is linear.			
	e) Slip test is performed at reduced voltage.			
7.	 a) Develop the phasor diagram of a cylindrical rotor alternator both under lagging and leading load condition. 	10		
	or			
	b) Derive the power angle characteristics of a cylindrical rotor alternator and show the maximum power condition.	10		
	Write short notes on:	10		
	a) Excitation and power circle diagrams of alternator.			

or

b) Operating chart of an alternator.

8.

10

a) Develop the power angle characteristics of a salient pole alternator. Also determine the maximum power condition for the same.

or

- a) Develop the phasor diagram of a salient pole synchronous motor 10 both for under and overexcited condition.
- a) A 100 kVA, 440V, 3 phase, star connected, alternator has the following data:
 F&W Loss= 340W, Open circuit Core Loss=480W, Field winding resistance =180 ohm, Ra=0.02 ohm/phase and Xs=0.25 ohms/phase. The voltage applied to field winding is 220V. Calculate alternator input power at rated voltage, half load and 0.8 pf lag.

A 20 MVA, 3 phase, star connected, 11kV, 12 pole 50 Hz, salient pole synchronous motor has the following parameters. Xd= 4.5 ohm, Xq= 3 ohm per phase and ra=0. At full load 0.8 power factor lag and rated voltage, compute the excitation voltage.