B.E COMPUTER SCIENCE AND ENGINEERING 3rd YEAR 1st SEMESTER EXAMINATION 2024 Formal Languages and Automata Theory

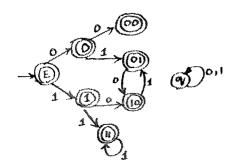
Time: 3 hours

Full Marks: 100

Answer from Groups A, B, C, D

Group A

1(i) Which one of the following regular expressions is NOT equivalent to the regular expression (a+b+c)*?


(A) $(a^* + b^* + c^*)^*$

(B) (a*b*c*)*

(C) $((ab)^* + c^*)^*$

(D) (a*b* + c*)*

ii) Consider the set of strings on {0,1} in which, every substring of 3 symbols has at most two zeros. For example, 001110 and 011001 are in the language, but 100010 is not. All strings of length less than 3 are also in the language. A partially completed DFA that accepts this language is shown below.

The missing arcs in the DFA are

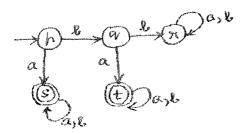
(A)

	00	01	10	11	q
00	1	0			
01				1	
10	C				
11			- 0	T	1

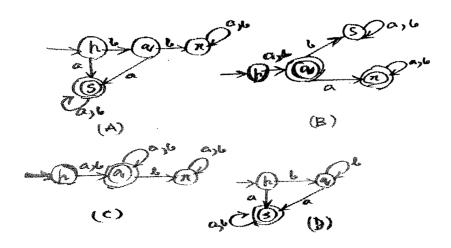
(B)

	00	01	10	11	q
00		G			1
01		1			
10				0	
11		0			

(C)


	00	01	10	11	q
00		1			0
01		1			
10			0		
11		0			

(D)


	00	01	10	11	q
00		1			ō
01				1	
10	0				
11			Ö		

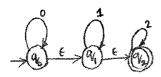
iii) A deterministic finite automation (DFA) M on alphabet $\Sigma = \{a,b\}$ is given below

[Turn over

Which of the following finite state machines is a valid minimal DFA which accepts the same language as does M?

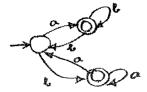
iv) Let L= $\{0^{nk}|n=a + ve \text{ constant}, k>0\}$. That is, if n=3 then L= $\{0^3,0^6,0^9,\dots\}$. What is the minimum number of states needed in a DFA to recognize L?

- (A) k+1
- (B) n+1
- (C) 2^{n+1}
- (D) 2^{k+1}


v) Let w be any string of length n in $\{0,1\}^*$. Let L be the set of all substrings of w. What is the minimum number of states in a non-deterministic finite automaton that accepts L?

- (A) n-1
- (B) n
- (C) n+1
- (D) 2n-1

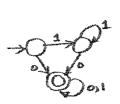
vi) Consider the languages L1 = \emptyset and L2 = {a}. Which one of the following represents L1L2* U L1*?


- (A) {∈}
- (B) Ø
- (C) a*
- (D) {∈,a}

vii) What are the final states of the DFA generated from the following NFA?

- (A) [q0,q1], q2
- (B) q0, [q1,q2]
- (C) [q0,q1],[q0,q2],[]
- (D) q0,q1,q2

viii) Which one of the following regular expressions correctly represents the language of the finite automaton given below?


- (A) ab*bab*+ba*aba*
- (B) (ab*b)*ab*+(ba*a)*ba*
- $(C) (ab^*b+ba^*a)^*(a^*+b^*)$
- (D) $(ba^*a+ab^*b)^*(ab^*+ba^*)$
- ix) Consider the following context free grammars:

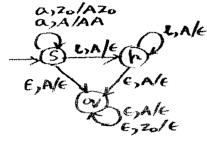
G1: S→aS|B, B→b|bB

G2: $S \rightarrow aA|bB$, $A \rightarrow aA|B|\epsilon$, $B \rightarrow bB|\epsilon$

Which one of the following pairs of languages is generated by G1 and G2 respectively?

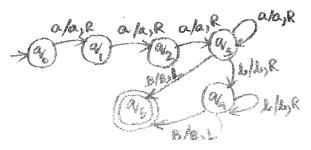
- (A) $\{a^mb^n| m>0 \text{ or } n>0\}$ and $\{a^mb^n| m>0 \text{ and } n>0\}$
- (B) $\{a^mb^n|\ m>0\ and\ n>0\}$ and $\{a^mb^n|\ m>0\ or\ n\ge 0\}$
- (C) $\{a^mb^n|\ m\ge 0\ or\ n>0\}$ and $\{a^mb^n|\ m>0\ and\ n>0\}$
- (D) $\{a^mb^n | m \ge 0 \text{ and } n > 0\}$ and $\{a^mb^n | m > 0 \text{ or } n > 0\}$
- x) Consider the DFA A given below.

Which of the following are FALSE?


