B.E. Chemical Engineering Second Year Second Semester Examination 2024

Numerical Analysis for Chemical Engineers

Time: Three hours Full Marks: 100

Note: 1. All part questions should be done in one place

2. Assume any missing data

1. CO 1: Answer the questions

- a) Differentiate between bracketing and open methods to solve non-linear algebraic equations. Name [4] the methods used in numerical analysis.
- b) Explain the Gauss-Siedel method and its convergence criteria. [4]
- c) Differentiate between interpolation and regression technique. List out the interpolation methods, which can be used when at unequal interval data points are available.
- d) What do you mean by boundary value problem in solving the ordinary differential equation? [3]

2. CO 2: Answer any THREE questions

a) Solve the following system of equations using the method of Gauss Elimination with partial pivoting. [10]

$$2x + y + z = 10$$
$$x + 2y + 3z = 18$$
$$x + 4y + 9z = 16$$

b) Solve the following system of equations by Gauss-Siedel method

$$5x + y - z = 10$$
$$2x + 4y + z = 14$$
$$x + y + 8z = 20$$

- c) Using Regula-Falsi method, find the root of the equation $x^3 4x 9 = 0$ lies between 2 and 3. [10]
- d) Find ³√48 using Newton Raphson method correct up to 5 decimal places. [10]

3. CO 3: Answer any THREE questions

a) An experiment was performed and the values of heat capacity C_p at various temperatures T for a [10] gas was found.

T	-50	-30	0	60	90	110
C_p	1270	1280	1350	1480	1580	1700

Determine a linear model to predict C_p as a function of T.

b) Use Lagrange's interpolation formula to find the value of y when x = 10 from the following data [10] table:

x	5	6	9	11
y	12	13	14	16

[10]

c) Use Newton's forward interpolation formula, find the value of f(1.6). Also find f'(1.0).

x	1.0	1.4	1.8	2.2
f(x)	3.49	4.82	5.96	6.5

d) i) Derive formula for Trapezoidal rule of numerical integration.

[4]

[10]

ii) Following table shows speed in m/s and time in second of a car. Using Simpson's 1/3 rule, find [6] the distance travelled by the car in 120 seconds.

t	0	12	24	36	48	60	72	84	96	108	120
V	0	3.6	10.08	18.90	21.60	18.54	10.26	5.4	4.5	5.4	9.0

4. CO 4: Answer the question

Using Runge-Kutta method of order four with h = 1 find y (2), given $y' = y - x^2$, y(0) = 1.5

5. CO 5: Answer the question

a) Solve the following problem using the finite difference method and central difference [15] approximation:

$$\frac{d^2y}{dx^2} - y = -4xe^x, y(0) = 0, y(1) = 1 \text{ with } h = 0.25$$