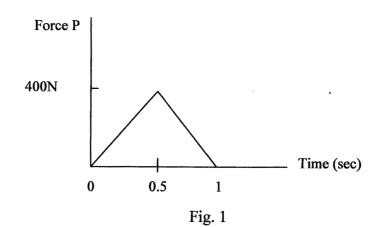
BACHELOR OF ENGINEERING (CIVIL ENGINEERING) FIFTH YEAR SECOND SEM. SUPPLEMENTARY EXAM. -2024

Subject: STRUCTURAL DYNAMICS Time: 3 Hours

Full Marks 100


PART-I (marks-50)

Use a separate Answer-Script for each part

No. of questions	Answer all questions	Marks 15+15+10+10=50
1.	. Write short note:	7.5 x 2 =15
	a. Logarithmic decrement	
	b. Resonant response	
2.	Deduce the solution of equation of motion of a single degree of freedom system at free vibration condition for critically damped and underdamped system.	15
3.	A SDOF frame has a mass 5000 kg and having lateral stiffness $k = 4.5 \times 10^6$ N/m and damping ratio 4 percent. Determine its un damped and damped natural frequency.	10

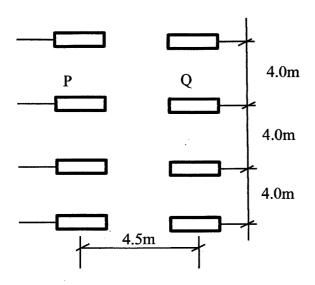
4. A Damped SDOF system has a mass of 400 N, stiffness of 20 kN/m and damping ratio 5%. It is subjected to a triangular force as shown in figure 1. The initial displacement and velocity are zero. Determine the displacement-time history up to 0.5 second taking time step as 0.1 second.

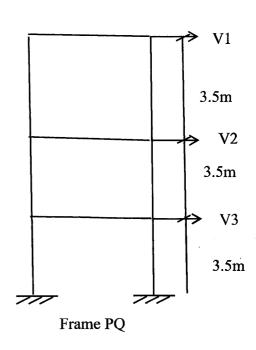
10

Ref. No.: Ex/CE/5/T/505A/2024(S)

BACHELOR OF ENGINEERING (CIVIL ENGINEERING) FIFTH YEAR SECOND SEMESTER SUPPLEMENTARY EXAM 2024

Subject: STRUCTURAL DYNAMICS


Full Marks: 100 Time: 3hours


(Use Separate Answer scripts for each Part)

Part- II (Marks 50)

35

- 1. A three storeyed frame PQ and corresponding plan diagram are shown in Fig. 1. The total gravity load (DL+LL) intensity is 25.5 kN/m^2 . Formulate the mass and stiffness matrix for this frame and evaluate the followings. Given, $E=2 \times 10^5 N/mm^2$, c/s of column is 425mm $\times 425$ mm.
 - a) Natural frequency and corresponding mode shape.
 - b) Find displacement of the frame at t=8.6 sec, if frame is subjected to a displacement of

2. The mass and stiffness matrix of a structure are given as

$$m = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 2 \end{bmatrix} \quad k = \begin{bmatrix} 8 & -3 & 0 \\ -3 & 6 & -1 \\ 0 & -1 & 3 \end{bmatrix}$$
 and it is subjected to a force of, $F = \begin{bmatrix} 0 \\ 12\sin 9.8t \\ 0 \end{bmatrix}$

15

If the displacement, velocity and acceleration at t=6.00sec are

$$v = \begin{bmatrix} 0.62 \\ 0.50 \\ 0.32 \end{bmatrix} m \qquad \dot{v} = \begin{bmatrix} 3.2 \\ 2.1 \\ 1.0 \end{bmatrix} m/s \qquad \ddot{v} = \begin{bmatrix} 3.2 \\ 1.2 \\ 0.9 \end{bmatrix} m/s^{2}$$

Find the responses of the structure at t=6.25sec and t=6.50sec.