B.E. CHEMICAL ENGINEERING FOURTH YEAR SECOND SEMESTER EXAM 2024

HIGH POLYMER TECHNOLOGY

FM-100

Time-3hrs

Question	CO	Question	Marks
No 1	No.	(i) How molecular weight distribution is related with functionality for	4+4+6+6=20
		bi/polyfunctional system?	1111010 20
		(ii) Show the branch point formation considering the reaction between diamine and epoxy.	
		(iii) Derive the kinetic relations of self-catalysed condensation reaction. Write	•
		down the reasons behind deviation from linearity in degree of polymerization vs	
		time curve.	
		(iv) Write down the structure of the repeat unit of the following:	
		$CH_2 = CH - CN + CH_2 = CH$ $H_2N - C - NH_2 + HO - CH_2 - CH_2OH$ CH_2OH CH_2OH	
į		HOOC — COOH and HO — (CH ₂) ₁₀ — OH	
2	CO-2	(i) a. Polyester fibers can be produced from ω = hydroxycaproic acid.	10+10+10=30
		$nHO - (CH2)5 - C - OH \xrightarrow{\Delta} \begin{bmatrix} O \\ -(CH2)5 - C - O - \end{bmatrix}_{n} + 2nH2O$	* . *)
		If the initial 100 moles of the hydroxyl acid are reduced to 5 moles after 12 hours	
		reaction time, calculate:	
		i. The number average molecular weight M _n	
		ii. The weight average molecular weight M _w	
		b. As a result of extraneous reactions of the hydroxyl groups, a 3% excess of the	
		carboxylic acid is present in the reaction mixture. Calculate the number-average	
		molecular weight for the same extent of reaction in a.	•
		c. If 4 mol% of monoacid is present as impurity. What will be the maximum degree	
		of polymerization?	
		(ii) Write short notes on: (a) Zeigler Natta polymerization (c) Retardation effect	
		(iii) From the data given below for the emulsion polymerization styrene in water at 60°C:	
	, .	a. Calculate the rate of polymerization. (4)	

c. Estimate the number of polymer chains in each. (4) Data: K _P = 200 l mol ⁻¹ s ⁻¹ R _I = 5*10 ¹² radicals cc ⁻¹ s ⁻¹ N = 10 ¹³ particles scc ⁻¹ [M] = 10 M Latex particle size = 0.20 µm Particle density = 1.5 g/cc (ii) Estimate the feed and copolymer compositions for the azeotropic copolymerization of 1,3 butadiene and vinyl chloride at 50°C. Monomer 1 Monomer 2 r ₁ r ₂ T (°C) Acrytonitrile 1.3 Butadiene 0.02 0.30 40 Methyl methacrylate 0.15 1.22 80 Styrene 0.04 0.40 60 Vinyl acleate 4.2 0.05 50 Vinyl chloride 2.7 0.40 60 Vinyl chloride 3.8 0.35 50 Methyl methacrylate 0.75 0.25 90 Styrene 0.46 0.52 60 Vinyl chloride 3.8 0.35 50 Methyl methacrylate 57 0.25 90 Styrene 0.46 0.52 60 Vinyl chloride 3.8 0.35 50 Methyl methacrylate 57 0.01 60 Vinyl chloride 10 0.1 68 Vinyl chloride 10 0.1 68 Vinyl chloride 17 0.02 60 Vinyl cetate 50 0.01 60 Vinyl chloride 17 0.02 60 Vinyl chloride 17 0.02 60 Vinyl chloride 17 0.02 60 Vinyl chloride 18 0.01 60 Vinyl chloride 17 0.02 60 Vinyl chloride 17 0.02 60 Vinyl chloride 18 0.01 60 Vinyl chloride 19 0.1 68 Vinyl chloride 10 0.1 68 Vinyl chloride 10 0.1 68 Vinyl chloride 10 0.1 60 Vinyl chl			b. Show that the number average	e degree of polyme	erizatio	n. (4)				
