Ref. No.: Ex/Che/PC/H/T/413/2024

BACHELOR OF CHEMICAL ENGINEERING EXAMINATION, 2024 (4th Year, 1st Semester) INDUSTRIAL POLLUTION CONTROL ENGINEERING (HONS.)

Full Marks: 100 Time: 3 hours

Assume any missing data

Answer 20 marks from Q. No. 1, 15 marks from Q. No. 2, 25 marks from Q. No. 3, 10 marks from Q. No. 4 and all from Q.No. 5

Q.No.	CO		stion	Marks	
1.	2	a. Describe the lime-soda ash proc	ess as water softening technique.	5+15	
		A raw water to be treated by the lin	me soda process to the minimum		
		hardness possible has the following	g characteristics:		
	. :	CO ₂ : 22 mg/L, Ca ²⁺ : 80mg/L, Mg ²	⁺ : 12mg/L, Na ⁺ : 46 mg/L, HCO ₃ ⁻ :		
		$152.5 \text{ mg/L} \text{ and } SO_4^{2-}$: 216 mg/L.			
		For a flow of 25000 m ³ /day, calcul	ate the chemical requirements and	•	
		mass of solids and volume of sludg	ge produced.		
		Assume, the used lime is 90% pure	e and soda ash used is 85% pure.	. •	
		Also, assume that the specific grav	ity of the sludge is 1.04.		
		b. Find out a mathematical expression for active zone height in a		5+15	
		fixed bed adsorber during breakthr	ough experiment.		
	c	A breakthrough experiment is conducted for phenol producing results			
		shown below: Determine the length δ of active zone. The diameter of			
		the column used is 1 inch and packed density of the bed is 721.58			
		kg/m^3 . [C ₀] is equal to 25 mg/L. used			
		$(X/M)_{ultimate} = 0.02 \frac{kg \ phenol}{kg \ carbon}$.			
		C ₀ (mg/L)	V(L)		
		0.06	1		
		1	1.24		
		6	1.31		
÷		10	1.43		
	•	15	1.48		

		18	1.58		
		20	1.72		
		23	1.83		
		25	2.00		
2.	1	a. What is photochemical smog? How it causes formation of Peroxyacetyl nitrate (PAN)?			
		b. What are the sources of lead in air as pollutant and what are the effects of it if present as air pollutant?			
		c. What are different types of soli	d wastes?	3	
		d. What are the effects of SOx on Pollutant?	environment as Criteria Air	3	
		e. What are the reasons of drop of	f dissolved oxygen (DO) in water?	3	
		f. Discuss the types of NO _x which are available as air pollutant.			
		g. Why and how primary treatmen	nt of wastewater is done?	. 3	
3.	4	a. The results shown in the table below are to be used to design a			
		standard conventional cyclone. The air stream is 21 m ³ /s and the			
		diameter of the cyclone is 2.0 m. The temperature is 77°C and the			
		specific gravity of the particle is 2.0. Assume that β equals 0.90.			
:		What are the diameter and terminal settling velocity of those particles			
		that are 100% removed? Determine	e the expected percent removal of		
		the particles.			
		Particle Size (μm)	Wt%		
		0 - 10	8		
		10 - 20	10		
		20 - 30	12		
		30 - 40	15	•	
		40 - 50	19		
		50 - 60	14		
		60 - 70	13		

		70 - 80	9	
		b. Measurement of the dust distribution yields the results in the table below design a plate type Electrostatic Program of the plates are spaced between discharge and collector plate (length/width) is 1.2. The plate wide channels. The temperature is 650°C particle is 2.0.	These results are to be used to ecipitator (ESP). The air stream is 30 cm apart. The voltage drop ate is 70,000 V. The aspect ratio of the is 10m and there are 80 c and specific gravity of the	25
		i) what are the diameter and terminal settling velocity of the particles?		
		ii) determine the expected percent removal of particles. iii) what is the power requirement assuming that the corona current is		
		2.3 A? Assume, β is 0.9	assuming that the corona current is	
		Particle Size (µm)	Wt%	
		0 - 10	8	
		10 - 20	10	·
		20 - 30	12	
*.		30 - 40	15	
		40 - 50	19	
		50 - 60	14	
		60 - 70	13	
		70 - 80	9	
4.	a. Discuss the sequential steps of hard groundwater treatment to produce drinking water.			10
		b. What are the biological routes for discuss any one of them.	or solid waste treatment? Briefly	10
5	1	a. A perfectly mixed aeration pond	with no recycle (return line)	15

serves as the biological reactor for a small community. The pond	
receives 30 m3/d of influent with a BOD5 of 350 mg/L that must be	
reduced 20 mg/L before discharge. It has been found that the kinetic	
constants for the system are Ks = 100 mg/L BOD5, $kd = 0.1 d-1$, μm	
= 1.6 d-1, and Y is 0.6 mg VSS/mg BOD5.	
(i) What must the hydraulic detention time be in aeration pond?	
(ii) What mass of microbes will be produced in the pond each day?	
b. Derive the following for a centrifuge: $t = \frac{18\mu}{D_P^2 \omega^2 (\rho_S - \rho)} \cdot \frac{h}{R}$ Where, t = minimum retention time of solid having size >D _P ω : angular velocity	15
h: thickness of liquid layer in centrifuge bowl R: radius of centrifuge bowl Explain the scale-up criteria of a centrifuge.	