B.E. ELECTRICAL ENGINEERING EXAMINATION, 2024

(4th Year, 2nd Semester)

INTRODUCTION TO NANO- BIOTECHNOLOGY (HONS.)

Time: Three Hours Full Marks: 100

(50 marks for each part)

Use a separate Answer-script for each Part

PART-I

Answer any three questions

Two Marks are reserved for neatness and well organized answer script

With suitable examples, illustrate how a nano-bio (i) linear and (ii) rotary motor can be 1. implemented. Provide proper illustrations to support your answer. 8+8 How does photo-induced electron transport occur in DNA? Compare it with respect to 2. HOMO-control and LUMO-control. Depict the experimental setup for the same. 2+9+5 6 Identify some important topics of research in nano-biotechnology. 3. a) 5 b) Describe an "artificial red blood cell" and its proposed working principle. 5 c) What is a "bioengineered cell rover"? Explain its function. Describe the "top-down" and "bottom-up" approaches of nano-bio technology. 4 4. a) 4+4+4 b) Write short notes on (i) Liposomes (ii) Dendrimers and (iii) Microbivore. Provide applications of nano-biotechnology in medical and clinical fields. 8 5. a) 4 b) What are the future prospects of nano-biotechnology? 4 c) Discuss the challenges of nano-biotechnology.

Ex/EE/PE/H/T/422A/2024

Full Marks: 100

B.E. ELECTRICAL ENGINEERING EXAMINATION, 2024

(4th Year, 2nd Semester)

INTRODUCTION TO NANO-BIO TECHNOLOGY

Time: Three Hours

(50 marks for each part)

Use a separate Answer-script for each Part

PART-II

Answer Any three questions

(Two marks are reserved for neatness and well organized answers)	
1. Briefly explain the following tools used in the fabrication of nanostructures:	16
 a) Laser Ablation b) Self-Assembly c) Nanosphere Liftoff Lithography d) Molecular beam epitaxy (MBE) 	
2. a) Explain the electrical, mechanical, and vibrational properties of carbon nanotubes.	10
b) Briefly mention some of the applications of carbon nanotubes.	6
 3. In brief, explain the following nano-material characterization tools: a) Atomic Force Microscopy b) Fluorescence Microscopy c) Electron Microscopy 	16
4. a) What is Moore's law? What are the factors enabling Moore's law?	2+4
b) Explain the operation of a tunnel diode in the context of nanotechnology. Mention advantages and disadvantages of tunnel diodes. Also, mention their applications.	n the 10
5. Write short notes on any two of the following: 2×	8=16
a) Different forces that play a vital role in the creation of stable nanostructures	
b) Different structures of carbon nanotubes	
c) Quantum Computing	