Ref No. – Ex/ES/CM/T104B/2024

B.C.E. 1ST YEAR 2ND SEMESTER 2024

(4st / 2nd Semester / Repeat / Supplementary / Annual / Bianual)

SUBJECT: Computer Programming & Numerical Methods

Full Marks 100

Time: Two hours/Three hours/Four hours/ Six hours

(50 marks for part I)

	Use a		nswer-Script fe PART – I	or each part			
1. a. b.	Write algorithm of following methods: (CO6) Lagrange Interpolation Method Newton Raphson Method						
2.	Using Runge Kutta Method of order 4, find y (0.4) given that $dy/dx = (2x^2+3y)$, y (0) = 1. Take h=0.2. (CO4)						
	OR						
	Use <i>method of false position</i> to solve the following equation Correct to three decimals, starting with the approximation (2, 2.5). Show <i>maximum5 iterations</i> in tabular form with only one sample calculation. (CO4) e ^x + log x=8.835						
3.	Certain experimental values of x and y are given below. Form an Exponential Function in the form of y=ae ^{bx} , using Least Square Method . Find value of y when x=45.						
	X 10	20	40	52	60	10	
	Y 50	110	220	280	300		
4.	Find the dominant eigen-value and corresponding eigen-vector of [P] using Power method with initial approximation [1 1 1] ^T CO5						
	$[P] = \begin{bmatrix} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{bmatrix}$					10	
5.	Find the approximate solution Simpson's $1/3^{rd}$ rule taking $n=\int_0^{12} \frac{dx}{1+x^2}$				Method and		

Ref. No.: Ex/ES/CM/T104B/2024

Name of the Examination: B.E. CIVIL ENGINEERING FIRST YEAR SECOND SEMESTER - 2024 Subject :COMPUTER PROGRAMMING & NUMERICAL METHODS

Time: 3 Hours Full Marks: 100

PART-II (50 Marks)

Inst	Instructions:				
I	All notations represent their standard relevant meaning.				
II	If you feel that any data or condition is/are missing in any question, please assume relevant inputs and mention the same.				
III	Make sure in the examples, input outputs, statements mentioned by you, none of your personal information like Name, Class roll no, registration number etc.are mentioned or indicated.				

SI	Question		CO
No			
1	Write a FORTRAN program that displays the summation of internal	6	CO2
	angles in degrees for a closed polygon with number of side of the polygon		
	as user input. Show suitable input output statements.		
2	Write a FORTRAN program using array to perform matrix addition of 3	12	CO1
	matrices each of dimension 4x3. Show relevant input output statements.		
3	Explain 'arithmatic if' statement with flowchart to discuss the logic of	10	CO1
	'nested if' statement and write any FORTRAN program using 'nested if'		
	as example with relevant input output statements.		
4	Write a FORTRAN program that can display area of a circle after it reads	12	CO2
·	the value of radius of the circle as real number from an existing text file		
	named as input.prob4.txt which is kept in an existing folder of the used		
	computer with the given path:		
	E: Fortran inputs>New Folder>My Inputs>Problem 4		
	Show relevant input output statements.		
5	Write a FORTRAN program using any type of sub-program that will	10	CO6
	display summation of odd numbers from 0 (zero) to 'n' where 'n' will be		
	user input. Show suitable input output statements.		