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Abstract 

The present thesis investigates static and dynamic behaviour of axially functionally 

graded structural elements (beams and plates) on elastic foundation with different boundary 

conditions. For beams, Euler-Bernoulli and Timoshenko beam model are separately 

considered, whereas, the plate is taken as thin plate. The material of structural elements is 

considered to be functionally graded continuously along longitudinal direction. To 

incorporate the material gradation, different material models are selected depending on the 

gradation of the elastic modulus and density in the axial direction. Non-uniform structural 

geometry has also been taken into account in the present thesis considering variation in 

thickness along the axial direction. For that purpose, linear, parabolic and exponential taper 

patterns are chosen for thickness. The structural elements are considered to be resting on 

elastic foundation with different classical boundary conditions and subjected under externally 

applied uniformly distributed load. The foundation has been mathematically incorporated 

into the analysis as a set of linear springs attached uniformly at the bottom surface of the 

structure. A displacement based semi-analytical method associated with the whole physical 

domain of the system is utilized for formulation of the problems throughout the thesis. 

Geometric nonlinearity is also included in the present thesis considering nonlinear strain-

displacement relations. The governing set of nonlinear equations of the system are derived 

adopting suitable energy methods and solved by numerical application of suitable iterative 

methods. For beam (thin & thick), study of free vibration and forced vibration characteristics 

are performed, whereas, in case of plate, static and free vibration analysis are taken up. 

The main concern of the static analysis is to represent the load versus deflection plot 

and deflected shape plot under the application of steady state loading considering the effect 

of various parameters viz. material model, taper pattern, system geometry and elastic 

foundation. The governing set of nonlinear equation in static analysis is derived utilizing 

principle of minimum total potential energy and unknown co-efficient of the governing 

equations are solved using an iterative method (direct substitution with relaxation).  

The main focus of the free vibration analysis is to represent backbone curves and 

corresponding mode shapes. In order to generate these, it is necessary to find out the natural 
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frequencies of the system under undeformed and deformed conditions. The problem is 

divided in two distinct parts. Firstly, the static problem is carried out through an iterative 

scheme using a relaxation parameter and later on the subsequent dynamic problem is solved 

as a standard eigen value problem. The obtained results are validated from previously 

published results and are found to be in good agreement. The free vibrational frequencies are 

tabulated for different taper profile, taper parameter and foundation stiffness. The dynamic 

behaviour of the system is presented in the form of backbone curves in dimensionless 

frequency-amplitude plane. Investigation of mode switching for AFG plate on elastic 

foundation is also a vital consideration and leads to identification of particular conditions for 

which the above mentioned phenomenon is observed. Linear and nonlinear mode shape plots 

are also presented to compare the free vibration behaviour. 

Forced vibration analysis is conducted with an objective to find out the response of 

the system, in terms of displacement amplitude, under externally applied time varying 

excitations. The derivation of governing equations is accomplished following Hamilton’s 

principle. In the present work, only steady-state response is presented and frequency of 

response of the undamped system is assumed to be equal to that of the external excitation. An 

indirect approach is adopted for solving the problem, where it is reduced to a static scenario 

by assuming that under maximum amplitude of excitation, i.e., when the system suffers 

maximum deformation, the dynamic system fulfils force equilibrium conditions. Broyden 

method, which is a multidimensional secant method used for numerically solving a system of 

nonlinear equations. A convergence study is performed to determine the values for various 

parameters related to the numerical scheme. Established result from existing literature is used 

to provide validation for the adopted method and solution procedure. The geometric 

nonlinear forced vibration characteristic of the system is represented through frequency 

response curves in non-dimensional excitation frequency-maximum response amplitude 

diagrams. the effects of excitation frequency on the ODS (Operational Deflection Shape) is 

also investigated. New results, capable of acting as benchmark results, are provided for a 

ombination of different flexural boundary conditions, various material models and 

foundation stiffness values. 
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INTRODUCTION 

 

1.1 Introduction:  

As far as structures are concerned, beams and plates can be considered as 

fundamental elements of a variety of engineering structure. These basic elements find their 

use in wide range of structural applications. It is well known that a beam is an element with 

considerably large longitudinal dimension compared to the cross-sectional dimensions and 

is primarily capable of carrying loads perpendicular to its longitudinal axis. Structures such 

as helicopter rotor blades, spacecraft antennae, robot arms, air-plane wings and many more 

subsystems of complex structures can be modelled as beams for the purpose of performing 

a variety of mathematical analysis. Most engineering analyses are based on the classical 

Euler-Bernoulli theory, in which straight lines or planes normal to the neutral beam axis 

remain straight and normal after deformation. This theory thus neglects the effect of 

transverse shear deformations, a condition that holds only in the case of slender beams. It 

is well-known that variation in shear force and moment distribution can become significant 

in the case of foundation beams with small length-to-depth ratio subjected to closely spaced 

discrete column loads, as well as in the case of flanged beams and beams with sandwich-

like cross-section. To confront this problem, the well-known Timoshenko beam model, in 

which the effect of transverse shear deflections is considered, can be used.  

On the other hand, a plate is a structural element which is characterized by small 

thickness in comparison with the other two dimensions (length and width). Generally, such 

structural elements are capable of withstanding transverse as well as axial loads. Building 

floors and walls, dams, bridge decks, ship hulls etc. are examples of structures that can be 

idealised as plates. Similar to the case of beams, there exist thin and thick plate theories to 

analyses such structures and the difference between them is on the basis of consideration 

of the shear deformation in the transverse direction. In case of both structural elements, 
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linear as well as nonlinear analysis are necessary depending on the situation under 

consideration and there are many theories catering to these aspects.  

1.1.1 Functionally Graded Material (FGM): 

Materials have played a significant role in the development of society throughout 

human history. Advancement in the field of materials has seen development of new and 

improved materials and their utilisation in engineering applications. One such category of 

materials is composites. Multi-layered composite materials are useful in aerospace, civil, 

mechanical engineering, automotive and nuclear industries due to their outstanding 

behaviour such as high ratio of stiffness and strength to weight and low maintenance cost. 

But contemporary laminated composite materials exhibit a mismatch of mechanical 

properties at an interface due to bonding of two discrete materials. As a result stress 

concentration usually occurs at the interface (Nguyen et al. 2013). This can lead to damage 

in the form of delamination, matrix cracking and adhesive bond separation.  

One way to overcome the limitations of laminar composites is to combine materials 

with continuous variation in composition from one surface to another along any orthogonal 

direction. The materials created in such a way are called functionally graded materials 

(FGMs). The material properties such as elastic modulus, shear modulus, material density 

and Poisson’s ratio vary continuously and smoothly along desired spatial directions. The 

advantage of FGMs over traditional composites is that, they retain most of the properties 

of their constituent materials. The continuous transition of materials also reduces residual 

and thermal stresses, stress concentration and provides high strength to weight ratio (Suresh 

and Mortensen 1998). With these characteristics, FGMs naturally attract the attention of 

various structural engineers and researchers and are gaining widespread applications in the 

various engineering industries including aerospace, mechanical, civil and nuclear domains. 

The FGMs were first developed by Japanese researchers in 1984 during a space-plane 

project when they came across the problem of thermal shielding due to high temperature 

during re-entry to atmosphere. The detailed information regarding FGMs such as its 

history, applications, fabrication process, modelling etc. are provided in reviews conducted 

by Markworth (1995), Suresh and Mortensen (1998), Berman and Byrd (2007), Liew et al. 

(2011), Jha et al. (2013), Thai and Kim (2015) and Swaminathan (2015) and.  Apart from 
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man-made FGMs, there are some natural FGMs as well such as bamboo tree, bone, human 

skin etc. 

Functionally graded materials can be broadly classified into two types on the basis 

of the direction of material gradation. One type is where the material properties vary along 

a single direction, either depth or any one of the longitudinal directions. If material 

properties vary along the thickness direction, the class of materials is called transversely 

functionally graded materials (TFG). This type of FGMs are the most popular and are 

presently used in many engineering applications such as spacecraft heat shields, heat ex-

changer tubes, biomedical implants, flywheels, and plasma facings for fusion reactors, etc. 

