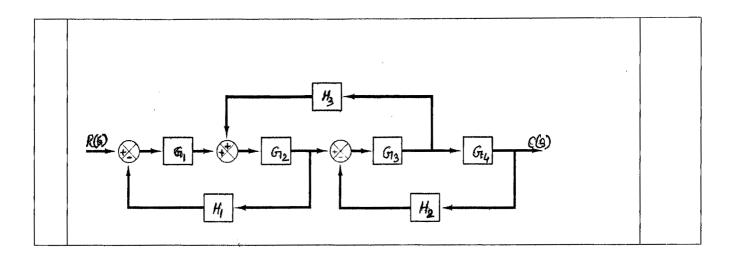
Ref. No. - Ex/CHE/PC/B/T/322/2024 B.E Chemical Engineering Third Year 2nd Semester Exam-2024 Department of Chemical Engineering, Jadavpur University


Subject: Process Dynamics and Control (CHE/PC/B/T/322)

Time: 3 hr

Full Marks: 100

(Attempt all questions)

		Marks
	CO ₁	
Q1	Point out the controlled variable, manipulate variable, controller, set point, sensor, final control element and disturbances in case of a human being driving a car through sketch. How to diminish the disturbances in this control system?	10
	CO ₂	I
Q2	Solve the solving following differential equation by Laplace transform	
	$\frac{d^4x}{dt^4} + \frac{d^3x}{dt^3} = \cos t; \qquad x(0) = x'(0) = x'''(0) = 0 \text{ and } x''(0) = 1$	15
Q3	Consider a second order system with the following transfer function?	
		15
	$G(s) = \frac{Y(s)}{f(s)} = \frac{1}{s^2 + s + 1}$	
	Introduce a step change of magnitude one into the system and find (i) % overshoot, (ii) decay ratio, (iii) rise time, (iv) ultimate value of Y(t).	
Q4	Estimate the transient response of a liquid level while ramp change in input for a first order	15
()	process	10
	CO ₃	
Q5	a) Determine the range of K for stability of the system with following characteristic equation	
		10
	$S^4 + KS^3 + S^2 + S + 1 = 0$	
	b) Determine the stability by Routh criterion for the system with following characteristic equation	10
	$s^4 + 3s^3 + 5s^2 + 4s + 2 = 0$	
Q6	Derive the offset value for Proportional controller during servo problem and regulator problem.	15
······································	CO ₄	
Q7	Simplify the block diagram then obtain the close-loop transfer function C(s)/R(s)	
	•	
ł		
ŀ	ļ	10

