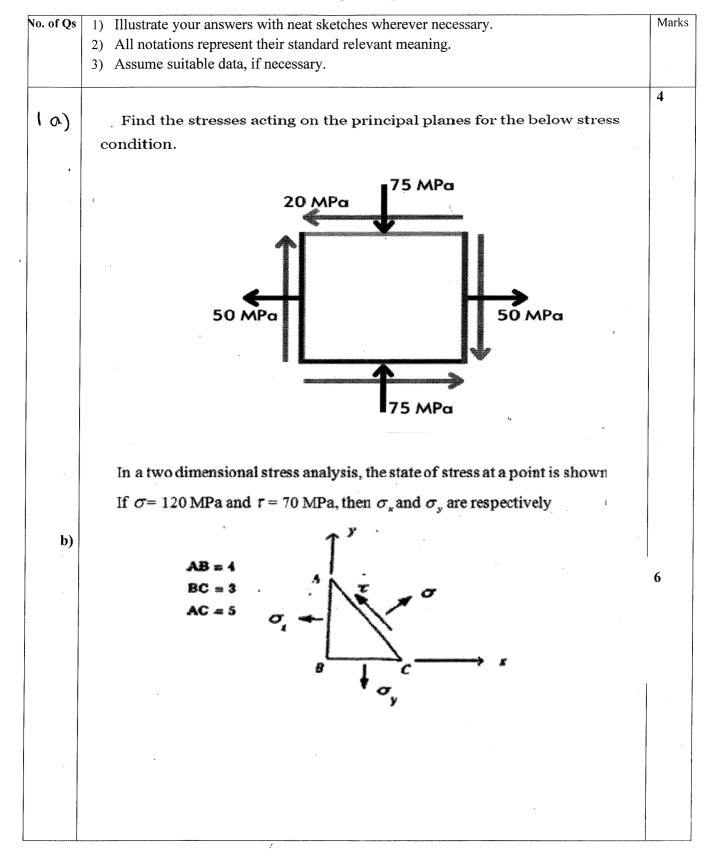
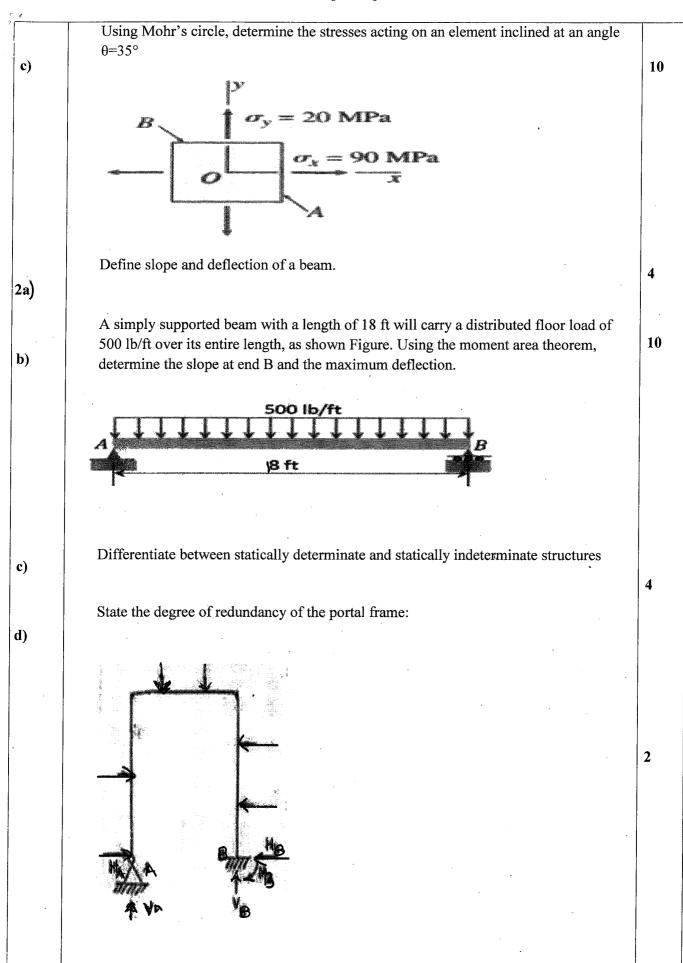
Bachelor of Architecture

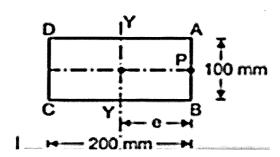

Second Year First Semester -2024


Subject: Theory of Structures-I

Time: Three hours

Answer any five questions

Full Marks: 100

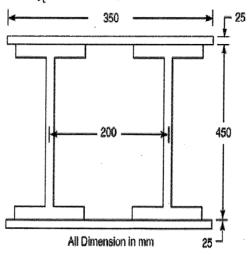


3a)	State the theorems of Conjugate beam method	4
b)	A 10m long simply supported beam AB carries loads of 80 KN and 60 KN at 2m an 7m respectively from A. E= 200 Gpa and I= 150 x 10 ⁶ mm ⁴ . Determine the deflection and slope under the loads using conjugate beam method.	
c)	BokN 60 kN A C D Som Som Som B Define "Eccentric load" with neat sketch.	12
4a)	State the assumptions made while analysing deflection and slope of a beam using Principle of Super position.	4
b)	For the following overhanging beam with a fixed end, determine the support reactions at fixed end A and roller support B	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12
	[provided: Maximum deflection for a cantilever beam as shown:	
	$\delta_{max} = \frac{Pa^2(3L - a)}{6EI}$	
c	What is meant by effective length of a column? Give the relationship between the effective length and actual length of the column for various end conditions.	4
5a)	Mention the assumptions made in Euler's Column Theory	
b)	A mild steel tube 4 metres long, 3 cm. internal diameter and 4 mm. thick is used as a strut with both ends hinged. Find the collapsing load. Take E=2. 1x 10 kg. /cm ²	6
		6

c)

A rectangular column is 200 mm wide and 100 mm thick. It carries a load of 180 KN at an eccentricity of 100 mm in the plane bisecting the thickness. Find the maximum and minimum intensities of stress in the section.

8


6a)

A built up steel column, 8 m long and ends firmly fixed is having cross-section as shown. The properties of I-section are Area = 9300 mm², $I_{xx} = 3 \times 10^6$ min⁴, $I_{yy} = 8.4 \times 10^6$ mm⁴. Determine:

- (i) The safe axial load the column can carry with a factor of safety of 3.5 using
 - (a) Euler's Formula,
- (b) Rankine's Formula.
- (ii) The length of the column for which both formulae give the same crippling load.
- (iii) The length of the column for which the Euler's formula ceases to apply.

Take $E = 2 \times 10^5 \text{ N/mm}^2$, $f_c = 330 \text{ N/mm}^2$, a = 1/7500

_b)

Determine the minimum eccentricity to be considered for an axially loaded RCC column of size 400×400 mm with unsupported length of 5m.

6