$K_p = 200 \ 1 \text{mol}^{-1} \ s^{-1}$ $R_i = 5^* 10^{12} \ \text{radicals} \ \text{ce}^{-1} \ \text{s}^{-1}$ $N = 10^{13} \ \text{particles} \ \text{ce}^{-1}$ $N = 10^{13} \ \text{particles} \ \text{ce}^{-1}$ $ M = 10 \ M$ $Latex \ \text{particles} \ \text{cise} = 0.20 \text{µm}$ $\text{Particle density} = 1.5 \ \text{g/cc}$ $3 \text{CO-3} \text{(i) Discuss} \ \text{glass-rubber transition behaviour of polymer.}$ $\text{(ii) Estimate the feed and copolymer compositions for the azeotropic copolymerization of 1,3 butadiene and vinyl chloride at 50^{\circ}\text{C}. \frac{\text{Monomer 1}}{\text{Acrylonitrile}} \ \frac{\text{Monomer 2}}{1.3 \text{butadiene}} \ \frac{\text{r.}}{1.2} \ \frac{\text{r.}}{1.2} \ \frac{\text{T.}^{\circ}\text{CO}}{1.2} \ \frac{\text{R.}}{1.2} \ \frac{\text{R.}}{1.2}$			c. Estimate the number of polym							
$R_i = 5*10^{12} \text{ radicals cc}^{-1} \text{ s}^{-1} \\ N = 10^{13} \text{ particles cc}^{-1} \\ [M] = 10 \text{ M} \\ \text{Latex particle size} = 0.20 \mu m \\ \text{Particle density} = 1.5 \text{ g/cc} \\ \hline 3 & \text{CO-3} & \text{(i) Discuss glass-rubber transition behaviour of polymer.} \\ \text{(ii) Estimate the feed and copolymer compositions for the azeotropic copolymerization of 1,3 butadiene and vinyl chloride at 50^{\circ}\text{C}.} $			Data:							
N = 1013 particles cc ⁻¹ [M] = 10 M Latex particle size = 0.20 jum Particle density = 1.5 g/cc			$K_p = 200 \text{ 1 mol}^{-1} \text{ s}^{-1}$							
IM] = 10 M Latex particle size = 0.20µm Particle density = 1.5 g/cc 3			$R_i = 5*10^{12} \text{ radicals } cc^{-1} \text{ s}^{-1}$							
Latex particle size = $0.20 \mu m$ Particle density = 1.5 g/cc 3 CO-3 (i) Discuss glass-rubber transition behaviour of polymer. (ii) Estimate the feed and copolymer compositions for the azeotropic copolymerization of 1.3 butadiene and vinyl chloride at 50°C . Monomer 1 Monomer 2 r_1 r_2 T (^{\circ}\text{C})										
Particle density = 1.5 g/cc			· ·							
CO-3 (i) Discuss glass-rubber transition behaviour of polymer. (ii) Estimate the feed and copolymer compositions for the azeotropic copolymerization of 1,3 butadiene and vinyl chloride at 50°C. Monomer 1			Latex particle size = 0.20μm							
(ii) Estimate the feed and copolymer compositions for the azeotropic copolymerization of 1,3 butadiene and vinyl chloride at 50°C. Monomer 1										
copolymerization of 1,3 butadiene and vinyl chloride at 50° C. Monomer 1 Monomer 2 r_1 r_2 T (°C) Acrylomitrile 1,3-Butadiene 0.02 0.30 40 Methyl methacrylate 0.15 1.22 80 Styrene 0.04 0.40 60 Vinyl acetate 4.2 0.05 50 Vinyl chloride 2.7 0.04 60 Vinyl chloride 2.7 0.04 60 Vinyl chloride 3.8 0.035 50 Methyl methacrylate 5.9 5.9 Styrene 0.46 0.52 60 Vinyl chloride 10 0.1 68 Styrene Vinyl acetate 20 0.015 60 Vinyl chloride 17 0.02 60 Vinyl chloride 17 0.02 60 (iii) 0.25 gm of polystyrene (PS) sample is dissolved in 200 ml of butanone. Flow time of are measured employing ubbelhode capillary viscometer. Determine the molecular weight of PS. Given: Flow time of butanone = 130 sec and that of PS solution is 160 sec. K = 40*10-3 and a = 0.6 (iv) Calculate the time required for 30 % polymerization of pure styrene at 60°C with benzoyl peroxide as the initiator in a batch reactor. Assume that the initiator concentration remains (a) constant and (b) first order decay. Data: f = 1	3	CO-3	(i) Discuss glass-rubber transition	5+5+5+10=25						
			(ii) Estimate the feed and	copolymer comp	positio	ns for	the	azeotropic		
Acrylomitrile 1,3-Butadiene Methyl methacrylate 0.15 Styrene 0.04 0.04 0.05 Styrene 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05		,	copolymerization of 1,3 butadie	ne and vinyl chlor	ide at 5	0°С.				
