BACHELOR OF ENGINEERING (ELECTRICAL ENGINEERING) 4TH YEAR 1ST SEMESTER SUPPLEMENTARY EXAMINATION, 2024

SUBJECT: - DIGITAL SIGNAL PROCESSING

Full Marks 100

Time: Three hours

Part-I

(50 marks for each part)✓

Use a separate Answer-Script for each part

Answer Any Three Questions

Two marks reserved for neat and well organized answers

- Q.1a). Describe in detail how Radix-2 decimation-in-frequency in-place FFT algorithm can be employed to compute 4-point FFT of a discrete sequence. Draw the corresponding signal flow graph.
- Q.1b). What is an N-point DFT pair? What is the role of twiddle factor in it?
- Q.2a). The DFT coefficients for a sequence x_k are given as: $X_0 = 20$, $X_1 = -4 + j3$, $X_2 = 10$, and $X_3 = -4 j3$. Evaluate its inverse DFT to recover the sequence x_k .
- Q.2b). Describe in detail the bit reversal procedure employed in 8-point FFT. Derive the number of complex additions and multiplications required in computing an 8-point FFT.
- Q.3a). What is Gibbs Phenomenon encountered in designing digital FIR filters? How can its effect be minimized? Describe the causal and non-causal forms of Hamming window and Hann window.
- Q.3b). Prove that, an ideal digital filter, designed with a real and symmetric h_n , results in a distortion-less filter with zero phase shift.

Ref No: Ex/EE/5/T/511/2024(S)

Q.4a). Show that the direct realization of a linear-phase digital FIR filter can be carried out using $\left(\frac{M+1}{2}\right)$ number of multiplications, where M is the order of the filter and M is chosen odd.

Q.4b). Why in offline implementation of digital filters the length of output sequence is smaller than the length of input sequence? Establish with a suitable example. Why are non-causal filters preferred over causal filters for offline implementations?

Q.5. Write short notes on any two:

08+08

- (a) Determination of Fourier series coefficients for a periodic discrete sequence.
- (b) Circular symmetries of a discrete sequence.
- (c) Properties of linear phase digital filters.

Ref. No.: Ex/EE/5/T/414/2024(S)

BACHELOR OF ENGINEERING (ELECTRICAL ENGINEERING) FOURTH YEAR FIRST SEMESTER SUPPLEMENTARY EXAM 2024

DIGITAL SIGNAL PROCESSING

Time: Two hours/Three hours/ Four hours/ Six hours

Full Marks 100 (50 marks for each part)

8

	Use a separate Answer-Script for each part	
Question No.	tion PART II	
	Answer any three questions Two marks reserved for neat and well-organized answers	

1.	Derive the relation between the rourier transform of a	
	continuous-time (analog) signal and that of its uniformly sampled	0.7
	version. Hence, with the help of relevant figures explain the phenomenon of aliasing.	9+/

	Starting	from	the	definition	of	Z-transform,	determine	the
	expressions for the Z-transforms of the following sequences.							

(i)
$$x_n = e^{-an\tau} u_n$$
; $a > 0$.
(ii) $g_n = \cos(\omega_n n\tau) u_n$

Locate the poles and zeros of the Z-transforms on the z-plane.

Obtain the inverse Z-transform of
$$H(z)$$
 given below, by long division method, for $n = 0,1,2$ and 3.

$$H(z) = \frac{z^2 + 2z + 1}{z^3 + 2z^2 + 3z + 1}$$

$$G(s) = \frac{5}{(s+0.6)(s+0.1)}$$

Obtain the difference equation relating the output and the input of the digital filter.

Ref. No.: Ex/EE/5/T/414/2024(S)

Question No.	PART II	Mark
4.	The output $y[n]$ and the input $x[n]$ of a DTLTI system are related through the difference equation	16
	$0.5y_n + 0.05y_{n-1} - 0.36y_{n-2} = 0.35 x_n + 0.126 x_{n-2}$ Derive and draw the Direct form-I, the Direct form-II and the cascade realization (using 1 st order subsystems).	
5.	Write short notes on any two of the following.	
(a)	Representing uniformly sampled signal by a train of scaled impulses.	8+8
(b)	Designing digital filters by impulse-invariant transformation.	
(c)	Mapping of left-half of s-plane on to the z-plane.	
	·	