B. E. ELECTRICAL ENGINEERING 2ND YEAR 1ST SEMESTER SUPPLEMENTARY EXAMINATION, 2024

Subject: CIRCUIT THEORY

Time: Three Hours

Full Marks: 100

Part I (50 marks)

Use Separate Answer-script for Each Part

Question No.

Answer Any Three questions (3×16)

Marks

(Two marks are reserved for well-organized answers)

Q1 (a) For the circuit shown in Figure Q1(a) find I_0 following the concept of Super node.

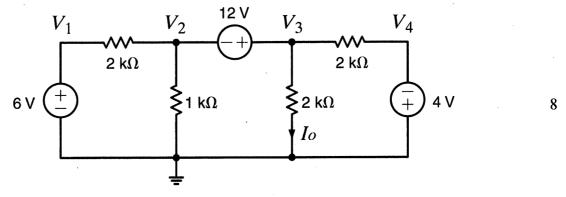
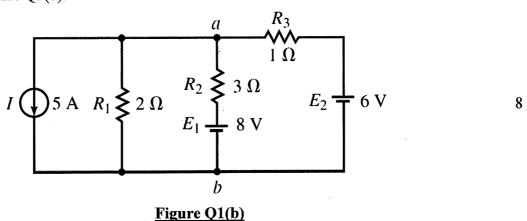
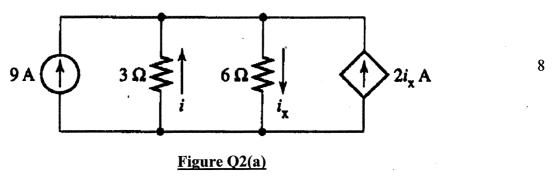




Figure Q1(a)

(b) Determine the current through the 8-V battery using Mesh analysis for the circuit shown in Figure Q1(b).

Q2 (a) Consider the circuit shown in Figure Q2(a) that contains a current-controlled-current-source. Find the value of current *i*.

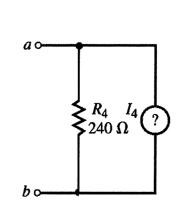
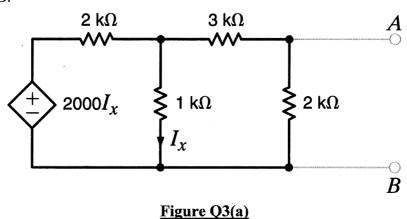
Ref. No.: Ex/EE/PC/B/T/212/2024(S)

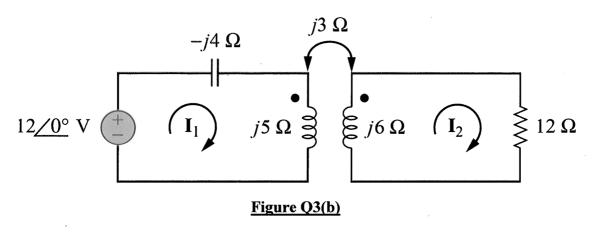
Q2 (b) If the indicated portion in the circuit of Figure Q2(b) is to be replaced with a current source and a 240-ohm shunt resistor, determine the magnitude and direction of the required current source.

 R_1

 16Ω

 40Ω

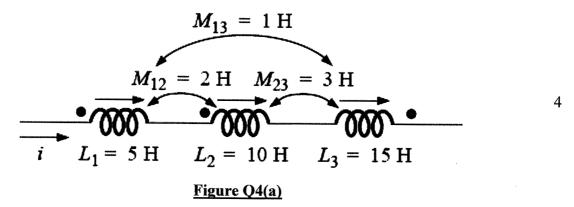




Figure Q2(b)

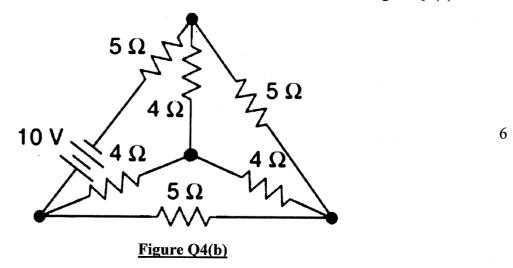
 60Ω

Q3 (a) For the circuit shown in Figure Q3(a) obtain the Thevenin equivalent circuit across the terminal A-B.

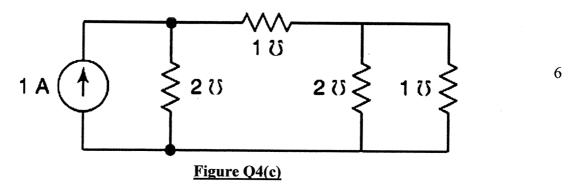
(b) For the circuit shown in Figure Q3(b) determine the currents I₁ and I₂.


8

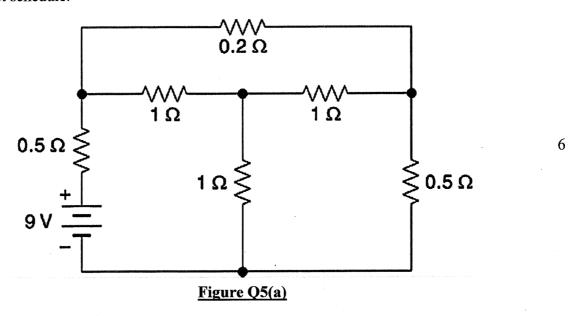
8


8

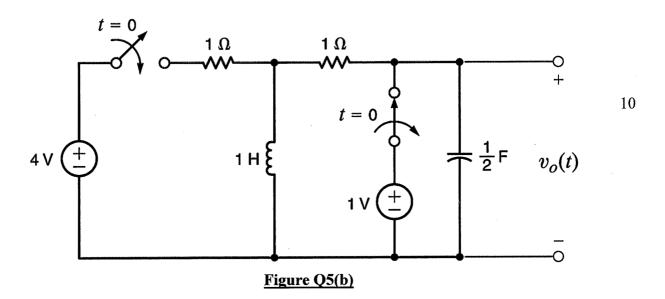
Ref. No.: Ex/EE/PC/B/T/212/2024(S)


Q4 (a) Find the total inductance of the series coils shown in Figure Q4(a).