Methyl methacrylate 0.15 1.22 80 Styrene 0.04 0.40 60 Vinyl actestae 4.2 0.05 50 Vinyl chloride 2.7 0.04 60 1,3-Butadiene Methyl methacrylate 0.75 0.25 90 Styrene 1.35 0.58 50 Vinyl chloride 8.8 0.035 50 Methyl methacrylate 0.76 0.25 60 Vinyl chloride 8.8 0.035 50 Methyl methacrylate 0.76 0.25 60 Vinyl chloride 10 0.15 68 Styrene 0.46 0.52 60 Vinyl actestae 20 0.015 60 Vinyl chloride 10 0.1 68 Styrene Vinyl actestae 55 0.01 60 Vinyl chloride 17 0.02 60 (iii) 0.25 gm of polystyrene (PS) sample is dissolved in 200 ml of butanone. Flow time of are measured employing ubbelhode capillary viscometer. Determine the molecular weight of PS. Given: Flow time of butanone = 130 sec and that of PS solution is 160 sec. K = 40*10 ³ and a = 0.6 (iv) Calculate the time required for 30 % polymerization of pure styrene at 60°C with benzoyl peroxide as the initiator in a batch reactor. Assume that the initiator concentration remains (a) constant and (b) first order decay. Data: f = 1 K _p ² /K ₁ = 2 *10 ⁻³ /mol-s [1] = 6.0 *10 ⁻³ mol/l K _d = 2*10 ⁻⁴ s ⁻¹ 4 CO-4 Write short note on: Extrusion, Dipping Or Discuss the different steps associated with injection molding process?			Monomer 1	Monomer 2	r ₁	r ₂	T (°C)		
Styrene 0.04 0.40 60 Vinyl actate 4.2 0.05 50 Vinyl chloride 2.7 0.04 60 1.3-Butadiene Methyl methacrylate 0.75 0.25 90 Styrene 1.35 0.58 50 Vinyl chloride 8.8 0.035 50 Vinyl chloride 8.8 0.035 50 Vinyl chloride 1.0 0.1 60 Vinyl chloride 1.7 0.02 60 Vinyl chloride 1.				,						
Vinyl acetate 4.2 0.05 50 Vinyl chloride 2.7 0.04 60 1,3-Butadiene Methyl methacrylate 0.75 0.25 90 Styrene 1.35 0.58 50 Vinyl chloride 8.8 0.035 50 Methyl methacrylate Styrene 0.46 0.52 60 Vinyl acetate 20 0.015 60 Vinyl acetate 55 0.01 60 Vinyl chloride 17 0.02 60 (iii) 0.25 gm of polystyrene (PS) sample is dissolved in 200 ml of butanone. Flow time of are measured employing ubbelhode capillary viscometer. Determine the molecular weight of PS. Given: Flow time of butanone = 130 sec and that of PS solution is 160 sec. K = 40*10 ⁻³ and a = 0.6 (iv) Calculate the time required for 30 % polymerization of pure styrene at 60°C with benzoyl peroxide as the initiator in a batch reactor. Assume that the initiator concentration remains (a) constant and (b) first order decay. Data: f = 1 K _p ² /K ₁ = 2 *10 ⁻³ /mol-s [I] = 6.0 *10 ⁻³ mol/l K _d = 2*10 ⁻⁶ s ⁻¹ 4 CO-4 Write short note on: Extrusion, Dipping Or Discuss the different steps associated with injection molding process?										