If the material is graded along the axial direction, it is classified under the axially 

functionally graded material (AFG). Structures made of AFG material may be 

advantageous over TFG structures in cases where cantilever and rotating structure is 

involved such as turbo-machine and turbine blades, helicopter rotor blades, and spacecraft 

with flexible appendages etc. The other type of graded material has property variations 

along multiple directions, i.e., properties vary along both transverse and axial directions 

simultaneously.  

Although most of the engineering applications may be taken care of using 

unidirectional FGMs, there are practical occasions which require tailored grading of 

macroscopic properties in two or three directions (Nemat-Alla, 2003; Lu et al., 2008; Zhao 

et al., 2012; Simsek, 2015; Nejad and Hadi, 2016; Hao and Wei, 2016; Pydah and Sabale, 

2017; Nguyen et al., 2017; Nemat-Alla, 2003; Shafiei et al., 2017). The temperature 

distributions in machine elements that are used in several applications such as space 

shuttles, nuclear reactors, aircrafts, ovens, combustion chambers, etc., change in two or 

three directions. Thus, proper and efficient operation of such elements necessities the use 

of effective high-temperature resistant materials. Steinberg (1986) showed the variations 

of the temperature at various places on the outer surface of a new aerospace craft during 

sustained flight at a speed of Mach 8 and altitude of 29 km. The temperature on the outer 

surface of such a plane ranges from 1033 K along the top of the fuselage to 2066 K degrees 

at the nose. Furthermore, this temperature level has to decay severely, through the thickness 

of the craft body, to the room temperature inside the craft. Such kind of aerospace craft 

added a new challenge to introduce and develop more effective high-temperature resistant 
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materials that can withstand high-external temperatures that have variations in two or three 

directions.  

1.1.2 Elastic foundation: 

In practice, boundary conditions of the structural elements are seldom classical. 

Under externally applied loads (axial or transverse) these elements rarely behave as ideal 

simply supported or ideal clamped structures. On the basis of practical considerations, an 

effective way to model the boundaries of structural elements is to incorporate elastic 

restraints or introducing elastic foundation. Specifically, various critical and frequently 

used load bearing components (very often encountered in analysis of building, 

geotechnical, highway, and railroad applications) can be idealised as a structure resting on 

elastic foundation. Its solution demands the modelling of the mechanical behaviour of the 

structure, the mechanical behaviour of the foundation and the form of interaction between 

the structure and the foundation. 

While fairly realistic and efficient models of the material properties and the 

mechanical behaviour of the structure can be established by using beam (Timoshenko and 

Bernoulli–Euler theory) or even plate theory, the characteristics that represent the 

mechanical behaviour of the foundation and its interaction with the structure resting on it 

are difficult to model. Assuming a linear elastic, homogeneous and isotropic behaviour of 

the foundation, two major classes of foundation models can be identified in the literature: 

(i) Continuous medium models: It can be surmised that these models, which are 

based upon the fundamental hypothesis of an elastic semi-infinite space, are more accurate. 

But, obtaining an exact analytical solution, even with the introduction of simplifying 

assumptions, turns out to be quite difficult (Selvadurai, 1979) in certain cases. However, 

numerical solutions for most situations are attainable via finite element simulations. Such 

finite element models guarantee precise calculation of stresses and deformations, but, are 

often associated with significant resources in terms of computer capacity and processing 

time. To reduce the computational burden, symmetries in the existing system can be utilized 

to reduce the initial three dimensional problem to a two dimensional one. Still, thorough 

knowledge and sound judgment is a pre-requisite on the part of the engineer to ensure 

satisfactory results.  
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(ii) Mechanical models: On the other hand, mechanical models are clearly less 

precise, but conceptually simple and easier to use. Winkler (1867) devised the oldest, yet 

most famous and most frequently used, mechanical model, where the foundation is replaced 

by a series of closely spaced linear elastic vertical springs that offer resistive forces 

proportional to the deflection of the beam. It was assumed that the springs were mutually 

independent of one another. In the Winkler model, the properties of the foundation are 

described only by the stiffness of the vertical spring (k). Hence, it is often referred to as 

single- or one-parameter elastic foundation. Owing to the simplicity of mathematical 

formulation, this model can be easily employed in a variety of problems and practical 

situations (Hetenyi, 1946) with satisfactory results. 

However, due to its inability to take into account the continuity or cohesion of the 

foundation, it is considered as a rather crude approximation of the true mechanical 

behaviour of the foundation. This limitation, i.e., the assumption that there is no interaction 

between adjacent springs, also results in neglecting the influence of the foundation on either 

side of the beam. To overcome this weakness, several two-parameter elastic foundation 

models have been suggested (Filonenko-Borodich, 1940; Pasternak, 1954; Vlasov and 

Leontiev, 1966). In these models, the first parameter represents the stiffness of the vertical 

spring, as in the Winkler model, whereas the second parameter is introduced to account for 

the coupling effect of the linear elastic springs. It is worth mentioning that the interaction 

enabled by this second parameter also allows the consideration of the influence of the 

foundation on either side of the beam. Despite the introduction of a second parameter, the 

mathematical formulation of the problem and the corresponding analytical solutions remain 

relatively simple (Selvadurai, 1979). Thus, two-parameter models are less restrictive than 

the Winkler model but not as complicated as the elastic continuum model.  

Three-parameter models constitute a generalization of two-parameter models, the 

third parameter being used to make them more realistic and effective. This category 

includes the models developed by Kerr, Hetenyi and Reissner (Kerr, 1965). One of the 

basic features of the three-parameter models is the flexibility and convenience that they 

offer in the determination of the level of continuity of the vertical displacements at the 

boundaries between the loaded and the unloaded surfaces of the foundation (Hetenyi, 
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1950). This feature renders them capable of distributing stresses correctly. Among all three-

parameter models, the Kerr model is of particular interest. It represents a generalization of 

the two-parameter Pasternak model for which a series of solutions and applications are 

already available.  

1.1.3 Structural analysis: 

Structural analysis of a particular system can be studied mainly in two direction 

depending on the nature of the external influence on the system. Situations, where, response 

is considered under time invariant loading, are known as static analysis. Here, the focus is 

to determine maximum deflection, deflected profile, load carrying capacity, stress 

generated etc. in the system. On the other hand, there is dynamic analyses, which can pose 

serious and fatal consequences for the structure. Dynamic behaviour of systems is often 

characterized by vibration, which can be defined as the repetitive motion in alternately 

opposite directions from a position of equilibrium when that equilibrium has been 

disturbed. It involves continuous to and fro motion with alternative transfer of potential 

energy to kinetic energy and vice-versa. 

Vibration can be classified in various ways, for example, free and forced vibration, 

damped and undamped vibration, linear and nonlinear vibration etc. If a system is subjected 

to an initial disturbance and then left to vibrate without interference from any external 

sources, the ensuing vibration is called free vibration. Vibration of a system under 

continuous time dependent repetitive external influence is known as forced vibration. 

Undamped vibration is an idealised scenario where no energy is dissipated during 

oscillation whereas, in case of damped vibration some energy is lost to the surrounding in 

each cycle of oscillation (due to friction or any other resistance) and eventually the system 

comes to a stop. Linear and nonlinear vibrations are defined on the basis of the linear and 

nonlinear behaviour of the system or its components. It is worth stating that nonlinearities 

are inherent in mechanical systems and assumption of linear behaviour is an idealisation 

based on the necessity for simplification. 

1.1.4 Nonlinearity in structure: 

Nonlinearity in a structure may arise from different sources but the two most 

commonly manifested nonlinearities are geometric and material nonlinearity. Geometric 
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nonlinearity is induced due to large deformations or large rotations of elastic bodies. The 

large deformation causes mid-plane stretching which couples the transverse displacement 

to axial strain, resulting in nonlinear strain-displacement relations. There are also instances 

when the deformation may not overstrain the material or produce stretching, but the system 

may exhibit curvature-displacement nonlinearity. Another type of nonlinearity is material 

or physical nonlinearity arising out of nonlinear stress-strain behaviour. Usually the stress-

strain curve is nonlinear, but can be linearized within a limit under certain assumptions 

(Hooke’s Law). It should be mentioned here that the assumption of linear elasticity forms 

the basis of analysis for structural elements such as beams and plates. Nonlinear elasticity, 

generally exhibited by elastomers (rubber like materials), is an example of material 

nonlinearity. Post-elastic behaviour of materials also usually falls into this category. 

