B. CONS. ENGG. 3RD YEAR 2nd SEMESTER EXAM. 2024 DESIGN OF STRUCTURE – III

Time: Three hours

(50 Marks for each Part)

Full Marks: 100

Part - I (Full Marks: 50)

Use Separate Answer Script for Each Part

Answer any Two Question.

Assume suitable data not provided. Use relevant design codes

A multi-storied RCC residential building to be constructed at Siliguri at terrain category II. The plan & elevation are shown in Fig -1. The thicknesses of outer & inner walls are 200 mm & 100 mm respectively. Live load = 3 kN/m^2 , Slab thickness = 100 mm, floor finish = 30 mm, ceiling plaster = 10 mm.

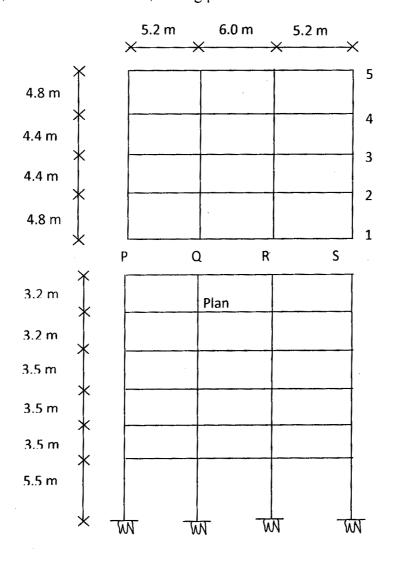


Fig. 1: (Elevation)

Calculate the **design span moments** due to **Dead** + **Live** load of the frame at 2nd Floor level of the frame 3/P-Q-R-S. Draw neat sketch and detail calculations. 25

- 2 a) Discuss Equivalent Static Method for Seismic Design of Buildings
 - b) Calculate the **design forces due to seismic load at each floor** and the maximum bending moment & axial force in columns & bending moment in beams at 1st floor level of the frame PQRS/3 as stated in problem 1 & Fig.1 by Portal method. **20**
- a) How do you calculate the **design wind pressure** and design wind load on a regular building as per IS 875, Part 3.
 - b) Calculate the design forces due to wind load as per IS: 875 at all floor level of the frame Q/1-2-3-4-5 of the multi-storied building as stated in problem 1 & Fig.1. Evaluate the bending moment, Shear force and axial forces in beams & columns of the frame Q/1-2-3-4-5 at 2nd floor level by Portal method.

20

5

B. Construction Engineering 3rd year2nd SemesterExamination – 2024 Subject: Design of structure-III

Total Time:3hour Full Marks: 100

PART-II(Full Marks-50)

CO2 [20]	[1]Analyses the frame by portal method. Assume any other relevant data if required.				
	80KN	Ą	В	C	<u>D</u>
	70KN	E	F	G	3.0m 3.0m
	60KN		J	K	L V
	50KN	M	NOP		3.0m
		← 4m —	5m	→ 4m —	3.0m
CO4 [20]	[2]Answer all questions in this block.[15+5=20] a.) Design a simple shear wall of length 6m and thickness 200mm. uses M25 Grade concrete &Fe-500 Grade Steel. Use the following data and assume any other data if required.[15]				
	SL.No.	Loading	Axial Force (KN)	Moment (KNM)	Sear (KN)
	1	DL+LL	1200	500	250
	2	EL	300	3000	500
	b.) Write the name of different type of shear wall along with sketch. [5]				
CO5	[3] What do you mean by Machine foundation? Write the different type of Machine foundation along with				
[10]	sketches. [10]				

The students of the course should be able to

CO1: Analysis & Design Tall Structure, Wind & Earthquake Forces, (K4)

CO2: Demonstrate Portal & Kani's Method (K2)

CO3: Application in Earthquake Resistant Design & Response Spectrum Method (K3)

CO4: Analysis & Design & Shear Wall in Tall Structures, (K4)

CO5: Describe Machine Foundation, Industrial Structure, Form Work Design (K1)