Ref. No.: Ex/EE/PC/B/T/412/2024

B. E. ELECTRICAL ENGINEERING 4TH YEAR 1ST SEMESTER EXAMINATION, 2024

SUBJECT: - PROCESS INSTRUMENTATION AND CONTROL

Time: Three hours

Full Marks 100 (50 marks for each part)

Use a separate Answer-Script for each part

No. of	PART I	Marks
Questions		
	Answer all the questions.	
1.(a)	Why are <i>PID</i> controllers, used in process control, designed with the provision for providing a bias term? (CO1)	05
(b)	How does an ON/OFF controller operate? How does the output of an ON/OFF controller vary having two/three states and possessing/not possessing the characteristic of hysteresis? (CO1) OR	05
	How is the steady-state gain computed for a process? How is the loop gain computed in a process control system? (CO1)	05
2.	In a pneumatic controller, how can one design to provide set-point in mechanical form and sense the process output as a pneumatic measured variable? Draw a neat schematic diagram of a pneumatic <i>PID</i> controller and explain how the problem of interaction between integral and derivative operations can be made small here. (CO3)	10
	Draw a neat schematic diagram of a spring-diaphragm type actuator with positioner and explain its operating principle in detail. Hence justify how the inclusion of the positioner helps in achieving an improved performance. (CO3)	10
3. (i)	Write a short note on <u>any one</u> of the following: (CO3) Proportional control of a first order process with increasing timedelay.	08
(ii)	Motorized rotary, motorized linear and solenoid type electric actuators.	
4.	Justify or correct <u>any three</u> of the following statements with suitable reasons/derivations, in brief. (CO4)	04×03 =12
(a)	In a parallel realization of an electronic <i>PID</i> controller, a single opamp can be utilized to combine proportional and integral terms in the	

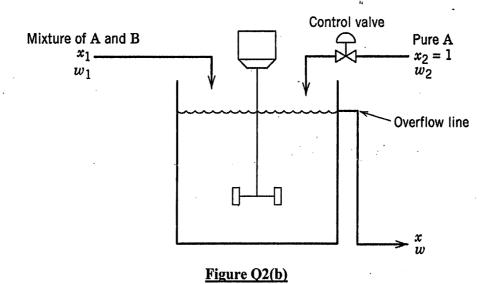
Ref. No.: Ex/EE/PC/B/T/412/2024

B. E. ELECTRICAL ENGINEERING 4TH YEAR 1ST SEMESTER EXAMINATION, 2024

SUBJECT: - PROCESS INSTRUMENTATION AND CONTROL

Time: Three hours

Full Marks 100 (50 marks for each part)


Use a separate Answer-Script for each part

No. of Questions	PART I	Marks
	controller transfer function.	
4. (b)	In relay autotuner method of tuning <i>PID</i> controllers, the relay amplitude is initially set to 100% of the controller output range.	
(c)	Smith's controller for controlling time-delay systems is also known as Smith's predictor.	
(d)	A process controller can be designed with an automatic reset feature to keep provision for anti-derivative kick.	
5.	An analog <i>PID</i> controller is designed first whose proportional gain is 1.45, integral time constant is 0.96 sec. and derivative time constant is 1.64 sec. This design is then converted to a corresponding digital <i>PID</i> controller using trapezoidal rule for integration and backward difference algorithm. The sampling time is chosen as 0.1 sec. Determine the values of the coefficients of the digital <i>PID</i> controller designed. Derive all expressions used and draw the realization of the <i>PID</i> controller in block diagram form.	10
	How will the design of the digital <i>PID</i> controller change, if (i) the integral time constant is decreased by 20% from its base value and (ii) the derivative time constant is increased by 12% from its base value?	
	(CO5)	
	·	

B. E. ELECTRICAL ENGINEERING 4TH YEAR 1ST SEMESTER EXAMINATION, 2024 Subject: PROCESS INSTRUMENTATION & CONTROL Time: Three Hours Full Marks: 100

Part II (50 marks)

Question No.		Question 1 is compulsory Answer Any Two questions from the rest (2×20)	
	(a)	With the help of a schematic diagram define the different process variables and control variables associated with an automatic process control system.	5
	(b)	What is Cascade Control? When does such control scheme become useful?	5
	(c)	What is feed-forward control? How is it different from feedback control?	5
	(d)	With the help of a block diagram discuss the function of a Soft Sensor in an Inferential Control Scheme.	5
Q2	(a)	What is <i>Process Time Lag?</i> What are the main factors responsible for it?	2+4
	(b)	A continuous, stirred-tank blending system is shown in Figure Q2(b).	
		(i) Write down the Steady-State Material and Component-A balance equations.	4
		(ii) Obtain the expression for the nominal flow rate of w_2 required to produce the desired output concentration x_{sp} .	4
		(iii) Suppose that inlet concentration x_1 varies with time. What are the different schemes that can be employed to ensure that the outlet composition x remains at or near its desired value x_{sp} ?	6

Ref. No.: Ex/EE/PC/B/T/412/2024

Q3	(a)	What are Fundamental and Empirical Models?	2
	(b)	(i) Discuss the methods of determining the parameters of First-Order-Plus-Time-Delay (FOPTD) model from the process reaction curve.	6
		(ii) What are the limitations of FOPTD models? How they can be overcome using Integral-Plus-Time-Delay models?	2+2
	(c)	Consider a single tank liquid-level system where the outflow passes through a valve. Assume that the valve discharge rate is related to the square root of liquid level: $= C_{\rm v} \sqrt{h}$, where $C_{\rm v}$ depends on the fixed opening of the valve.	
		(i) Derive an approximate dynamic model for this process by linearization.	4
		(ii) Obtain deviation variable model assuming inflow rate and the height of water in the tank to be the manipulated and controlled variable, respectively.	4
Q4	(a)	Develop the block diagram of the PID control scheme in parallel form.	4
	(b)	What is Set Point Kick? What are its main components?	2+2
		Show, with the help of block diagrams, how the PID control configuration needs to be modified to eliminate such phenomena.	6
	(c)	Explain, with an example, why in practical applications feed-forward control is generally used in combination with feedback control.	6
Q5	(a)	What is Ratio Control?	
		With the help of schematic diagram discuss the different Ratio Control methods.	2+6
	(b)	Consider the stirred-tank blending process. The nominal steady-state conditions are $w_1 = 600 \text{ kg/min}$, $w_2 = 2 \text{ kg/min}$, $x_1 = 0.05$, and $x_2 = 1$ (for pure solute).	
		The liquid volume and density are constant: $V = 2 \text{ m}^3$ and $\rho = 900 \text{ kg/m}^3$, respectively.	
		(i) Calculate the nominal exit concentration, \bar{x} .	4
	,	(ii) Derive an expression for the response, $x(t)$, to a sudden change in x_1 from 0.05 to 0.075 that occurs at time, $t = 0$.	8
		Assume that the process is initially at the nominal steady state.	-