Depending on the nature of the problem any one or both of geometric and material 

nonlinearities can be included in the analysis. Nonlinearity may also be induced in the 

system through nonlinear boundary conditions. Linear viscous damping is an idealization 

but damping may also essentially be treated as a nonlinear phenomenon. Hysteretic 

damping, aerodynamic drag etc. are examples of nonlinear damping.  

The above description of different type of nonlinearities is far from complete or 

exhaustive. In fact, such discussion can hardly be taken up within the confines of a few 

paragraphs. Evan-Ivanowsky (1976), Nayfeh and Mook (1979) and Moon (1987) have 

explained the various nonlinearities in great detail with examples. There are many other 

sources of nonlinearities and linear systems are only approximations to simplify the 

complexity of the problem. It is well known that the presence of nonlinearity in a system 

complicates the analytical investigations. This is mainly due to the fact that the problems 

governed by nonlinear differential equations do not have the advantages of uniqueness and 

superposition of solutions. 

1.2 Layout of thesis: 

The present thesis is organised into a series of correlated chapters for better clarity 

and representation. In the following lines a brief description about these chapters are 

provided to bring out the layout of the thesis.  
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Chapter 1: Introduction 

It describes the nature of the general subject area with concise discussion on certain 

keywords relevant to the present thesis. Brief description of functionally graded materials 

is provided along with a separate discussion on the mechanical behaviour of the structure 

and elastic foundation and their interaction. An introduction to structural analysis ia also 

provided, while various types of nonlinearities are discussed keeping in mind the relevance 

to the present work.  

Chapter 2: Literature review 

This chapter presents detailed review of the available literature that has helped in 

identifying the most important issues and unexplored areas related to the current study. It 

is needless to say that a comprehensive review of research done in the domain would far 

exceed the confines of a single chapter. So, an effort is made to proffer only those papers 

that are most relevant and help in setting up the background and motivation behind the 

present work.    

Chapter 3: Free Vibration: Axially Functionally Graded Thin Beams on Elastic 

Foundation 

This chapter deals with large amplitude (geometric nonlinear) free vibration 

analysis of a Euler-Bernoulli axially functionally graded (AFG) non-uniform beam on 

elastic foundation under the transverse loading. The analysis looks into amplitude 

dependency of the loaded natural frequency. The free vibration frequencies are tabulated 

for non-uniform profile subject to various boundary conditions and foundation stiffness. 

The dynamic behaviour of the system is presented in the form of backbone curves in 

dimensionless frequency-amplitude plane to detect the effect of the elastic foundation, 

material models and taper patterns. In some particular case the mode shape results are 

furnished. 

Chapter 4: Forced Vibration: Axially Functionally Graded Thin Beams on Elastic 

Foundation 

This chapter discusses large amplitude forced vibration analysis of Euler Bernoulli 

AFG beams resting on elastic foundation subjected to transverse harmonic excitation with 
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an objective to find out the response of the system, in terms of displacement amplitude. 

Broyden method, which is a multidimensional secant method, is used for numerically 

solving a system of nonlinear equations. The large amplitude dynamic behaviour of the 

system in terms of non-dimensional frequency response curves is validated against 

established results and new results are furnished for tapered AFG beam on linear elastic 

foundation to represent the effect of the excitation amplitude, material model, taper pattern 

and foundation stiffness. 

Chapter 5: Free and Forced Vibration Analysis: Axially Functionally Graded Timoshenko 

Beam on Elastic Foundation  

This chapter deals with both free and forced vibration analyses of AFG Timoshenko 

beams on elatic foundation in two separate sections with different basic assumptions. The 

nonlinear free vibration problem is solved in two steps where the objective in the first part 

is to compute the stiffness matrix in deflected configuration through a static analysis. This 

equivalent stiffness matrix is directly used in dynamic analysis for obtaining eigenvalues 

and eigenvectors which form the natural frequency and mode shape of the system, 

respectively. The assumption in the nonlinear forced vibration analysis is that all the forces 

acting on the system attains equilibrium at the peak amplitude, which enables the dynamic 

problem to be solved as an equivalent static problem. The static analysis in the first part of 

free vibration is based on principle of minimum total potential energy whereas Hamilton’s 

principle is used in dynamic analysis of both free and forced vibration. The results are 

presented in terms of backbone curves and mode shapes in free vibration analysis and 

frequency-response curves and operational deflection shapes in forced vibration scenario. 

Chapter 6: Static and Free Vibration Analysis: Axially Functionally Graded Thin Plates 

on Elastic Foundation 

This chapter presents the static and free vibration analyse of AFG thin plate on 

elastic foundation separately with different basic assumptions. Load vs amplitude plot, 

deflected shape plot are presented in static analysis, whereas in free vibration analysis 

backbone curve corresponding to different combinations of system parameters are 

presented in non-dimensional plane. Mode switching phenomenon are detected and linear 

and nonlinear mode shapes are furnished to support the presence of switching phenomenon. 
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The effects of the boundary conditions and non-uniformity of the plate shape are also 

highlighted. 

Chapter 7: Conclusion and future scope of work  

This chapter draws the conclusion for the present research work and provides the 

scope for future work for further investigation in this field.  

Appendix 

 A section of subsidiary matters are provided here. The element details of the 

stiffness matrix, mass matrix and load vector are enlisted here separtely for beam ( Euler 

bernoulli beam and Timoshenko beam) and plate. 

Bibliography  

A list of references used in the present thesis is provided here.  
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LITERATURE REVIEW 

 

2.1 Introduction:  

Being the most commonly used structural elements, beams and plates have always 

been the centre of attention of structural engineers and scholars. After the introduction of 

functionally graded materials (FGMs) in structures, many researchers have concentrated 

their efforts in the area of modelling and analysis of such elements made up of graded 

materials. On the other hand, study of behaviour of beams and plates on elastic foundation 

is an interesting domain of research as several critical engineering structures which 

generally serve as the key load-bearing components, like rail track, rigid pavements, bridge 

decks, mat and raft foundations etc., can be idealized as structure on foundation. The sheer 

quantity of published literature related to these elements makes it impossible to list all of 

them within the confines of a single chapter. However, keeping within the space limitation, 

most of the relevant articles and books are referred in the following paragraphs to provide 

an idea about the background and current status of research in the corresponding area. The 

section is mainly categorised into three parts – 

 Literatures on Euler-Bernoulli Beam 

 Literatures on Timoshenko Beam 

 Literatures on Plate 

For better clarity to the readers, these three sections are further classified into two 

subsections to cite the related literatures on material gradation and elastic foundation. 

2.2 Literatures on Euler-Bernoulli beam: 

Euler Bernoulli beams are the most simplified class of all types of beams which 

follow some basic assumptions under deformation. The cross sections of such beam do not 

deform in a significant manner under the application of transverse or axial loads and can 
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be assumed as rigid. The cross section of the deformed beam is assumed to remain planar 

and normal to the deformed axis of the beam.  These assumptions have been extensively 

confirmed for slender beams made of isotropic materials with solid cross-sections. The 

thickness-to-length ratio are approximately considered less than 1:100. By virtue of 

slenderness, shear deformation and rotary inertial effects are ignored. Still, simplicity of 

Euler Bernoulli beam theory makes it an important tool, especially for structural and 

mechanical engineering and attacts researchers to explore different aspects of it. Some 

recent and relevent literatures are reviewed in the following sections to set the background 

of the present work. These papers are further categorized into two sub-sections containing 

research on thin beams with material gradation and thin beams supported by foundation, 

respectively. 

