B. Construction Engineering 2nd year2nd SemesterExamination – 2024 Subject: Theory of structure-I

Total Time: Three hours Full Marks: 100

PART-I(Full Marks-50) Use Separate answer sheet for each part.

	Use Separate answer sheet for each part.
CO1 [10]	[1] Answer any one from (a)& (b)in this block: (a) Show that the deflection of a fixed beam subjected to a UDL is 1/5 times of deflection of Simply supported beam subjected to a same kind of loading. [10] (b) Show that the deflection of a fixed beam subjected to a point load is 1/4 times of deflection of Simply supported beam subjected to a same kind of loading. [10] [2] Answer (a), (b) in this block
[15]	(a) Find the slope & deflection of the continuous beam ABCD as shown in figure. Assume any other data if required. Apply conjugate beam method. AB= I, BC=1.5I, CD=2I [10] 50KN 80KN
	$A_{\overline{m}} \xrightarrow{A_{\overline{m}}} A_{\overline{m}} \xrightarrow{A_{\overline{m}}} A_{\overline{m}$
	(b) What do you mean by conjugate beam? Write the assumptions of conjugate beam.[5]
CO3 [10]	[3] <u>Answer any one from (a), (b)in this block:</u> (a) Determine the vertical downward deflection at point Eof the truss as shown in figure. The cross sectional area of AB=BC=CD=2000mm ² and AE=ED=2500 mm ² . BE=CE=4000 mm ² . Take E= 2.1X10 ⁵ N/mm ² . [10]
	A C 4m
	(b) Find the vertical deflection at point B of the truss as shown in figure. The cross sectional area of all AD=BE=CF=3000mm ² and DE=EF=AB=BC=4000 mm ² . BD=BF=2000 mm ² . Take E= 2.1X10 ⁵ N/mm ² . 4m The cross sectional area of many content of the truss as shown in figure. The cross sectional area of many content of the truss as shown in figure. The cross sectional area of all AD=BE=CF=3000mm ² and DE=EF=AB=BC=4000 mm ² . BD=BF=2000 mm ² . Take E= 2.1X10 ⁵ N/mm ² . The cross sectional area of the truss as shown in figure. The cross sectional area of all AD=BE=CF=3000mm ² and DE=EF=AB=BC=4000 mm ² . BD=BF=2000 mm ² . Take E= 2.1X10 ⁵ N/mm ² . The cross sectional area of the truss as shown in figure. The cross sectional area of all AD=BE=CF=3000mm ² and DE=EF=AB=BC=4000 mm ² . BD=BF=2000 mm ² . Take E= 2.1X10 ⁵ N/mm ² . The cross sectional area of the cross section area of the cro

Ref.EX/CON/PC/B/T/221/2024

CO4 [15]	4. Answer any one from (a), (b) in this block
	(a) Draw the SFD & BMD of the continuous beam as shown in figure. Use Three moments equations. AB=20KN/m, BC=25 KN/m, CD=30 KN/m. [15],
	A \longrightarrow B \longrightarrow C \longrightarrow D \longrightarrow

CO1: Explain and discuss deflection of beams, Columns and Struts &Solve Area-moment theorems, Classify and solve problems regarding Fixed and Continuous beams (K2)

CO2: Solve Conjugate beam theorems and statically determinate and indeterminate structures, supports and reactions (K2)

CO3: Apply Unit load Method to calculate the deflection of Trusses(K3)

CO4: Explain & Solve Theorem of three moments structural systems. (K2)

CO5: Analyze Columns and Struts in terms of buckling by Euler's theorem, Rankine's formulae, Columns with eccentric load, Bi-axial bending(K4)

BE SECOND YEAR SECOND SEMESTER (CONSTRUCTION) EXAMINATION - 2024

Subject: THEORY OF STRUCTURES - I

Time: Three hours Full Marks: 100

Part – II (50 Marks)

Answer questions as well as parts together & **SERIALLY.** Different parts of the same question should be answered together. Answer question **No. 1** & any **two** from **Block '2'** in pairs. Choice should be in pairs, either (a)(i) & (ii) OR (b)(i) & (ii) should be answered. Please start answering a **NEW** question or part thereof **strictly** from a **NEW** page for the sake of precision & brevity.

	[1] Define & explain a Beam-Column. [CO1] Prove that for a beam column with an axial load P at each	CO1
1.	of the pin jointed ends, the expression for bending moment at mid span is $[M]_{x = L/2} = \mathcal{W}L^2/8$ [1+ 1.03(P/PE) + 1.04(P/PE) ² +] OR = $\mathcal{W}L^2/8$ when P is such that P/P _E \leq 1/10 where \mathcal{W} = transverse	&
	load per unit run along the beam span, P_E = Euler critical load & L is the effective span of the beam column. [CO5] [3+15=18]	CO5 [18]
	[2] Answer any one (1) from (a) & (b) in this block [CO5]:	
	(a)(i)A hollow tube 6.0 M long with external & internal diameter 60 mm & 45 mm respectively was found to extend 5.8 mm under a tensile load of 75 kN. Find the buckling load for the tube with both ends pinned. Also, find the safe load on the tube taking FOS as 4.0	
	(ii) A column AB of a diameter 'd' is hinged at ends carrying two equal & opposite loads P each at eccentricities as in the figure. Assuming end moments to be applied at the points of support find the condition of the occurrence of the maximum bending moment at a distance 'x' from A in the column.	
	, [™]	
	A ←0.1d →	
2.		CO5 [32]
	0.2d ————————————————————————————————————	
	J B P	
	(b) (i) Determine the ratio of <i>Buckling Strength</i> of two columns of circular cross sections one hollow & other solid when both are made of the same material, have the same length & cross section area & same end conditions. The internal diameter of the hollow column is half of its external diameter.16	
	(ii) Determine the expression of maximum compressive & tensile stress of a slim long column with initial curvature in the plane of the least radius of gyration, subjected to axial load 'P' with effective length 'l'. Determine the experimental analysis as pronounced by Southwell in the case of this column.	