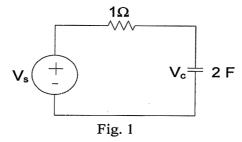
BACHELOR OF ENGINEERING (ELECTRICAL ENGINEERING) FIRST YEAR FIRST SEMESTER - 2024

SUBJECT: CIRCUIT THEORY

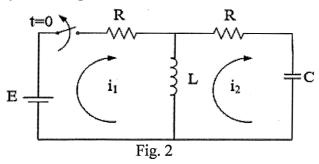
Time: Three Hours

Full Marks: 100

(50 Marks for each part)


Use a separate Answer-Script for each part

Two marks for neat and well-organized answers

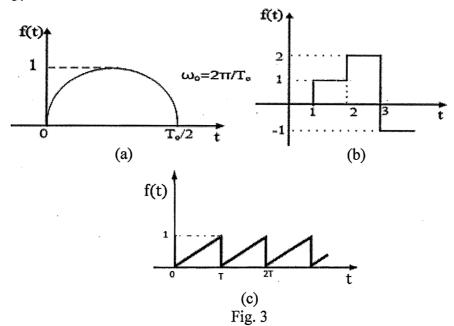

	The state of the s	
Question No.	Part-I	Marks

Answer any three questions

- 1. (a) Define a unit step function and unit ramp function. What is the relationship between the two singularity functions?
 - (b) "The inductor can be represented as an open circuit at t = 0+ & The capacitor can be represented as a short circuit at t = 0+" Explain.
- 2. (a) The voltage across the capacitor in the Fig. 1 is given as follows: $v_c(t) = 2r(t) 2r(t-1)$. Find the value of the voltage source Vs in terms of singularity functions and sketch it.

- (b) Derive and draw the equivalent circuit of the Laplace transformation of inductance and capacitance with initial conditions.
- 3. (a) For the circuit shown in Fig.2, steady state is reached with the switch closed. At t=0, the switch is opened. In this condition, find $i_1(0+), i_2(0+), i_1'(0+)$ and $i_2'(0+)$.

8


8

4

(b) State and derive the initial value theorem. Find the initial and final values of the following function using initial and final value theorem, respectively.

$$F(s) = \frac{s-1}{(s-2)(s+4)}$$

4. (a) Find the Laplace transform of the following three signals as shown in Fig. 3×4 3:

- (b) What do you understand by the terms 'terminals' and 'port' in connection to networks?
- 5. (a) Draw a two port network whose ABCD parameters are
 A=2,B=1 ohm, C=1 mho, D=2. If two such networks are cascaded,
 determine the ABCD parameter of the overall network.
 - (b) Obtain the ABCD parameters in terms of Z parameters of a two-port 9 network.

BACHELOR OF ENGINEERING (ELECTRICAL ENGINEERING) 1ST YEAR 1ST SEMESTER EXAMINATION, 2024

Subject: CIRCUIT THEORY

Time: Three Hours

Full Marks: 100

Part II (50 marks)

Question No.

Question 1 is compulsory

Marks

Answer Any Two questions from the rest (2×20)

Q1 Answer Any One: (a) or (b)

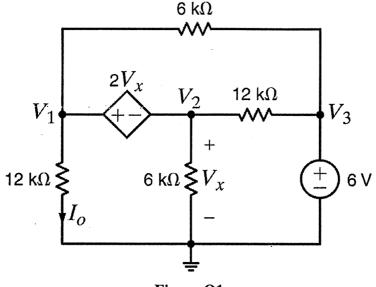


Figure Q1

(a) Determine the value of the current I_0 using Loop Analysis technique.

10

OR

(b) Determine the value of the current I_0 using Nodal Analysis technique.

10

Q2 (a) For the circuit shown in Figure Q2(a) to find I_0 .