2.2.1 Literatures on material gradation: 

The variation of material properties in functionally graded (FG) Euler-Bernoulli 

beams may be oriented in transverse (thickness) direction or longitudinal/axial (length) 

direction or both. An exhaustive literature review of the relevant domain reveals that 

majority of the studies are concentrated on free vibration analysis of FG Euler-Bernoulli 

beams with material property variation along the depth of the beam.  

Li (2008) presented a unified approach for analysing static and dynamic behaviours 

of functionally graded beams (FGB), in which, all material properties were arbitrarily 

varied along the beam thickness. For the need of analysis, the author analytically reduced 

Euler–Bernoulli beam theories from the Timoshenko beam theory. Simsek and Kocatürk 

(2009) investigated free vibration characteristics and the dynamic behaviour of a 

functionally graded simply-supported beam under a concentrated moving harmonic load 

assuming continuous variation of material properties in the thickness direction according 

to exponential and power-law form. The system of equations of motion were derived by 

using Lagrange’s equations under the assumptions of the Euler–Bernoulli beam theory. 

Simsek (2010) investigated vibration of a functionally graded (FG) simply-supported beam 

due to a moving mass by using Euler–Bernoulli, Timoshenko and the third order shear 

deformation beam theories considering thickness directional material properties variation. 

A mixed method was presented by Khalili et al. (2010) to study the dynamic behaviour of 

transversely functionally graded (TFG) beams subjected to moving loads. In the paper, 
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theoretical formulations were based on Euler–Bernoulli beam theory, and the governing 

equations of motion of the system were derived using the Lagrange equations. The 

Rayleigh–Ritz method was employed to discretize the spatial partial derivatives and a step-

by-step differential quadrature method (DQM) was used for the discretization of temporal 

derivatives. Nonlinear vibration of beams made of transversely functionally graded (TFG) 

materials was studied by Ke et al. (2010) based on Euler-Bernoulli beam theory and von 

Kármán geometric nonlinearity. The authors assumed that material properties follow either 

exponential or power law distributions through thickness direction. Alshorbagy et al. 

(2011) presented the dynamic characteristics of functionally graded beam with material 

graduation in axial or transverse direction through the thickness based on the power law. 

In the paper, system of equations of motion was derived by using the principle of virtual 

work under the assumptions of the Euler–Bernoulli beam theory and finite element method 

was employed to discretize the model for numerical approximation. Eltaher et al. (2012) 

presented free vibration analysis of transversely functionally graded (TFG) size-dependent 

nanobeams using finite element method on the basis of Euler–Bernoulli beam theory and 

nonlocal continuum model. The authors (Eltaher et al., 2013) also investigated size-

dependent static-buckling behaviour of functionally graded (FG) nanobeams on the basis 

of the nonlocal continuum model, where material properties were assumed to vary through 

the thickness according to the power law. In this paper as well, nanobeam was modelled 

according to the Euler–Bernoulli beam theory with small deformation. The finite element 

method was used to discretize the model and obtain a numerical approximation of 

equilibrium equations. They (Eltaher et al., 2013) also exploited a modified functionally 

graded beam theory to investigate natural frequencies of macro/nanobeams. The FG 

nanobeam, where, material properties were assumed to vary through the thickness 

according to a power law, was studied on the basis of the nonlocal Eringen continuum 

model. The authors considered Euler–Bernoulli beam theory for kinematic assumption and 

finite element method for numerical approximation. A size-dependent functionally graded 

Euler–Bernoulli beam model was developed by Kahrobaiyan et al. (2012) based on the 

strain gradient theory to capture the size-effect in micro-scaled structures. Here, the 

properties were assumed to vary through the thickness according to a power law. Pradhan 

and Chakraverty (2013) investigated free vibration of functionally graded Euler beams by 

Rayleigh–Ritz method, where Material properties of the beam varied continuously in the 
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thickness direction according to the power-law exponent form. Ebrahimi et al. (2016) 

analysed thermo-mechanical vibration of transversely functionally graded (TFG) Euler 

beams made of porous material subjected to various thermal loadings. The authors 

employed a semi analytical differential transform method (DTM) for the first time to obtain 

a Navier type solution. 

On the other hand, investigation of axially functionally graded (AFG) structural 

elements is a relatively newer domain of study that has gained prominence in the present 

decade. Huang and Luo (2011) presented a simple approach to exactly calculate the critical 

buckling loads of beams with arbitrary axial inhomogeneity. Shahba and Rajasekaran 

(2012) investigated the free vibration and stability of axially functionally graded tapered 

Euler–Bernoulli beams through solving the governing differential equations of motion. 

Kien (2013) carried out large displacement analysis of tapered cantilever beams made of 

axially functionally graded material by the finite element method. Li et al. (2013) derived 

closed form characteristic equations for axially functionally graded (exponential gradation) 

beams with various end conditions, such as clamped, pinned, guided, free etc., in order to 

examine the influence of gradient on frequency spectrum. Euler Bernoulli theory alongside 

modified couple stress theory was utilised by Akgöz and Civalek (2013) to present free 

vibration behaviour of non-homogenous (along the axis) and non-uniform fixed-free 

microbeams. Zeighampour and Beni (2015) studied the vibration of axially functionally 

graded material (AFGM) nano-beam by using strain gradient theory. Kumar et al. (2015) 

carried out free vibration analysis on axially functionally graded (AFG) tapered slender 

beams under different boundary conditions. 

Modern aerospace shuttles and craft are subjected to super high temperatures that 

have variation in two or three directions, which need to introduce new materials that can 

endure such applications. A few numbers of literatures are available in this perticular class 

of FGM for Euler-Bernoulli beam. Lu et al. (2008) presented elasticity solutions for 

bending and thermal deformations of functionally graded beams with various end 

conditions, using the state space-based differential quadrature method. Zhao et al. (2012) 

suggested a symplectic framework for the analysis of plane problems of bi-directional 

functionally graded materials (FGMs). The elastic modulus was assumed to vary 

exponentially along both longitudinal and transverse coordinates while the Poisson’s ratio 
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remained constant. Lezgy-Nazargah (2015) studied fully coupled thermo-mechanical 

behaviour of bi-directional functionally graded material (FGM) beam structures using a 

computationally low cost isogeometric finite element model. Nejad and Hadi (2016) 

performed non-local bending, buckling and free vibration analysis of of bi-directional 

functionally graded euler–bernoulli nano-beams with small scale effects. Zhao et al. (2016) 

presented elasticity solutions for bi-directional functionally graded beams subjected to 

arbitrary lateral loads, with emphasis on the end effects. In this paper, the material was 

considered macroscopically isotropic, with Young’s modulus varying exponentially in both 

axial and thickness directions, while Poisson’s ratio remained as constant. Flexure of bi-

directional functionally graded (FG) circular beams was analyzed using the kinematical 

assumptions of the Euler–Bernoulli theory by Pydah and Sabale (2017) by simultaneously 

varying the material properties along the axis (tangential direction) and thickness (radial 

direction) of the beam. 

2.2.2 Literatures on elastic foundation: 

Theory of Euler-Bernoulli beams on elastic foundation is one of the cornerstones of 

engineering mechanics and is applicable to a wide range of practical problem in both the 

civil and mechanical engineering fields. As it constitutes the best practical idealization for 

many real life problems, it has application in geotechnics, bio-mechanics, road, railroad 

and marine engineering. The importance of the problem is underscored by large number of 

research articles which are in existence in the literature. Its beginning can be traced back to 

1867 classical textbook by Emil Winkler. However, throughout the years the interest in this 

particular research domain has remained strong and a survey of existing literature reveals 

a plethora of recent work related to this field. However, under the present circumstances of 

emphasizing reasearch related to graded materials, the following paragraphs cite work 

related to graded thin beams on foundation. 