- (1) Complement of L(A) is context free.
- (2) $L(A)=(11^{\circ}0+0)(0+1)^{\circ}0^{\circ}1^{\circ}$
- (3) For the language accepted by A, A is the minimal DFA
- (4) A accepts all strings over {0,1} of length at least 2

- (A) 1 and 3 only
- (B) 2 and 4 only
- (C) 2 and 3 only
- (D) 3 and 4 only
- xi) Let N_f =the classes of languages accepted by Non Deterministic Finite Automata (NFA) D_f = the classes of languages accepted by Deterministic Finite Automata (DFA) N_p = the classes of languages accepted by Non deterministic Push Down Automata (NPDA)

 D_p = the classes of languages accepted by Deterministic Push Down Automata (DPDA) Which one of the following is TRUE?


- (A) $D_f \subset N_f$ and $D_p \subset N_p$
- (B) $D_f = N_f$ and $D_p \subset N_p$
- (C) $D_f = N_f$ and $D_p = N_p$
- (D) $D_f \subset N_f$ and $D_p = N_p$

xii) Consider the pushdown automaton (PDA) P below with $\Sigma = \{a,b\}$, $T = \{Z_0, A\}$, $Q = \{s,p,q\}$, s = start state. The PDA accepts by the empty stack.

Which one of the following options correctly describes the language accepted by P?

- (A) $\{a^mb^n | 1 \le m \text{ and } n \le m\}$
- (B) $\{a^m b^n \mid 0 \le n \le m\}$
- $(C){a^mb^n \mid 0 \le m \text{ and } 0 \le n}$
- (D) $\{a^m \mid 0 \le m\} \cup \{b^n \mid 0 \le n\}$
- **xii)** Let p be a problem that belongs to the class NP. Then which one of the following is TRUE?
- (A) There is no polynomial time algorithm for p.
- (B) If p can be solved deterministically in polynomial time, then P = NP.
- (C) If p is NP-hard, then it is NP-complete.
- (D) p may be undecidable.
- xiv) Which of the following statements is False?
- (A) Halting problem for Turing Machines is Undecidable
- (B) Determining whether a context free grammar is ambiguous is Undecidable
- (C) Given two arbitrary Context free grammars G_1 , G_2 , it is undecidable whether $L(G_1) = L(G_2)$
- (D) Given two regular grammars G_1 G_2 and it is undecidable whether L $(G_1) = L$ (G_2)
- xv) The transition diagram of a single tape Turing machine M with $\Sigma = \{a,b\}$, $T = \{a,b,B\}$, B=blank symbol is shown below:

Which of the following is TRUE?

- (A) M accepts the set of all strings on {a,b}
- (B) M accepts the language L=aaa*b*
- (C) M accepts the language L=aaa(a+b)*
- (D) M accepts the language L=aaaa*b*

Group B

Answer any three

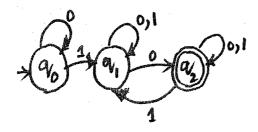
- **2(a)** Give the transition diagram of a Deterministic Finite Automaton (DFA) that accepts all binary strings in which both the number of 0's and the number of 1's are even.
- (b) How would you decide whether two regular languages are equivalent?

(8+4)

3(a) State the Pumping Lemma for regular languages.

(b) Prove that $L=\{0^n1^{n+1}|n>0\}$ is not regular

(5+7)


4(a) Consider the following state table of a Deterministic Finite Automaton (DFA). Form the table of distinguishability for this automaton and give the transition diagram of the minimum state equivalent DFA.

	0	1
q0	q1	q3
q1	q2	q4
q2	q1	q4
q2 q3	q2	q4
q4'	q4	q4

(b) Prove that no other equivalent DFA with lesser number of states than the one obtained by your method can exist.

(5+7)

5(a) Consider the following Non Deterministic Finite Automaton (NFA). Give the transition diagram of an equivalent DFA.

(b) Let L={abab,baba} be a regular language on Σ = {a,b} and h a homomorphism defined as h(0)=ab, h(1)= ϵ . Find h⁻¹(L).

(c) Prove that regular languages are closed under difference.

4+4+4

[Turn over

Group C

Answer any two

- 6(a) State the Pumping Lemma for context free languages.
- (b) Let L={ww|w in {0,1}⁺}. 0ⁿ1ⁿ0ⁿ1ⁿ is a string of L. Prove that L is not a context free language.
- **7(a)** Let G be a GFG in Chomsky normal form and w be the yield of a parse tree formed with G. Prove that $|w| \le 2^{n-1}$ where n is the length of the longest path in the parse tree for w.
- (b) Consider the language $L = \{0^i 1^j 2^k | i,j,k \ge 0 \text{ and } i=j \text{ or } j=k\}$. Give a Context free grammar for the language L. (7+3)
- 8) Prove that context free languages are not closed under complementation.

10

Group D

Answer any two

- 9(a) State Halting problem for Turing machines.
- (b) Assuming undecidability of Halting problem for Turing machines, prove undecidability of Blank tape halting problem.

(2+5)

10) Define P, NP, NP hard and NP complete classes of problems.

(1+(2x3))

11) Give the transition diagram of a Turing machine M such that $L(M)=\{a^nb^{n+1}|n>0\}$

7