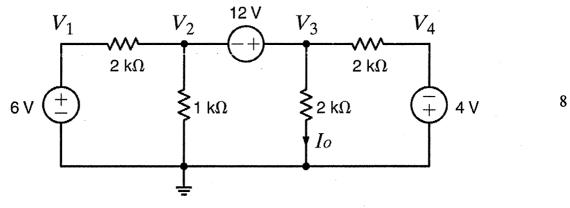
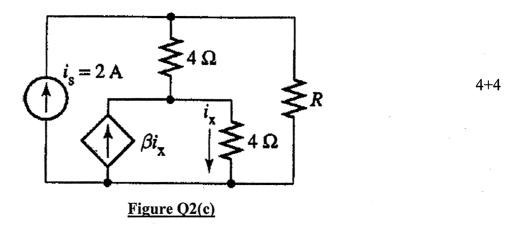
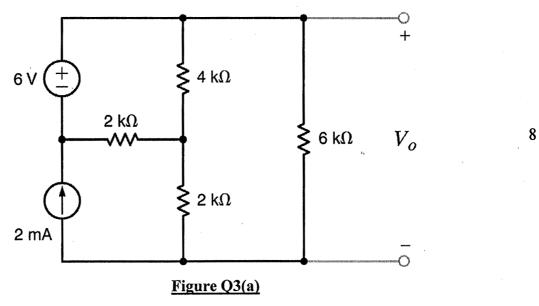
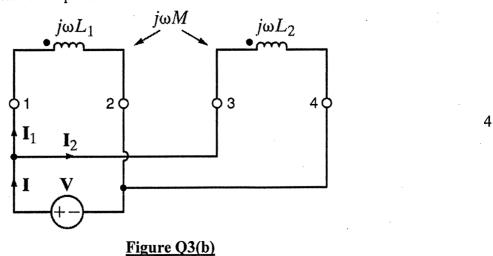
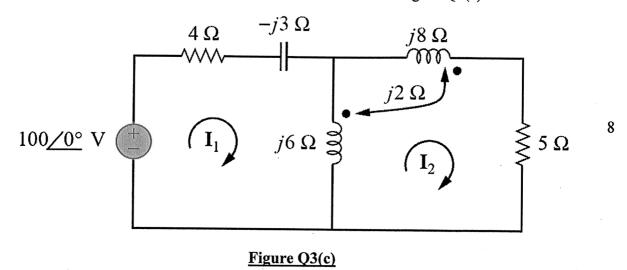



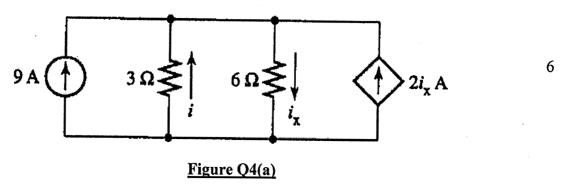
Figure Q2(a)

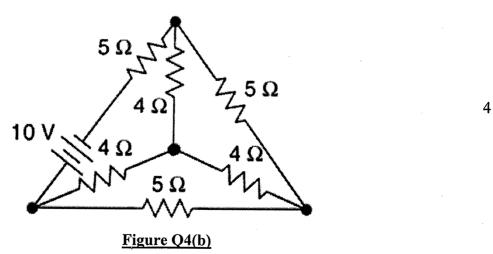

(b) State and prove Maximum Power Transfer Theorem.

4


Q2 (c) For the circuit, as shown in Figure Q2(c), find the value of R that results in maximum power absorbed by R for (i) $\beta = 0.5$ and (ii) $\beta = 1.5$.


Q3 (a) Find, using source superposition, the value of V_0 for the circuit shown in Figure Q3(a).


(b) Two mutually coupled inductors are connected across a voltage source, as shown in Figure Q3(b). Obtain the equivalent inductance of the circuit.


Q3 (c) Calculate the mesh currents I_1 and I_2 in the circuit shown in Figure Q3(c).

Q4 (a) Consider the circuit shown in Figure Q4(a) that contains a current-controlled-current-source. Find the value of current *i*.

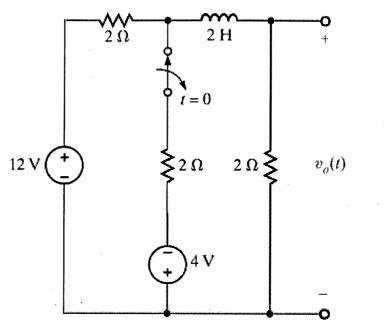
(b) Draw the graph and obtain the Incidence Matrix for the network shown in Figure Q4(b).

(c) Define Cut-set for a network graph.

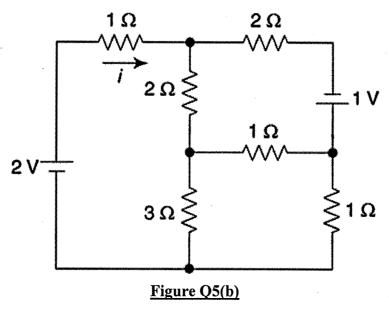
With the help of an example, show how Kirchhoff's Current Law can be written in terms of basic Cut-Set matrix.

2+8

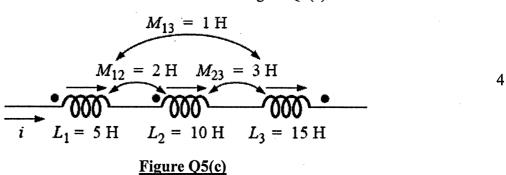
8


8

Q5 (a) Assume that a steady state has been reached before the switch is operated at t=0, as shown in the circuit in Figure Q5(a).


Using Laplace Transform

Using Laplace Transform technique obtain the expression for $V_0(s)$.


Figure Q5(a)

(b) For the network shown in the Figure Q5(b), draw the oriented graph and obtain the Tie-Set Matrix.

(c) Find the total inductance of the series coils shown in Figure Q5(c).