Huang and Luo (2011) presented a new and simple method to calculate the critical 

buckling loads of beams with axial inhomogeneity on elastic foundation. Simsek and 

Cansız (2012) studied the dynamic responses of an elastically connected double-

functionally graded beam system (DFGBS) carrying a moving harmonic load at a constant 

speed by using Euler–Bernoulli beam theory. The equations of motion were derived with 

the aid of Lagrange’s equations. Murin et al. (2013) presented a differential equation of the 
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homogenized functionally graded material (FGM) beam deflection. The solution was used 

in free vibration analysis of the beams with polynomial continuous longitudinal and 

transversal variation of material properties. The FGM beams were considered to be resting 

on longitudinal variable (Winkler) elastic foundation. Kanani et al. (2014) investigated 

large amplitude free and forced vibration behaviour of FG beam resting on nonlinear elastic 

foundation containing shearing layer and cubic nonlinearity. Niknam and Aghdam (2015) 

made an attempt to obtain a closed form solution for both natural frequency and buckling 

load of nonlocal FG beams resting on nonlinear elastic foundation. Akgöz and Civalek 

(2015, 2016) investigated the bending response of non-homogenous micro-beams (2015), 

as well as single-walled carbon nanotubes (SWCNTs) (2016) embedded in an elastic 

medium based on modified strain gradient elasticity theory in conjunctions with various 

beam theories.  

2.3 Literatures on Timoshenko beam: 

Timoshenko beam theory takes into account shear deformation and rotational 

bending effects, making it suitable for describing the behaviour of thick beams. The 

resulting equation is of higher order but, unlike Euler–Bernoulli beam theory, there is also 

a second-order partial derivative present. Physically, taking into account the added 

mechanisms of deformation effectively lowers the stiffness of the beam, while the result is 

larger deflection under a static load and lower predicted eigen-frequencies for a given set 

of boundary conditions. For this reason, the Euler–Bernoulli model always overestimates 

the analysis outcomes i.e. deflections in static analysis, natural frequencies in free vibration 

analysis and the frequency response in forced vibration analysis. Hence, the Timoshenko 

beam theory has to be employed to analyse structural problem effectively. Over the years, 

many researchers have done exactly that by utilising the said theory in various research 

scenarios. In the following sub-sections a few relevant papers in the domain of graded 

Timoshenko beams and graded thick beams on foundation are cited.  

2.3.1 Literatures on material gradation: 

 Analysis of functionally graded Timoshenko beam provides many fronts in which 

research can be carried out and includes both unidirectional as well bidirectional variation 

of material properties, along with other complicating effects. Research work on FGM 
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beams involving depth/thickness-wise variation of material properties are abundant in 

literature. A brief overview of few of such researches is offered in the following paragraphs. 

Analysis of thermal post-buckling of FGM (Functionally Graded Material) 

Timoshenko beams subjected to transversely non-uniform temperature rise was presented 

by Li et al. (2006) considering the axial extension and transverse shear deformation in the 

sense of theory of Timoshenko beam. Geometrical nonlinear governing equations were 

formulated including seven basic unknown functions for functionally graded beams 

subjected to mechanical and thermal loads. In the analysis, it was assumed that the material 

properties of the beam vary continuously as a power function of the thickness coordinate. 

Li (2008) presented a new unified approach for analysing the static and dynamic behaviours 

of functionally graded beams (FGB) with the rotary inertia and shear deformation included 

and analytically reduced the Euler–Bernoulli and Rayleigh beam theories from the 

Timoshenko beam theory. All material properties were considered arbitrary functions along 

the beam thickness. Nonlinear vibration of beams made of functionally graded materials 

(FGMs) containing an open edge crack was studied by Kitipornchai et al. (2009) and  Ke 

et al. (2009) based on Timoshenko beam theory and von Karman geometric nonlinearity. 

The cracked section was modelled by a massless elastic rotational spring. It was assumed 

that material properties follow exponential distributions through beam thickness. For the 

same problem, the authors (Kitipornchai et al.,2009) studied the post buckling response of 

the beams. They (2010) also investigated the nonlinear free vibration of functionally graded 

nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs) based on 

Timoshenko beam theory and von Kármán geometric nonlinearity. The material properties 

of functionally graded carbon nanotube-reinforced composites (FG-CNTRCs) were 

assumed to be graded in the thickness direction and estimated through the rule of mixture. 

Simsek (2010) performed non-linear dynamic analysis of a functionally graded (FG) beam 

with pinned–pinned supports due to a moving harmonic load by using Timoshenko beam 

theory with the von-Kármán’s non-linear strain–displacement relationships. Material 

properties of the beam varied continuously in thickness direction according to a power-law 

form. The system of equations of motion was derived by using Lagrange’s equations. A 

size-dependent formulation was presented by Asghari et al. (2011) for Timoshenko beams 

made of a functionally graded material (FGM). The formulation was developed on the basis 
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of the modified couple stress theory to capture the small-scale size effects in the mechanical 

behaviour of structures. The beam properties were assumed to vary through the thickness 

of the beam. Ansari et al. (2011) investigated the free vibration characteristics of 

microbeams made of functionally graded materials (FGMs) based on the strain gradient 

Timoshenko beam theory. The material properties of the functionally graded beams were 

assumed to be graded in the thickness direction according to the Mori–Tanaka scheme. Ke 

et al. (2012) investigated nonlinear free vibration of microbeams made of functionally 

graded materials (FGMs) based on the modified couple stress theory and von Kármán 

geometric nonlinearity. The non-classical beam model was developed within the 

framework of Timoshenko beam theory which contained a material length scale parameter 

related to the material microstructures. The material properties of FGMs were assumed to 

be graded in the thickness direction according to the power law function and were 

determined by Mori-Tanaka homogenization technique. Simsek and Yurtcu (2013) 

examined static bending and buckling of a functionally graded (FG) nanobeam based on 

the nonlocal Timoshenko and Euler–Bernoulli beam theory incorporating the length scale 

parameter (nonlocal parameter) which can capture the small scale effect. The material 

properties of the FG nanobeam were assumed to vary in the thickness direction. A 

microscale functionally graded Timoshenko beam model was developed by Simsek et al. 

(2013) for the static bending analysis based on the modified couple stress theory (MCST). 

The material property variation in the thickness direction of the FG microbeams were 

estimated through the Mori–Tanaka homogenization technique and the classical rule of 

mixture. In a paper that also considered graded Euler beams (previously cited in the section 

dealing with thin beams), Pradhan and Chakraverty (2013) investigated the free vibration 

analysis of functionally graded material (FGM) Timoshenko beams subjected to different 

sets of boundary conditions. The analysis was based on the classical and first order shear 

deformation beam theories, while, material properties varied continuously in the thickness 

direction according to the power-law exponent form. Li and Batra (2013) derived analytical 

relations between the critical buckling load of a functionally graded material (FGM) 

Timoshenko beam and that of the corresponding homogeneous Euler–Bernoulli beam 

subjected to axial compressive load. Ansari et al. (2013) studied bending, buckling and free 

vibration responses of Timoshenko microbeams made of functionally graded materials 

(FGMs). In the study, to take size effect into account, the most general strain gradient 
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elasticity theory was incorporated into the classical Timoshenko beam theory to develop a 

size-dependent beam model containing five additional material length scale parameters. 

Rahmani and Pedram (2014) discussed with Timoshenko beam theory that applied the size 

dependent effects in functionally graded material (FGM) beam. The material properties of 

FG nanobeams were considered to vary over the thickness based on the power law. The 

equations of motion were derived according to Eringen nonlocal theory, using Hamilton’s 

principle and a closed-form solution was presented for vibration behaviour of the proposed 

model.  

There are several articles devoted to explore static, dynamic and buckling behaviour 

of axially functionally graded (AFG) non-uniform thick beams based on Timoshenko beam 

theory. Due to the presence of variable coefficients and non-linear equations, exact 

solutions of the governing equations are generally unavailable. Therefore, several 

numerical methods have been used to obtain solutions to AFG beam problems. In the 

following paragraph, selected research works are highlighted in order to set the backdrop 

for the present thesis.  