1,3-Butadiene Methyl methacrylate 0.75 0.25 90 Styrene 1.35 0.58 50 Winyl chloride 8.8 0.035 50 Methyl methacrylate Styrene 0.46 0.52 60 Vinyl acetate 20 0.015 60 Vinyl acetate 20 0.015 60 Vinyl acetate 55 0.01 60 Vinyl acetate 55 0.01 60 Vinyl chloride 17 0.02 60 (iii) 0.25 gm of polystyrene (PS) sample is dissolved in 200 ml of butanone. Flow time of are measured employing ubbelhode capillary viscometer. Determine the molecular weight of PS. Given: Flow time of butanone = 130 sec and that of PS solution is 160 sec. K = 40*10 ⁻³ and a = 0.6 (iv) Calculate the time required for 30 % polymerization of pure styrene at 60°C with benzoyl peroxide as the initiator in a batch reactor. Assume that the initiator concentration remains (a) constant and (b) first order decay. Data: f = 1 K _P ² /K ₁ = 2 *10 ⁻³ l/mol-s [I] = 6.0 *10 ⁻³ mol/I K _d = 2*10 ⁻⁶ s ⁻¹ 4			V	inyl acetate		0.05				
Styrene Methyl methacrylate Methyl methacrylate Styrene Vinyl chloride Styrene Vinyl acetate Vinyl aceta										
Methyl methacrylate Styrene 0.46 0.52 60 Vinyl acetate 20 0.015 60 Vinyl chloride 10 0.1 68 Styrene Vinyl acetate 55 0.01 60 Vinyl chloride 17 0.02 60 (iii) 0.25 gm of polystyrene (PS) sample is dissolved in 200 ml of butanone. Flow time of are measured employing ubbelhode capillary viscometer. Determine the molecular weight of PS. Given: Flow time of butanone = 130 sec and that of PS solution is 160 sec. K = 40*10*3 and a = 0.6 (iv) Calculate the time required for 30 % polymerization of pure styrene at 60°C with benzoyl peroxide as the initiator in a batch reactor. Assume that the initiator concentration remains (a) constant and (b) first order decay. Data: f = 1 K _p ² /K _t = 2 *10*31/mol-s [I] = 6.0 *10*3 mol/1 K _d = 2*10*6 s*1 4 CO-4 Write short note on: Extrusion, Dipping Or Discuss the different steps associated with injection molding process?					1.35					
Vinyl acetate 20 0.015 60 Vinyl chloride 10 0.1 68 Styrene Vinyl chloride 17 0.02 60 (iii) 0.25 gm of polystyrene (PS) sample is dissolved in 200 ml of butanone. Flow time of are measured employing ubbelhode capillary viscometer. Determine the molecular weight of PS. Given: Flow time of butanone = 130 sec and that of PS solution is 160 sec. K = 40*10 ⁻³ and a = 0.6 (iv) Calculate the time required for 30 % polymerization of pure styrene at 60°C with benzoyl peroxide as the initiator in a batch reactor. Assume that the initiator concentration remains (a) constant and (b) first order decay. Data: f = 1 K _p ² /K _t = 2 *10 ⁻³ l/mol-s [I] = 6.0 *10 ⁻³ mol/l K _d = 2*10 ⁻⁶ s ⁻¹ 4 CO-4 Write short note on: Extrusion, Dipping Or Discuss the different steps associated with injection molding process?				•						
Styrene Vinyl chloride 10 0.1 68 Vinyl acetate 55 0.01 60 (iii) 0.25 gm of polystyrene (PS) sample is dissolved in 200 ml of butanone. Flow time of are measured employing ubbelhode capillary viscometer. Determine the molecular weight of PS. Given: Flow time of butanone = 130 sec and that of PS solution is 160 sec. K = 40*10 ⁻³ and a = 0.6 (iv) Calculate the time required for 30 % polymerization of pure styrene at 60°C with benzoyl peroxide as the initiator in a batch reactor. Assume that the initiator concentration remains (a) constant and (b) first order decay. Data: f = 1 K _p ² /K _t = 2*10 ⁻³ l/mol-s [I] = 6.0*10 ⁻³ mol/l K _d = 2*10 ⁻⁶ s ⁻¹ 4 CO-4 Write short note on: Extrusion, Dipping Or Discuss the different steps associated with injection molding process?										
