B.E. CIVIL ENGINEERING SECOND YEAR FIRST SEMESTER SUPPLEMENTARY EXAM 2024

SUBJECT: SURVEYING I (CE/PC/B/T/215)

Time: 3 hours

(50 Marks for each Part)

Full Marks: 100

Instructions: Use Separate Answer scripts for each part.

Part - I (50 Marks)

SI. No.		CO	Marks						
1	The a	ved as	[CO6]	20					
	given	given below:							
		Internal Angle	Lengths (m)	Lengths (m) Whole Circle Bearing					
		$\angle A = 130^{\circ}18'45''$	AB = 17.098	AD = 136°25′12"					
		$\angle B = 110^{\circ}18'23''$	$\angle B = 110^{\circ}18'23"$ BC = 102.925						
		$\angle C = 99^{\circ}32'35''$	CD = 92.782						
		$\angle D = 116^{\circ}18'02'$	DE = 33.866						
	(a) A	·							
	be	earing in the sexag	·						
2	(c) Ca	earing in the sexago alculate latitudes, entioned traverse,	esimal system. departures, and clo	sing error for the a	above-	[CO3]	[9]		
2	(c) Ca	earing in the sexagonal culate latitudes, entioned traverse, sed traverse was	esimal system. departures, and clo	osing error for the a litch's rule. obstacle and the foll	above-	[CO3]	[9]		
2	(c) Ca	earing in the sexage alculate latitudes, entioned traverse, sed traverse was vations were made	esimal system. departures, and clo and adjust using Bowo conducted round an	osing error for the a litch's rule. obstacle and the foll	above-	[CO3]	[9]		
2	(c) Ca	earing in the sexage alculate latitudes, entioned traverse, sed traverse was vations were made	departures, and clo and adjust using Bowd conducted round an . Work out the missing	sing error for the a litch's rule. obstacle and the foll quantities:	above-	[CO3]	[9]		
2	(c) Ca	earing in the sexage alculate latitudes, entioned traverse, sed traverse was vations were made	departures, and clo and adjust using Bowd conducted round an . Work out the missing	osing error for the a ditch's rule. obstacle and the foll quantities:	above-	[CO3]	[9]		
2	(c) Ca	earing in the sexage alculate latitudes, entioned traverse, sed traverse was vations were made Side AB	departures, and closend adjust using Bowd conducted round an Work out the missing Length (m)	osing error for the a ditch's rule. obstacle and the foll quantities: Azimuth Missing	above-	[CO3]	[9]		

3. A	1		w is the	page in a	level bool	k. Fill in	the missing	g data. Apply	[CO2]	[10]
	usual ch									
	Stat ion	B.S. (m)	I.S. (m)	F.S. (m)	Rise (m)	Fall (m)	R.L.	Remark s		
	1	3.025					?	B.M.1		
	2	?		?	1.325		125.005	T.P		
	3		2.320			0.055				
	4		?				125.350			
	5	?		2.655				T.P		
	6	1.620		3.205		2.165		T.P		
	7		3.625							
	8			?			122.600	T.B.M		
3. B	The horizontal angle subtended at a theodolite by a subtense bar with vanes 2 m apart is 6'35". (a) Calculate the horizontal distance between the instrument and the bar. (b) Also find the error of horizontal distance if the bar was 3° from being normal to the line joining the instrument and bar stations.								[CO2]	[5]
3. C	The vertical angles to vanes fixed at 1 m and 3 m above the foot of the staff held vertically at a station A were +3°30′ and +8°58′ respectively. Find the horizontal distance and the reduced level of A if the height of the instrument, determined from observation on to a bench mark is 438.556 metres above datum.							[CO2]	[6]	

Ref. No.: Ex/CE/PC/B/T/215/2024(S)

B.E. CIVIL ENGINEERING SECOND YEAR FIRST SEMESTER SUPPLEMENTARY EXAM - 2024 Subject: SURVEYING I Part - II (50)

Use a separate Answer-Script for each part

No. of Questions	Answer All Questions							Marks
1	Describe Main Station, Main Survey Line, Tie/Subsidiary Stations, Tie Line, Base Line, and Check Line with a neat sketch.							e, [5]
2 (a)	A 30m Chain was tested before starting the day's work and was found to be 30cm too short. After measuring a length of 1500m, the chain was found to be 20cm too long. After measuring a length of 1200m, the chain was found to be 10cm too short. At the end of the work the chain was found to be 30.20m. Find the true length of the line if total measured length was 5000m, on a sloping ground where the level difference between starting and ending point was 200cm.							m oo ne
(b)	What are the different types of metric chain? Describe any one type of metric chain in details with a neat sketch.							ic [5]
3 (a)	Describe the working principle of a <i>prismatic compass</i> with a neat sketch.							[5]
(b)	What is ranging? Describe reciprocal ranging with the help of a neat sketch.							[5]
(c)	What is slope correction? Derive the expression for slope correction with a neat sketch.						at [5]	
4 (a)	Find the included angles of a traverse from the RB of the lines given here.							[10]
	Line	AB	BC	CD	DE	EF	FA	
	RB	N 62° 35' E	S 85° 15' E	S 25° 50' E	S 67° 22' W	N 82° 30' W	N 27° 54' W	
(b)	_		_	ck bearing of the control of the con	•	line in det	ails with a ne	at [5]