Shahba et al. (2011) introduced a new beam element and studied the free vibration 

and buckling behaviour on AFG tapered Timoshenko beams through FE approach. Huang 

et al. (2013, 2016) presented a unified approach to investigate free vibration and buckling 

behaviours of AFG Timoshenko non-uniform beams. Rajasekaran (2013) adopted 

differential transformation method and differential quadrature element method of lowest 

order to perform free vibration analysis of rotating AFG Timoshenko tapered beams 

considering four first order differential equations. Sarkar and Ganguli (2014) obtained 

closed form solution for free vibration of AFG Timoshenko beams with uniform cross-

section, having clamped-clamped boundary condition. Calim (2016) used complementary 

functions method and modified Durbin's algorithm to study transient behaviour of AFG 

Timoshenko tapered beams. Shafiei et al. (2016) performed free vibration analysis on a 

rotary AFG micro-beam on the basis Euler–Bernoulli and Timoshenko beam theories using 

generalized differential quadrature method and compared the results of the two beam 

theories. Kiani (2016) studied the transverse vibration of AFG tapered nanobeams in a 

longitudinal temperature gradient. Based on the hypotheses of the Rayleigh, higher-order, 

and Timoshenko beam theory, the equations of motion of the nanobeam were displayed 
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using surface elasticity theory of Gurtin–Murdoch. El-Ashmawy et al. (2016) proposed a 

generalized non-conventional finite element (FE) model for beam following Timoshenko 

beam theory and performed static and dynamic analysis for AFG Beam. Wang and Wu 

(2016) investigated the dynamic response of an AFG beam under thermal environment and 

subjected to a moving harmonic load on the basis of classical beam theory as well as 

Timoshenko beam theory. Zhao et al. (2017) introduced a new approach based on 

Chebyshev polynomials theory to study free vibrational behaviours of AFG Timoshenko 

beams with tapered cross-sections. Lagrange’s equation was applied to obtain the discrete 

governing equation. Sari et al. (2017) developed a model based on Timoshenko beam 

theory for AFG non-uniform nanobeams with Eringen’s nonlocal residuals and studied the 

effects of the residuals on the natural frequencies and mode shapes.  Chen et al. (2017) 

conducted free vibration analysis on a nanoparticle carrying AFG nano-cantilevers with an 

emphasis on the effect of mass and rotational inertia of the nanoparticle. Ghayesh (2018) 

performed nonlinear forced vibration study of AFG Timoshenko tapered beams. Recently, 

Huang et al. (2018) studied the free vibration a spinning AFG Timoshenko beam. A 

spectral-Tchebychev method was employed to solve the dynamic properties of the beam 

and finally, the effect of AFG material on critical speeds and whirling frequencies was 

obtained.  

Special types of material, where, gradation of material properties is considered 

along two orthogonal directions simeltaneously, may have excellent thermal property to 

specifically deal with unevenly distributed thermal loads in two directions. However, 

literatures on such type of FGM on the basis of Timoshenko beam theory are not abundant. 

Simsek (2015) investigated free and forced vibration of bi-directional functionally graded 

(BDFG) Timoshenko beam under the action of a moving load by varying the material 

properties of the beam exponentially in both axial and thickness directions. The author 

(2016) also presented two-dimensional functionally graded materials (2D-FGMs) for the 

first time to investigate buckling of beams with different boundary conditions. Hao and 

Wei (2016) established the motion differential equations of the bi-directional functionally 

graded Timoshenko beam using Hamilton’s principle to analyse the free and forced 

vibration behaviours. Nguyen et al. (2017) studied the vibration of bi-dimensional 

functionally graded Timoshenko beams excited by a moving concentrated load assuming 
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the volume fraction of constituent materials to vary in both the thickness and longitudinal 

directions by power-law functions. A shear deformation theory including a logarithmic 

function in the postulated expression for the circumferential displacement was developed 

by Pydah and Batra (2017) for thick circular beams and was used to analytically solve static 

deformations of bi-directional functionally graded circular beams. Shafiei et al. (2017) 

presented an analysis on the vibration behaviour of the two-dimensional functionally 

graded (2D-FG) nano and microbeams based on Timoshenko beam theory. In this paper, 

the beams, made of two kinds of porous materials, were modelled as 2D-FGMs according 

to the power law. 

2.3.2 Literatures on elastic foundation: 

Study of behaviour of Timoshenko beams on elastic foundation is an interesting 

domain of research as several critical engineering structures can be idealized as beams on 

foundation. Issues related to such structures are taken up for investigation because they 

belong to a class of frequently used structural elements which generally serve as the key 

load-bearing components, like rail track, rigid pavements, bridge decks, mat and raft 

foundations etc. Literature review reveals that there exist a number of papers related to FG 

Timoshenko beam on elastic foundation.  

Mohanty et al. (2011) investigated the dynamic stability of FG Timoshenko beam 

and FG sandwich (FGSW) beam on Winkler elastic foundation through FE method. Yan et 

al. (2011) studied the dynamic response of FG beams with an open edge crack supported 

on elastic foundation and subjected to a moving transverse load. Timoshenko beam theory 

was used in theoretical formulations to account for the transverse shear deformation. Yas 

and Samadi (2012) studied free vibration and buckling behaviour of nanocomposite 

Timoshenko beams reinforced by single-walled carbon nanotubes on an elastic foundation. 

The governing equations were derived through employing Hamilton’s principle and solved 

by utilizing the generalized differential quadrature method. Esfahani et al. (2013) examined 

thermal buckling and post-buckling analysis of FGM Timoshenko beams on a non-linear 

elastic foundation. Timoshenko beam theory and von-Karman’s strain–displacement 

relations were employed to obtain the non-linear equations. Generalized Differential 

Quadrature Method was applied to solve the non-linear equations in space domain. 

Komijani et al. (2014) investigated buckling, post-buckling behaviour and vibrations of FG 
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Timoshenko beams rested on nonlinear elastic foundation and subjected to in-plane thermal 

loads. The von Kármán nonlinearity and modified couple stress theory were employed to 

derive the governing nonlinear equations. Generalized differential quadrature method was 

used to discretize the motion equation and Newton’s method was used to solve the 

nonlinear algebraic equations. Tossapanon and Wattanasakulpong (2016) utilized 

Chebyshev collocation method to solve buckling and vibration problems of FG sandwich 

beams resting on two-parameter elastic foundation on the basis of Timoshenko beam theory 

in order to incorporate the significant effects of shear deformation and rotary inertia. Deng 

et al. (2017) proposed an exact solutions of double-FG Timoshenko beams on Winkler-

Pasternk elastic foundation. Hamilton’s principle was used to derive the differential 

equations of motion. Arefi and Zenkour (2017) studied wave propagation analysis of a FG 

nanobeam made of magneto-electro-elastic materials and rested on Visco-Pasternak 

foundation using Timoshenko beam model. Surface elasticity was applied for modelling 

the behaviour of nanobeam. Hamilton principle was used to derive the equations of motion. 

Arefi and Zenkour (2017) studied wave propagation analysis for a FG nanobeam with 

rectangular cross-section on visco-Pasternak’s foundation using Timoshenko’s beam 

model and nonlocal elasticity theory. The equations of motion were derived using 

Hamilton’s principle.  

The research papers described in the above paragraph dealt with transversely graded 

Timoshenko beams on elastic foundation. On the other hand, AFG Timoshenko beam on 

elastic foundation is a more recent domain of research and till now, only a few articles are 

available in literature in this field. Calim (2016) analysed free and forced vibrations of AFG 

Timoshenko beams on two-parameter viscoelastic foundation. Complementary functions 

method was utilized to solve the differential equations in Laplace domain and modified 

Durbin's algorithm was applied to transform the results into the time domain. However, 

there are a few research works relating to elastic foundation supported AFG thin beams 

(previously highlighted in Section 2.2.2), where Euler-Bernoulli theory is utilised for 

mathematical formulation of the problem.  

2.4 Literatures on plate: 

Applications involving uneven distribution of mechanical, thermal or chemical 

loading are relevant to graded plates. As a classic example of such an application the outer 
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skin of a space re-entry vehicle may be cited, where the material has to withstand elevated 

temperatures on one side along with high structural strength. The applications FGM plate 

can also be found in various other engineering scenarios, such as, reinforced slabs, 

highways bridge decks, flight wings, ship hulls, aerospace structures and automobile 

components. Defence industries, electronics and bio-medical sectors also find extensive 

applications for these types of materials (Tornabene and Viola, 2009). 

