BACHELOR OF ENGINEERING (CIVIL ENGINEERING) SECOND YEAR FIRST SEMESTER SUPPLEMENTARY EXAM-2024. (EVENING)

SUBJECT: COMPUTER PROGRAMMING II

Full Marks 100

Time: Three hours/

(50 marks for each part)

Use a separate Answer-Script for each part

No. of	Use a separate Answer-Script for each part	Marks
Question	PART – I	IVIGING
1	Create a structure to specify data about employee. The data to be stored its name, Age, Basic pay and ID no. Assumed maximum 100 no employee. Write a C program to print the details of an employee, if give an ID no. as input.	10
2	Answer any five questions.	
	a) Write a C program to find out value of $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} x \sin x dx$ using simson's rule. Given no. of division (k) as an input.	
	b) Write a C program, to product of two Matrices [A] and [B], both of size (2x3) and (3X2) respectively and store the result in a separate matrix [C].	5X8=40
	b) Write a C program to interchange the elements of two diagonal of two squire matrix.	
	c) Write a C program to print ascending order form given input as N number integer	
	d) d) Write a C program to the sum of following series for the first N terms, using subprogram.	
	$y = 1$ $\begin{cases} x^2 & x^4 & x^6 \\ 2! & 4! & 6! \end{cases}$	
	e) Write a C program to find the value of "c _r , using function subprogram.	
		1

Ref. No. Ex/CE/5/T/203/2024(S)

BACHELOR OF ENGINEERING (CIVIL ENGINEERING) SECOND YEAR FIRST SEMESTER SUPPLEMENTARY EXAM – 2024

SUBJECT: COMPUTER PROGRAMMING-II

Time: Three Hours

Full Marks 100

(50 marks for each part)

Use a separate Answer-Script for each part

Answer any Five Questions.

No. of questions	Part II	Marks
1.	a) Define Eigen value and Eigen vector.	2
	b) Using polynomial method, determine the Eigen values and corresponding Eigen vectors for the matrix $A = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix}$	8
2.	a) Explain briefly power and inverse power method in connection with the Eigen value problems.	3
	b) Find the Eigen values and corresponding Eigen vectors using power and inverse power method, using two iterations, for the matrix $B = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$	7
3.	a) What is the difference between the trapezoidal rule and the Gaussian quadrature rule?	2
	b) Derive composite Simpson's one third rule using first three terms of Newton-Gregory forward formula.	8
4.	a) Using three-point Gauss quadrature rule, estimate the integral. $\int_{0}^{6} (x^{2}+4x+1)dx$ Also, find the absolute relative true error.	7
	b) Use the Trapezoidal rule with no. of segments (n)= 4, evaluate the integral. $\int_{2}^{10} (x^{3} + 3x + 2) dx$	3

No. of questions	Part II	Marks
5.	a) Derive the finite difference equation for f'(x) and f"(x).	4
	b) Write an algorithm to compute the value of a definite integral using Simpson's one third rule.	4
	c) What is the basic difference between an initial-value problem and a boundary-value problem?	2
6.	Compute the deflection at mid-point and quarter points of the beam shown in figure below using finite difference method.	10
, •	4.0 KN EI 3.0 m 3.0 m	
7.	Find the deflection for the cantilever beam at 1.0m, 2.0m, 3.0m and 4.0m from the fixed end using finite difference method. 2.0 KN/m 2.0 m 4.0 m	10