B.E. ELECTRICAL ENGINEERING - FOURTH YEAR - FIRST SEMESTER SUPPLEMENTARY EXAMINATION, 2024

SUBJECT: - ADVANCED INSTRUMENTATION -I

Time: Three hours

Full Marks 100 (50 marks for each part)

Use a separate Answer-Script for each part

	Ose a separate Answer-Script for each part	
Question No.	PART I	Marks
1. (a)	ANSWER ANY TWO QUESTIONS Give a neat sketch of the architecture for a sigma-delta modulator type ADC and explain the working principle with the help of sketches for relevant spectra and mathematical	12+3
	derivations. Indicate the role of the digital decimator in the ADC.	1273
(b)	Trace the sources of error in full Flash analog-to-digital converters.	10
2. (a)	Elucidate the motivation for electrostatic shielding of Rogowski coil current transducer. How such a shielding can be implemented and what is its effect?	6+6
(b)	Examine the possibility of using a Hall element as an open loop current transducer without any ferromagnetic core.	6+7
	How can the performance of the transducer be improved by introducing a ferromagnetic core?	
3. (a)	Determine the expression for the frequency response of force- balance accelerometer Point out clearly the merit of this accelerometer compared to the open-loop varieties.	10+5
(b)	Explain the functioning of a PTAT sensor using two matched transistors.	10

Ref. No.: Ex/EE/PE/B/T/414D/2024(S)

Question No.	PART I	Marks					
4. (a)	Write short notes on any two of the following. Closed-loop variety of the Hall-effect current transducer.						
(b)							
(c)	Subranging ADC.						

Ref No: Ex/EE/PE/B/T/414D/2024(S)

B.E. ELECTRICAL ENGINEERING FOURTH YEAR FIRST SEMESTER SUPPLEMENTARY EXAM 2024

SUBJECT: - ADVANCED INSTRUMENTATION - I

Time: Three hours

Full Marks 100 (50 marks for each part)

Use a separate Answer-Script for each part

No. of Question s	PART-II				Marks		
	Answer any two						2X25=50
1. a)	Draw a schematic of a digital vector voltmeter using synchronous detection technique. A phase-locked frequency synthesizer provides all internal references from a common reference source. Explain the principle of operation of such voltmeter.					10	
b)	A Rough Set based decision rule generation system uses a real valued data table as given below. Generate the discretized decision table using maximal discernible heuristics. Show the optimum set of cuts.						
		Objects	Condition	Attributes	Decision Attribute		
			A	В	Attribute		
		U ₁	0.75	5.0	0		
		U ₂	1.25	3.5	0	-	
		U ₃	2.2	5.0	1	1	
		U ₄	0.75	2.25	1	-	
		U ₅	1.8	1.0	0	1	
		U ₆	1.25	3.5	1		
		U ₇	1.25	2.25	1	1	
		U ₈	2.2	1.0	1	1 .	
2. a) b)	What is a lock-in-amplifier? Explain with a basic scheme. How can you employ digital synthesis technique in such a lock-in-amplifier for					5 6+2	
	better perf What are	formance? the importance	of such ampl	ifiers in instru	mentation?		è
c)	A digital frequency synthesizer employs an 8 MHz crystal oscillator and gives a 128 step-sinusoid. Determine the maximum and minimum output frequency if the number of fractional bit is 3. Also find out the frequency control word for these cases.					4	
d)	What are orthonormal bases in the context of Wavelet Transform?					3	
	,						

Ref No: Ex/EE/PE/B/T/414D/2024(S)

B.E. ELECTRICAL ENGINEERING FOURTH YEAR FIRST SEMESTER SUPPLEMENTARY EXAM 2024

SUBJECT: - ADVANCED INSTRUMENTATION - I

Time: Three hours

Full Marks 100 (50 marks for each part)

Use a separate Answer-Script for each part

e)	Samples of a signal is shown as $f = \{4, 4, 8, 8, 0, 0, 1, 2\}$.	. 5
	Find Wavelet coefficients after Haar Transform for the above signal. Show that energy does not change after Haar transform.	
3. a)	How is the limitation of Fourier Transform overcome by Short Time Fourier Transform (STFT)?	3
b)	What are the shortcomings of STFT? Justify the application of Continuous Wavelet Transform (CWT) to overcome them.	4
c)	What is/are "Continuous" in Continuous Wavelet Transform?	2
d)	Explain the terms "scale" and "translation" in CWT. What is the importance	4+2
	of the factor $\frac{1}{\sqrt{ s }}$ in CWT? (all symbols carry their usual meaning)	
e)	What are the properties of a mother-wavelet?	4
f)	Write down the algorithm for computing Continuous Wavelet Transform of a one dimensional signal.	6
4.	Write notes on any two	$(2x12\frac{1}{2} = 25)$
a)	Wavelet Transform based denoising technique	25)
b)	Direct Digital Synthesis (DDS) based Frequency synthesizer	
c)	Different levels of sensor fusion	