B.E.ELECTRICAL ENGINEERING SECOND YEAR FIRST SEMESTER EXAMINATION, 2024

SIGNALS AND SYSTEMS

Full Marks 100

Time: Three hours

(50 marks for each part)
Use a separate Answer-Script for each part

	Use a separate Answer-Script for each part	
Question No.	PART I	Marks
	Answer Question No. 5 and any TWO from rests.	
	Give proper units wherever necessary.	
1. (a)	Evaluate the following integrals.	
2. ()	$(i)\int_{-\infty}^{+\infty} \delta(bt-a)\cos^2(t-c)dt$, from the definition of $\delta(t)$,	_
	where $b > 0$.	7
	$(ii)\int_{-\infty}^{+\infty}\frac{1}{3}Sinc^{2}(3t)dt$	
(b)	The impulse response of a linear time-invariant (LTI) system is	
	$h(t) = e^{-t} [u(t-3) - u(t-5)]$. Without actually determining the	5
	expression for the frequency response, obtain the value of the DC	
-	gain of the system.	
	Determine the 'Duty Cycle" and "AC Coupled Crest factor" of the	
(c)		
(c)	pulse train $x(t)$ depicted in Fig.[A].	4
	$x(t)_{\Lambda}(V)$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	11	
	Fig. [A] [CO2-K2]	
	The response of an LTI system to a unit parabola input is	
2. (a)	$\phi(t) = \frac{3}{2}t^2u(t) - e^{-2t}u(t).$	7
	Perform time-domain analysis to obtain the expression for the	
	1 of for the mine-domain analysis to obtain the carps and analysis	

Question	PART I	Marks
No.		
·	response of the system to an input $f(t) = tri(t-1)$, where $tri(t)$ is shown in Fig. [B].	
	tri(t) 1 -1 0 1 Fig. [B]	
(b)	The input $x(t)$ to an LTI system has an autocorrelation function $R_X(\tau) = 2\delta(\tau)$. The impulse response function of the system is	5
	$g(t) = 3e^{-5t}u(t)$. Determine the expression for the autocorrelation function of the output.	
(c)	Determine the energy of the signal	4
145	$x(t) = Sin(\omega_o t) \text{ for } -\frac{2\pi}{\omega_o} \le t \le \frac{2\pi}{\omega_o}$ and $x(t) = 0$ otherwise, where t is in seconds and $x(t)$ is in A.	•
	and $x(t) = 0$ otherwise, where t is in seconds and $x(t)$ is in A. [CO3-K3]	
3. (a)	With the help of neat labeled sketches, determine and sketch the odd component of the signal $y(t)$ shown in Fig. [C]. Also sketch the derivative of $y(t)$.	7
	y(t) 8 \(\bar{1} \cdot	
	3	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
(b)	Fig. [C] Obtain the one-sided line amplitude spectrum, phase spectrum and the power density spectrum (up to 3 rd harmonic) for the periodic signal x(t) shown in Fig. [A].	7+2
	Is the integral of $x(t)$ periodic? Explain. [CO4-K2]	

Ref No: Ex/EE/PC/B/T/211/2024

Question No.	PART I	Marks
4.	In the circuit shown in Fig. [D], if R=10 Ω and L=1 H, determine the expression for the steady state output $y(t)$ and for an input $x(t) = 2\cos(2t) + 3\cos(4t)$, where t is in seconds. Also determine the expressions for the step response of the circuit and the response corresponding to an input $x(t) = e^{-3t}u(t)$. [CO5-K3]	6+4+6
5. (a) (b) (c)	Fig. [D] Write short notes on any two of the following. [CO1-K1] Frequency response of second-order system. Energy spectral density and power spectral density. Periodicity of linear combination of periodic signals.	9+9

B. E. ELECTRICAL ENGINEERING 2ND YEAR 1ST SEMESTER EXAMINATION, 2024 Subject: SIGNALS & SYSTEMS Time: Three Hours Full Marks: 100

Part II (50 marks)

Question Question 1 is compulsory
No. Answer Any Two questions from the rest (2×20)

Marks

Q1 Answer any Two of the following:

(a) Determine if the system given by

$$\frac{dy(t)}{dt} + \sin(t)y(t) = 4x(t)$$

is time-invariant, linear, causal, and/or memoryless?

- (b) An LTI system has an impulse response $h(t) = e^{-at}u(t)$. When it is excited by an input signal x(t) its output is $y(t) = [e^{-bt} e^{-ct}]u(t)$. Determine x(t).
- (c) Find state equations for the following system

$$\frac{d^2y(t)}{dt^2} + 2\frac{dy(t)}{dt} + 4y(t) = 2u(t)$$
 5

where, y(t) and u(t) are output and input, respectively.

