BACHELOR OF ENGINEERING (CIVIL ENGINEERING) FIRST YEAR SECOND SEMESTER EXAM 2024 SUBJECT: COMPUTER PROGRAMMING- I

Time: Three Hours

Full Marks 100 (50 marks for each part)

Use a separate Answer-Script for each part

No. of questions				Part I				Marks	
		An	swer Question No	o.1 and any	Two from	the rest.			
1.	Answer any one question								
	a) Write a FORTRAN 77 program using Newton-Raphson method to estimate a root of the equation x^2 - 6 x + 8 = 0 up to three decimal places, assuming initial value of x = 6.0.								
	b) Write a computer program in FORTRAN 77 using Secant method that finds a root of the equation $\exp(x) - 3x^2 = 0$ between 3.00 and 4.00, using tolerance of 0.0001.								
2.	a) Using Newton-Raphson method, using two iterations, determine the roots of the following non-linear simultaneous equations, close approximation to start with $x = 4.5$ and $y = 1.00$. $x^3 - y^3 = 56$								
	$2x^2 + x - y^2 = 32$								
	b) Using Secant method, using two iterations, find a root of the equation $f(x) = Cos(x) - x exp(x) = 0$, in the range $0.00 \le x \le 1.00$.								
	c) What are the differences among Secant method, Regula-Falsi Method and Newton-Raphson Method?								
3.	a) Describe how Taylor's theorem of expansion can be used to solve a differential equation.								
	b) State the formula of Euler's method. Illustrate its concept graphically.								
	c) Using Runge-Kutta method of order four find y at $x = 1.40$ and 1.60 by solving $y' = x^2 + y$, $y(1.20) = 1.50$. Assume step size (h) =0.20.								
	d) Illustrate why Heun's method is classified as one-step Predictor – Corrector method?								
4.	a) Write an algorithm to find a root of a non-liner equation f(x) = 0 using False Position method.								
	b) Explain why Bisection method is called half-interval search technique?								
	c) What is interpolation? Given a set of n+1 points, state the general form of n th degree Lagrange interpolation polynomial.								
	d)) For the following table of values:								
		Х	2.0	3.0	4.0	5.0			
		f(x)	7.0	26.0	63.0	124.0			
		(x) for x = 3. the above p	5 using Lagrange ir problem?	terpolation .\	What order	of polynom	ial would you		

Form A: Paper -Setting Blank

Time: Three hours

Ref No. -Ex/CE/5/T/104/2024

BACHELOR OF ENGINEERING (CIVIL ENGINEERING) FIRST YEAR SECOND SEMESTER EXAM- 2024

SUBJECT: COMPUTER PROGRAMMING-I

.

Full Marks 100 (50 marks for each part)

Use a separate Answer-Script for each part No. of PART - II Question Write the equivalent FORTRAN expression for the following arithmetic statement: 1.(a) 2 $Y=1-|X| e^{-y}$ Write the equivalent arithmetic expression for the following FORTRAN statement: (b) 2 Y=a**b/c+d**e*f-h/p*r+q(c) What will be the printed output, at the end of the following program segment? 2 m = -398a=-5.999 WRITE(*,8) m,a FORMAT(2X,18,/,F8.2) 8 **END** What will be the value of the variable n, at the end of the following program segment? (d) 2 X=0DO I=1,7,2 Do J=2,3X=X+1.0END DO END DO WRITE (*,*) X **END** 4x3=12Write short notes on the following. 2. i) While and do while loop. ii) Break and continue statement. iii) Switch statement. iv) Function sub program and Subroutine sub program

No. of Question						
	Answer any two Questions.					
3)	integer.					
	ii) Write a FORTRAN program, to sum of diagonal of two Matrices [A] and [B], both of size (3x3) and store the result in a separate matrix [C] having size (3x1)					
4)	i) Write a FORTRAN program, to product of two Matrices [A] and [B], both of size (2x3) and (3X2) respectively and store the result in a separate matrix [C].	9				
	ii) Write step-wise Algorithm and draw the flow chart to find big number from given three integer number.	6				
5)	i) Write a FORTRAN program to the sum of following series for the first N terms, using function subprogram.	8				
	$y = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} \dots \dots$					
	ii) Write a FORTRAN program to find the value of n c _r , using subroutine subprogram.	7				