Vinyl chloride 17 0.02 60 (iii) 0.25 gm of polystyrene (PS) sample is dissolved in 200 ml of butanone. Flow time of are measured employing ubbelhode capillary viscometer. Determine the molecular weight of PS. Given: Flow time of butanone = 130 sec and that of PS solution is 160 sec. K = 40*10 ⁻³ and a = 0.6 (iv) Calculate the time required for 30 % polymerization of pure styrene at 60°C with benzoyl peroxide as the initiator in a batch reactor. Assume that the initiator concentration remains (a) constant and (b) first order decay. Data: f = 1 K _p ² /K ₁ = 2 *10 ⁻³ l/mol-s [I] = 6.0 *10 ⁻³ mol/l K _d = 2*10 ⁻⁶ s ⁻¹ 4 CO-4 Write short note on: Extrusion, Dipping Or Discuss the different steps associated with injection molding process?			V	inyl chloride	10	0.1	68			
time of are measured employing ubbelhode capillary viscometer. Determine the molecular weight of PS. Given: Flow time of butanone = 130 sec and that of PS solution is 160 sec. K = 40*10 ⁻³ and a = 0.6 (iv) Calculate the time required for 30 % polymerization of pure styrene at 60°C with benzoyl peroxide as the initiator in a batch reactor. Assume that the initiator concentration remains (a) constant and (b) first order decay. Data: f = 1 K _p ² /K _t = 2 *10 ⁻³ l/mol-s [I] = 6.0 *10 ⁻³ mol/l K _d = 2*10 ⁻⁶ s ⁻¹ 4 CO-4 Write short note on: Extrusion, Dipping Or Discuss the different steps associated with injection molding process?										
molecular weight of PS. Given: Flow time of butanone = 130 sec and that of PS solution is 160 sec. K = 40*10 ⁻³ and a = 0.6 (iv) Calculate the time required for 30 % polymerization of pure styrene at 60°C with benzoyl peroxide as the initiator in a batch reactor. Assume that the initiator concentration remains (a) constant and (b) first order decay. Data: f = 1 K _p ² /K _t = 2 *10 ⁻³ l/mol-s [I] = 6.0 *10 ⁻³ mol/l K _d = 2*10 ⁻⁶ s ⁻¹ 4 CO-4 Write short note on: Extrusion, Dipping Or Discuss the different steps associated with injection molding process? 5 CO-5 Write the manufacturing method of Poly ethylene with PFD.			(iii) 0.25 gm of polystyrene (PS							
Given: Flow time of butanone = 130 sec and that of PS solution is 160 sec. K = 40*10 ⁻³ and a = 0.6 (iv) Calculate the time required for 30 % polymerization of pure styrene at 60°C with benzoyl peroxide as the initiator in a batch reactor. Assume that the initiator concentration remains (a) constant and (b) first order decay. Data: f = 1 K _p ² /K _t = 2 *10 ⁻³ l/mol-s [I] = 6.0 *10 ⁻³ mol/l K _d = 2*10 ⁻⁶ s ⁻¹ 4 CO-4 Write short note on: Extrusion, Dipping Or Discuss the different steps associated with injection molding process? 5 CO-5 Write the manufacturing method of Poly ethylene with PFD.			time of are measured employing	1.						
40*10 ⁻³ and a = 0.6 (iv) Calculate the time required for 30 % polymerization of pure styrene at 60°C with benzoyl peroxide as the initiator in a batch reactor. Assume that the initiator concentration remains (a) constant and (b) first order decay. Data: f = 1 K _p ² /K _t = 2 *10 ⁻³ l/mol-s [I] = 6.0 *10 ⁻³ mol/l K _d = 2*10 ⁻⁶ s ⁻¹ 4 CO-4 Write short note on: Extrusion, Dipping Or Discuss the different steps associated with injection molding process? 5 CO-5 Write the manufacturing method of Poly ethylene with PFD.										