(b) Draw a graph and obtain the Incidence Matrix for the network shown in Figure Q4(b).



(c) For the network shown in the Figure Q4(c), draw a graph of the network and obtain the fundamental Cut-Set matrix.


Ref. No.: Ex/EE/PC/B/T/212/2024(S)

Q5 (a) For the network shown in the Figure Q5(a), draw a graph of the network and prepare a Tie-Set schedule.

(b) Assume that a steady state has been reached before the switches are operated at t=0, as shown in the circuit in Figure Q5(b).

Using Laplace Transform technique obtain the expression for $V_0(s)$.

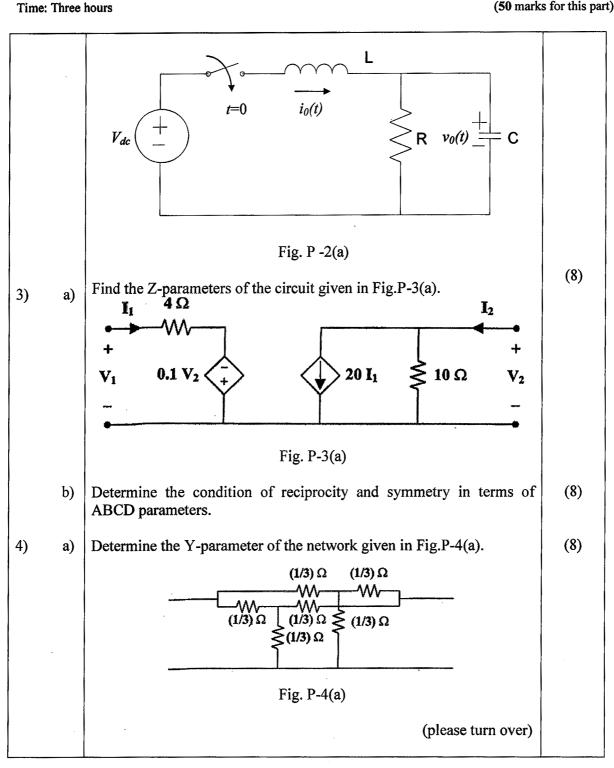
Ref No:

Ex/EE/PC/B/T/212/2024(S)

B.E. ELECTRICAL ENGINEERING SECOND YEAR FIRST SEMESTER SUPPLEMENTARY EXAM 2024 SUBJECT: - CIRCUIT THEORY

Time: Three hours

Full Marks: 100 (50 marks for this part)


No. of	Use a separate Answer-Script for each part PART -II	Marks
Question	Answer any Three (Two marks reserved for well organized answers)	
1) a)	Find the current $i(t)$ in a series RLC circuit comprising of a resistor R = 4 Ω , inductor L = 1 H and capacitor C = 1/3 F when each of the following source voltage signals is applied: (i) $9r(t-2)$ (ii) $4u(t-3)$ and (iii) $2\delta(t-1)$.	(8)
b)	Find the Laplace transform of the waveform given in Fig P-1(b). Derive the formula you used.	(8)
	f(t) 1.0 0 a 2a 3a 4a 5a t	
	Fig. P -1(b)	
2) a)	For the circuit given in Fig.P-2(a) the circuit parameters are $R = 10k\Omega$, $L = 800$ mH and $C = 100$ nF. The switch is closed at $t=0$. If $V_{dc} = 70$ V, find: (i) $v_0(t)$ for $t \ge 0$ (ii) $i_0(t)$ for $t \ge 0$	(10)
	(iii) Use initial and final value theorems to check the initial and final values of current and voltage.	
b)	Find the convolution of two identical rectangular pulses. Each rectangular pulse has unit amplitude and duration equal to 2T seconds. Also, the pulse is centered at t=T.	(6)
	(please turn over)	
		_

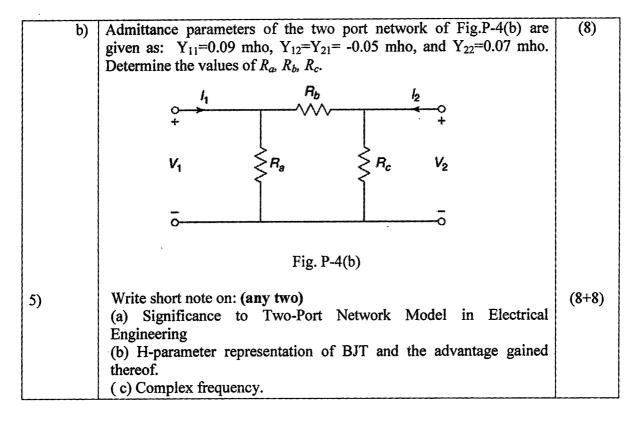
Ref No:

Ex/EE/PC/B/T/212/2024(S)

B.E. ELECTRICAL ENGINEERING SECOND YEAR FIRST SEMESTER SUPPLEMENTARY EXAM 2024 SUBJECT: - CIRCUIT THEORY

Full Marks: 100 (50 marks for this part)

Ref No:


Ex/EE/PC/B/T/212/2024(S)

B.E. ELECTRICAL ENGINEERING SECOND YEAR FIRST SEMESTER SUPPLEMENTARY EXAM 2024

SUBJECT: - CIRCUIT THEORY

Time: Three hours

Full Marks: 100 (50 marks for this part)