- (d) Find an analog simulation that converts feet into inches utilizing the full amplifier range of 0 to +10 volts and is capable of converting up to 5 feet.
- Q2 (a) When the system shown in Figure Q2(a) is subjected to a unit-step input, the system output responds as shown in Figure Q2(b).

 Determine the values of K and T from the response curve.

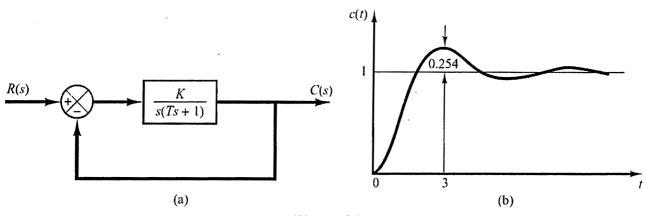


Figure Q2

- (b) Define State and Output equations for an LTI system.

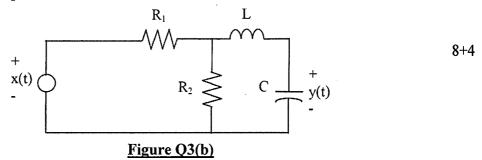
 For *n*-th order SISO, LTI system indicate the dimensions of the matrices and vectors involved in State and Output equations.

 2+2
 4
- (c) Consider an LTI system given by the differential equation:

$$2\frac{d^3y(t)}{dt^3} + 4\frac{d^2y(t)}{dt^2} + 6\frac{dy(t)}{dt} + 8y(t) = 10u(t)$$

Obtain the state-space model of the system in the phase variable canonical form.

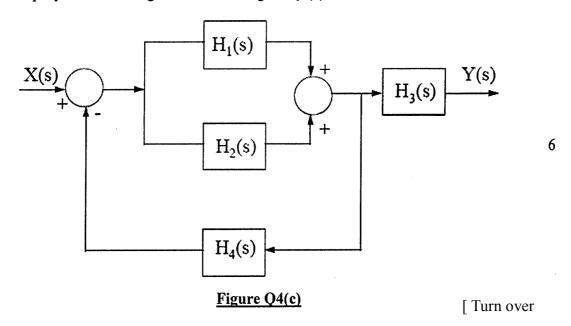
Ref. No.: Ex/EE/PC/B/T/211/2024


4

4

4

- Q3 (a) (i) Define damping ratio (ξ) and undamped natural frequency (ω_n) for a second order system?
 - (ii) Show that the locus of the poles of a 2nd order system for ξ varying from 0 to 1, with ω_n held constant, will be a circle of radius ω_n with its center at origin.
 - (b) Obtain the transfer function of the circuit, shown in Figure Q3(b), in terms of R₁, R₂, C, and L.


Determine the poles of the circuit for $R_1=R_2=2000 \Omega$, C=100mF, L=10mH.

- Q4 (a) (i) State and prove the Final Value Theorem for Laplace Transform.
 - (ii) Find the initial value of $\frac{df(t)}{dt}$ for $F(s) = \mathfrak{L}[f(t)] = \frac{2s+1}{s^2+s+1}$
 - (b) Use one-sided Laplace Transform to find the output y(t) of a system given by

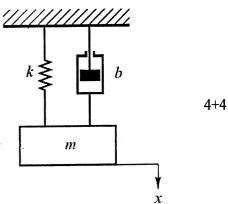
$$\frac{dy(t)}{dt} + 4y(t) = 3x(t)$$
with, $x(t) = \sin(2t)$, and $y(0^+) = 1$

(c) Simplify the block diagram shown in Figure Q4(c) to find the transfer function.

Ref. No.: Ex/EE/PC/B/T/211/2024

Q5 (a) (i) Draw analog simulation diagram for the following system.

$$\ddot{x} + 8\dot{x} + 25x = 500$$
, $x(0) = 40, \dot{x}(0) = 150$,
with, $|x|_{max} = 50$, $|\dot{x}|_{max} = 250$.


- (ii) Obtain magnitude-scaled analog simulation of the system to utilize the full amplifier range of 0 to ± 10 volts without any overloading.
- (b) (i) In the system shown in Figure Q5(b), the numerical values of m, b, and k are given as

m=1 kg, b=2 N-sec/m, and k=100 N/m.

The mass is displaced 0.05 m and released without initial velocity.

Find the frequency observed in the vibration.

(ii) Obtain the analogous electrical network based on *force-voltage* analogy.

Figure Q5(b)