(iv) Calculate the time required for 30 % polymerization of pure styrene at 60°C with benzoyl peroxide as the initiator in a batch reactor. Assume that the initiator concentration remains (a) constant and (b) first order decay. Data: f = 1 K _p ² /K _t = 2 *10 ⁻³ l/mol-s [I] = 6.0 *10 ⁻³ mol/l K _d = 2*10 ⁻⁶ s ⁻¹ 4 CO-4 Write short note on: Extrusion, Dipping Or Discuss the different steps associated with injection molding process? 5 CO-5 Write the manufacturing method of Poly ethylene with PFD.			Given: Flow time of butanone							
with benzoyl peroxide as the initiator in a batch reactor. Assume that the initiator concentration remains (a) constant and (b) first order decay. Data: $f = 1$ $K_p^2/K_t = 2 * 10^{-3} \text{l/mol-s}$ $[I] = 6.0 * 10^{-3} \text{ mol/l}$ $K_d = 2 * 10^{-6} \text{ s}^{-1}$ 4 CO-4 Write short note on: Extrusion, Dipping Or Discuss the different steps associated with injection molding process? 5 CO-5 Write the manufacturing method of Poly ethylene with PFD.			$40*10^{-3}$ and $a = 0.6$							
concentration remains (a) constant and (b) first order decay. Data: $f = 1$ $K_p^2/K_t = 2 *10^{-3} \text{l/mol-s}$ $[I] = 6.0 *10^{-3} \text{ mol/l}$ $K_d = 2*10^{-6} \text{ s}^{-1}$ 4 CO-4 Write short note on: Extrusion, Dipping Or Discuss the different steps associated with injection molding process? 5 CO-5 Write the manufacturing method of Poly ethylene with PFD.			(iv) Calculate the time required							
Data: $f = 1$ $K_{p}^{2}/K_{t} = 2 * 10^{-3} \text{l/mol-s}$ $[I] = 6.0 * 10^{-3} \text{ mol/l}$ $K_{d} = 2 * 10^{-6} \text{ s}^{-1}$ 4 CO-4 Write short note on: Extrusion, Dipping Or Discuss the different steps associated with injection molding process? 5 CO-5 Write the manufacturing method of Poly ethylene with PFD.			with benzoyl peroxide as the in							
$f = 1$ $K_p^2/K_t = 2 * 10^{-3} \text{l/mol-s}$ $[I] = 6.0 * 10^{-3} \text{ mol/l}$ $K_d = 2 * 10^{-6} \text{ s}^{-1}$ $4 \text{CO-4} \text{Write short note on: Extrusion, Dipping}$ Or $Discuss the different steps associated with injection molding process?}$ $5 \text{CO-5} \text{Write the manufacturing method of Poly ethylene with PFD.}$			concentration remains (a) constant and (b) first order decay.							
$K_p^2/K_t = 2*10^{-3} \text{l/mol-s}$ $[I] = 6.0*10^{-3} \text{ mol/l}$ $K_d = 2*10^{-6} \text{ s}^{-1}$ $4 \text{CO-4} \text{Write short note on: Extrusion, Dipping} \qquad \qquad 10$ Or $Discuss the different steps associated with injection molding process?} 5 \text{CO-5} \text{Write the manufacturing method of Poly ethylene with PFD.} \qquad 15$			Data:							
$[I] = 6.0 * 10^{-3} \text{ mol/l}$ $K_d = 2* 10^{-6} \text{ s}^{-1}$ $4 \text{CO-4} \text{Write short note on: Extrusion, Dipping} \qquad \qquad 10$ Or $Discuss the different steps associated with injection molding process?}$ $5 \text{CO-5} \text{Write the manufacturing method of Poly ethylene with PFD.}$ 15			f=1							
K _d = 2*10 ⁻⁶ s ⁻¹ 4 CO-4 Write short note on: Extrusion, Dipping Or Discuss the different steps associated with injection molding process? 5 CO-5 Write the manufacturing method of Poly ethylene with PFD.		1	$K_p^2/K_t = 2 * 10^{-3} l/mol-s$						•	
4 CO-4 Write short note on: Extrusion, Dipping Or Discuss the different steps associated with injection molding process? 5 CO-5 Write the manufacturing method of Poly ethylene with PFD. 15			$[I] = 6.0 * 10^{-3} \text{ mol/l}$	V						
Or Discuss the different steps associated with injection molding process? 5 CO-5 Write the manufacturing method of Poly ethylene with PFD.			$K_d = 2*10^{-6} \text{ s}^{-1}$		•					
Discuss the different steps associated with injection molding process? 5 CO-5 Write the manufacturing method of Poly ethylene with PFD. 15	4	CO-4	Write short note on: Extrusion,	10						
5 CO-5 Write the manufacturing method of Poly ethylene with PFD.										
Write the manufacturing method of Foly emylene with Fig.										
Total 100	5	CO-5	_		with F	FD.				
			Tota	al					100	