2.4.1 Literatures on material gradation: 

Analysis of FGM plate is an interesting and important subject of research, which 

has attracted and continues to attract the focus of researchers over the last few decades. In 

a FGM plate inhomogeneity can be present in single or multiple orthogonal directions, 

namely, transverse and/or in-plane directions. Investigations involving material 

inhomogeneity in the thickness direction are abundant in literature. Birman and Byrd 

(2007) presented a review on most recent development of structures made of FG materials 

since 2000. Various theoretical aspects and applications of FGM were reflected upon in 

this paper.  A critical review on the recent research activity on the functionally graded plates 

was presented by Jha et al. (2013). An attempt was made in this article to identify and 

highlight the most relevant topics to FGM and review the corresponding publications. In 

the following paragraphs a few research papers relating to thickness-wise gradation are 

described in brief in order to set the framework of the present work.  

Buckling analysis of FGM plate was studied by Feldman and Aboudi (1997) under 

uniaxial compression loading using classical plate theory. Static deflection and stress 

analysis of FGM plates was studied in details using third order shear deformation theory 

by Reddy (2000). Chi and Chung (2006) investigated the mechanical behaviour of a simply 

supported FGM plate of moderate thickness loaded under transverse loading. The solution 

was based on the classical plate theory (CPT) and Fourier series expansion. Abrate (2008) 

proposed a new approach to analyse FG plate by using no special tools as he postulated that 

FG plates behaved same as homogeneous plates. In the model the variation in material 

properties of the plate was performed by introducing a coupling between the in-plane and 

transverse deformations. An edge-based smoothed finite element method was proposed by 

Nguyen-Xuan et al. (2011) with stabilized discrete shear gap technique to analyse static 

bending, free vibration and buckling behaviours of FGM plate. Von Karman type of 
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geometric nonlinearity was also considered. Singha et al. (2011) utilized high precision FE 

method to study the nonlinear behaviours of FGM plates. The formulation was based on 

First Order Shear Deformation Theory (FSDT) and solution was obtained through Newton–

Raphson iteration technique. Akbarzadeh et al. (2011) represented an analytical solution to 

investigate the behaviour of FGM rectangular plates based on FSDT and 3rd order Shear 

Deformation Theory (SDT). The mathematical formulation was displacement based and 

derived governing sets of equations were solved by the Fourier series expansion to obtain 

the natural frequencies. Ramu and Mohanty (2014) performed same type of analysis on 

FGM plate but under uniaxial and biaxial compression load. The kinematics of plates was 

based on S-FSDT, which was four-variable refined plate theory. Static and free vibration 

analysis was performed on FGM plate by Bernardo et al. (2016). Bending and free 

vibrations analysis of FGM annular and circular micro-plates was conducted by Eshraghi 

et al. (2016) under thermal loading condition. Modified couple stress theory was used for 

formulation and governing set of equations was derived using Hamilton’s principle. 

Kennedy et al. (2016) equivalently modelled a FG plate as a plate of sequentially stacked 

multiple isotropic layers. Classical Plate theory (CPT), First Order Shear Deformation 

Theory (FSDT) and Higher Order Shear Deformation Theory (HSDT) were used to obtain 

the governing equations for separate models to study buckling and dynamic behaviour. 

Sharma and Parashar (2016) employed Generalized Differential Quadrature method to 

study the free vibration of FG piezoelectric annular plate on the basis of modified Mindlin 

plate theory. An efficient mesh-free numerical approach was studied to analyse bending 

and free vibration of FG plates by Vu et al. (2017). The methodology was based on a 

meshless method and a FEM approach. Liu et al. (2017) performed static bending, free 

vibration and buckling behaviour study of FGM plates. The formulation of the plate was 

based on isogeometric analysis and a simple quasi-3D hyperbolic shear deformation theory. 

Mantari and Monge (2017) studied the buckling, free vibration and bending analysis based 

on an optimized hyperbolic unified formulation of FGM sandwich plates. 

Mohammadzadeh-Keleshteri et al. (2017) utilized generalized differential quadrature 

method to study non-linear vibration of FG carbon nanotube reinforced composite annular 

sector plates with piezoelectric layers on the basis of FSDT. Von Karman type of 

geometrical nonlinearity was considered. The governing set of equations were derived 
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through Hamilton principle, while solution was achieved using direct iterative method and 

GDQM to highlight the variation of frequency vs amplitude plot.  

On the other hand, research work involving material inhomogeneity in the in-

plane/axial direction are comparatively less in literature, although they have potential for 

applications in civil, mechanical, aerospace and marine engineering. Liu et al. (2010) 

presented free vibration of a FG rectangular plate with in-plane material imperfection. The 

edge condition was considered as simply supported and a Levy-type solution was 

formulated. The differential equations were solved considering a particular integration 

method. Uymaz et al. (2012) carried out vibration analysis of FG plates with in-plane 

material gradation with different boundary conditions. Formulation was on the basis of 

shear deformable plate theory and assumed displacement field. Xiang et al. (2014) used 

scaled boundary FE approach to study free vibration and buckling of FG plates with in-

plane material imperfection. Two-dimensional higher order spectral element was 

considered to model the in-plane dimensions of the plate. The stiffness matrix was derived 

directly from spectral element. Chu et al. (2014) proposed a mesh-free free vibration 

analysis on in-plane inhomogeneous FGM plate using Hermite-type collocation method. 

Effect of material inhomogeneity on the natural frequencies and mode shapes were 

investigated. The authors (Chu et al., 2016) also used the same type of methodology on 

same type of inhomogeneous material to investigate the buckling behaviour of FGM plate. 

Yin et al. (2016) investigated buckling and free vibration analysis of FGM plates 

considering in-plane material inhomogeneity using an effective approach which was based 

on higher-order shear deformation theory and isogeometric analysis. The effects of material 

inhomogeneity, boundary conditions and length to thickness ratio on critical buckling loads 

and natural frequencies were studied. The authors (Yin et al., 2017) also formulated a 

rotation free isogeometric analysis on the basis of Kirchhoff-Love theory to investigate free 

vibration analysis and buckling behaviours of thin FGM plate with in-plane material 

inhomogeneity. Recently, Kumar et al. (2014, 2015, 2016, 2017) made an effort to explore 

the static and dynamic behaviour of in-plane/axial inhomogeneous FG plate by using 

energy principle based on displacement field. The authors (Kumar et al., 2015; Kumar et 

al., 2017) performed nonlinear forced vibration on non-uniform AFG plates. For the 

formulation purpose Hamilton's principle was used to obtain the set of governing equations 
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and the solution of equations were performed through Broyden method and direct iterative 

method. The influences of taper parameter and excitation amplitude on forced vibration 

frequency response of the plates were observed. The authors (Kumar et al., 2014; Kumar 

et al., 2016) also studied free vibration of axial inhomogeneous plate through backbone 

curves to show the geometric nonlinearity effects. Hussein and Mulani (2018) dealt with 

the optimization of in-plane FG nano-reinforced panels for buckling load. For that purpose 

different types of panels with or without stiffner and cutouts were considered. The main 

objective was to minimize the nano inforcement to satisfy the desired buckling constraints.  

