Ref No. -Ex/CE/PC/B/T/222 /2024

B.E.C.E. 2nd YEAR EXAMINATION, 2024

(2nd Semester)

SUBJECT: Water Resource Engg.-I

Full Marks 100

Time: Three hours

Use a separate Answer-Script for each part

No. of Ouestions

Part I (60 Marks)

Marks

Answer all the questions. Answer should be brief and to the point. All the notations have their usual meaning. Assume relevant data if not provided. All the relevant drawings should be in pencil.

Section-A (Related to CO-2)

- Q1. With two examples explain how human intervention affects hydrological cycle. Writing two characteristic features only differentiate between evaporation and evapotranspiration. Writing two characteristic features only differentiate between infiltration capacity and field capacity. The recurring period of 24 hour maximum rainfall of 160mm for Kolkata is 15 years. Determine the probability of a 24 hour rainfall equal to greater than 160 mm at Kolkata (i) not occurring and (ii) at least occurring once in 25 successive years.
- Q 2.a) Plot (i) Depth-area-duration curves, (ii) Maximum intensity-duration-frequency curves.
 - b) Match the following:

1×4

2

 2×5

Section A	Section B
Evaporation	Penman's equation
Precipitation	Dalton's equation
Evapotranspiration	Philip's equation
Infiltration	Symon's instrument

- c) Write true and false with proper justification. No marks will be given if 1.5×4 justification will not be written.
 - (i) Rate of evaporation will decrease if atmospheric pressure will increase.
 - (ii) Infiltration capacity will increase for moist clay soil.
 - (iii) Interception loss is maximum for banyan tree for rainfall with more frequency and intensity.
 - (iv) At permanent wilting point AET/PET is zero.

d)) Fill	in	the	bla	nks:

(i)	In	extratropical	cyclone	in	the	northern	hemisphere	the	wind	flows	in	1×3
		direct	ion.									
(ii)	A p	lot between cu	mulative 1	aint	fall de	epth versus	s time is called	d				
(iii)	Coı	nsistency of ra	infall is cl	neck	ed by	/						

Ref No. -Ex/CE/PC/B/T/222 /2024

B.E.C.E. 2nd YEAR EXAMINATION, 2024

(2nd Semester)

SUBJECT: Water Resource Engg.-I

Full Marks 100

Time: Three hours

Use a separate Answer-Script for each part

No. of Questions

Part I (60 Marks)

Marks

- Q 3.a) The infiltration capacity of a soil for a small catchment area was found to be 3cm/h before a rainfall event. It was found to be 1.5cm/h at the end of 10 hours. If the total infiltration during the 10 hours period of rainfall event was 20 cm determine the Horton's decay coefficient.
 - b) Determine and plot φ-index for the given data graphically if the precipitation produced a direct runoff of 3.5 cm at the outlet of the catchment area

10

5

	t direct runton	01 210	onn at	me ou	1101 01 1	no can	STITTICALL	ai ca.				
	Time from	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
L	start (h)			-								
	Cumulative	0	0.25	0.5	1.1	1.6	2.6	3.5	5.7	6.5	7.3	7.7
L	rainfall (h)											

Section-B (Related to CO-3)

Q4.a) Explain briefly the following terms: specific storage and hydraulic resistance.

 2×2

- b) Write true or false with proper justification. No marks will be given if 1.5×4 justification will not be written:
 - i. If the top layer of a confined aquifer is made up of aquiclude then it is known as leaky aquifer.
 - ii. Darcy's velocity and pore velocity are same.
 - iii. Dimension of transmissivity is [L].
 - iv. Rate of recovery is more for unconfined aquifer compared to confined.
- c) A 30cm well fully penetrates in a confined aquifer of saturated thickness 20m. Under a steady pumping rate for long time the drawdowns at two observation wells 15m and 30m away from the well are 5m and 4.m respectively. If the coefficient of the permeability of the aquifer is 25m/day, determine the rate of discharge and drawdown at the pumping well with neat sketch and deducing the expression.

2+3+5

EX/CF/PC/B/T/222

B.E. in Civil Engineering 2nd Year 2nd semester Supplementary Examinations, 2023-24 SUBJECT: Water Resources Engineering - I

Time: 3 Hours

PART-II (40 Marks)

Full Marks: 100

No. of	Q_				Assu	me any	reason	able va	lues to	data n	ot giver	1			Marks
CO ₁											<u>S</u>				
1.		Desc	ribe an	v 2 (tw	o) in m	aximuı	n 5 (fiv	re) sent	ences						5×2
	a)		romagr												37.2
	b)	1	eresis ir				IIIIO VV	10001111	manon	ı					
	c)		ent mete		IVCI IIC) VV									
	C)	Cunc		5 1											
_															
2.		A 30 g/l solution of a non-toxic dye was discharged into a natural stream at a constant rate of 15 cm ³ /s. The background concentration of the dye in the stream water was found											5		
		rate o	of 15 cn	n³/s. Th	e back	ground	concer	ntration	of the	e dye in	the str	eam w	ater wa	s found	
		to be	zero. A	At a do	wnstre	am sec	tion su	fficien	lv far	away f	rom th	e iniec	tion no	oint, the	
		dve v	vas foui	nd to re	each on	eanili	brium a	concen	tration	of 7 ns	rte nei	billion	Fatir	nate the	
		stream	n flow	rate	out on	equiii	Offair (пацоп	or / pa	ii to pei	OIIIOI	1. 128111	nate the	
		Stream	III II() VV	iaic.											
CO4															
		D		1	1.	0.11	00		0.75	22 4					
3.		Draw	the cor	npiete	diagran	n of di	iterent i	routes	of Run	off and	mark	each co	mpone	ent.	10
	1														
4.		Belov	w are m	onthly	averag	ge raint	fall, Pa	and the	corre	spondir	ng rund	off valu	ies cov	ering a	5
		perio	d of 12	months	for a r	iver ca	tchmen	t. Deve	elop a	correlat	ion be	tween I	and R	₹.	
				· · · · · · · · · · · · · · · · · · ·			~			-	V prostrato de la company				1:
			Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
		P	6	8	25	30	22	2	8	10	30	36	31	5	
								_							
		R	0.5	1.5	7.6	9.4	6.5	0	1.6	2.3	8.0	16.0	12.0	0.1	
				<u> </u>											
5.		XX 71 ,		TT *		101	D 1.	• . 1		1 ~					6
	1	wnat	is a D-l	n Unit	Hydrog	raph?	Explain	with c	letailec	1 figure	and as	sumpti	ons.		
(Write	a brief	fnoto	on tha	difform	nt mat	hada a	f boso	flory ac	narati	on of a	aunta	o flow	,
6.				Hote	on the	umere	in mei	nous o	i base	now se	раган	011 01 8	Surrac	Je-now	4
		hydro	graph.												
	Ì													j	