Few researcher have stuided the case of FGM plate in which multiple direction 

material gradation is considered simalteniously. Nemat-Alla (2003) introduced a two-

dimensional functionally graded materials to withstand super high temperatures and to give 

more reduction in thermal stresses. The author (Nemat-Alla, 2009) carried out an 

investigation on composition optimization for ZrO2/6061-T6/Ti-6Al-4V 2D-FGM, under a 

severe thermal loading cycle (consisting of heating followed by cooling) based on the 

minimization of temperatures and thermal and residual stresses. Nemat-Alla et al. (2009) 

proposed a 3D finite element model of two dimensional functionally graded plates made of 

ZrO2, 6061-T6 and Ti-6Al-4V with temperature dependent material properties to perform 

elastic–plastic analysis under thermal loading. Lu et al. (2009) presented semi-analytical 3-

D elasticity solutions for orthotropic multi-directional functionally graded plates using the 

differential quadrature method (DQM) based on the state-space formalism. Material 

properties were varied not only through the thickness but also in the in-plane directions 

following an exponential law. Nie and Zhong (2010) presented dynamic analysis of multi-

directional functionally graded annular plates using a semi-analytical numerical method 

known as the state space-based differential quadrature method. The formulation was based 

on the three-dimensional elastic theory, while, it was assumed that the material properties 

(exponent-law variation) varied along the thickness, radial or both directions. Kermani et 

al. (2012) addressed the free vibration of multi-directional functionally graded circular and 

annular plates using a semi-analytical/numerical method, called state space-based 

differential quadrature method. Shariyat and Jafari (2013) performed low-velocity impact 

analysis of the functionally graded plates using commercial finite element softwares and 

discrete models for variations of the material properties. Shariyat and Alipour (2013) 
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developed a power series solution for free vibration and damping analyses of viscoelastic 

functionally graded plates with variable thickness on elastic foundations. The material 

properties of the functionally graded plate were assumed to vary in the transverse and radial 

directions, simultaneously. Tahouneh and Naei (2014) performed three dimensional 

vibration analysis of bi-directional FG rectangular plates resting on two-parameter elastic 

foundations. Yas and Moloudi (2015) investigated the three-dimensional free vibration 

analysis of a multi-directional functionally graded piezoelectric (FGP) annular plate resting 

on two parameter (Pasternak) elastic foundations under different boundary conditions. In 

this paper, the material properties were assumed to vary continuously along the radial and 

thickness directions and considered exponent-law distribution. Do et al. (2017) analysed 

buckling and bending behaviours of 2D-FGM plates numerically by using a finite element 

model. 

2.4.2 Literatures on elastic foundation: 

Plates are widely known structural elements with variety of engineering and 

industrial applications. Beside the classical end conditions, plate structures are often 

connected to other members, supported by elastic restraints or supported by elastic 

foundation. So, studies should not be always limited to classical edges which are ideal 

clamped, simply supported and free edges. In reality, such type of structures are modelled 

by a number of distributed linear spring at the boundaries. Specifically, plates on elastic 

foundation can be considered as idealisation of various critical and frequently used load 

bearing components. Application of such type of supported structure can be found in rail 

road, bio-mechanics, road, marine, geo-technics and engineering. Hence, static, dynamic 

and buckling behaviour of these components under external loading thus becomes vital 

significance, and has received overwhelming attention for many years. Even now research 

in this field continues as some critical issues involving foundation type, methodology, 

involvement of various parameters and their corresponding influences are still worthy of 

investigation. A brief description of various research works dealing with plates resting on 

elastic foundation is provided in the following paragraph. However, it should be mentioned 

that in most cases the plates are graded in the transverse direction. 

Yas and Aragh (2010) worked on a continuous grading fiber-reinforced plate on 

elastic foundation and studied the free vibration characteristics based on the three-
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dimensional, linear and small strain elasticity theory. Kiani et al. (2012) considered a 

doubly curved FGM plate on Pasternak-type elastic foundation to investigate its static and 

dynamic behaviour. The equations of motion were derived by using modified Sanders shell 

theory and first order shear deformation theory. Yang et al. (2012) obtained the theoretical 

solution of a plate with free edges rested on elastic foundation. The reciprocal theory was 

used to derive the solution of the taken problem. The foundation was considered here as 

Pasternak or two parameter type. Kägo and Lellep (2013) considered a stepped anisotropic 

plate which was resting on elastic foundation and studied the free vibration characteristics. 

The dependency of geometric parameters and physical properties on natural frequencies 

were also analysed. Li et al. (2013) obtained analytical bending solutions of thin plates with 

free edges on elastic foundation. Foundation model was considered as Winkler type and a 

new sympletic superposition method was used to obtain the results. Akavci (2016) studied 

buckling, dynamic and static analysis of a sandwich plate with simply supported edges on 

elastic foundation. The analysis was carried out by representing a new hyperbolic shear and 

normal deformation plate theory. The foundation model was considered to be Pasternak 

type. Hamilton's principle was utilized to derive the equations of motion and Navier 

technique was used to obtain closed form solutions. Taczała et al. (2015) performed a post-

buckling study of FG plates on elastic foundation. FSDT was used for the mathematical 

formulation and the results were obtained numerically by FE method. Wattanasakulpong 

and Chaikittiratana (2015) investigated static and dynamic behaviour of CNR composite 

plates resting on elastic foundation. The elastic foundation was considered to be Pasternak 

type which also included shear layer and springs. The formulation was on the basis of 

generalized shear deformation theory. Panyatong et al. (2016) used 2nd order shear 

deformation theory (SDT) to determine the natural frequencies of Functionally Graded 

nanoplate which was embedded in elastic medium. The formulation was on the basis of 

nonlocal elasticity and the derivation of governing equations were performed through 

Hamilton’s principle to investigate the influences of the medium stiffness and temperature 

on natural frequencies. Benferhat et al. (2016) performed free vibration study on graded 

plate supported on Winkler–Pasternak type of elastic foundation on the basis of the neutral 

surface concept. Barati et al. (2016) examined the buckling behaviour of FG piezoelectric 

porous plates on basis of a refined four-variable plate theory. Derivation of the governing 

set of equations were performed through Hamilton's principle and implementing an 
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analytical approach the equations were solved. Gupta et al. (2016) performed dynamic 

analysis of FG simply supported plates on elastic foundation, which was considered as two 

parameter Pasternak type. The formulation was displacement based and HSDT was used 

for derivation purpose. Adineh and Kadkhodayan (2017) conducted 3D thermo-elastic 

analysis for the first time of a FGM skew plate rested on elastic foundation and loaded 

under thermo-mechanical loading. Here, differential quadrature method was used to obtain 

the numerical results. Mukherjee and Dillard (2017) analytically studied the cylindrical 

buckling behaviour of a plate subjected to uniaxial compression. The plate was also 

considered to be rested on incompressible, elastomeric foundation. Gao et al. (2017) 

utilized an analytical computational scheme to study stability and dynamic characteristics 

of composite plate resting on Winkler-Pasternak elastic foundation and subjected to axial 

velocity. The compatibility equations were derived by using classical plate theory and Von-

Kármán strain-displacement relation. The dynamic buckling equations were obtained by 

incorporating Galerkin method and Airy’s stress function. To solve the non-linear 

equations numerically, fourth-order Runge-Kutta method was implemented. Ebrahimi et 

al. (2017) proposed a four-variable refined shear deformation theory to perform free 

vibration study of porous magneto-electro-elastic FG plates. The set of differential 

equations were obtained with the help of Hamilton's principle. Kutlu et al. (2017) presented 

a mixed FE method and utilised a boundary element approach to study the dynamics of 

thick plates on elastic foundation. The plate was considered to be interacting with a 

quiescent fluid on the other side. To represent the plate-foundation system, a two field 

mixed FE formulation, on the basis of Hellinger-Reissner variational principle, was used. 

A boundary element solution was incorporated for the fluid-structure interaction. 

Mohammadzadeh and Noh (2017) presented an analytical approach for obtaining nonlinear 

frequency response of sandwich plates. The equations of motion were obtained by using 

the HSDT along with Hamilton’s principle. The Navier’s solution and Runge-Kutta 

neumerical scheme was used to solve the problem. Zamani et al. (2017) investigated free 

vibration of laminated viscoelastic composite plate with simply supported edge resting on 

Pasternak viscoelastic foundation. Based on 3rd order SDT, the partial differential equations 

were attained by Hamilton principle and Laplace transformation. The equations were 

solved by iterative methods which were weighted residual method and Fourier transform. 

Najafi et al. (2017) presented the impact analysis of FGM plates which were resting on 
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elastic support with simply supported edge condition. The elastic foundation was 

considered as a nonlinear three-parameter one. The governing equations were derived 

based on a Reddy's HSDT and were solved by using an analytical procedure. Shahsavari et 

al. (2018) analyed the free vibration behaviour of FG porous plates which were supported 

on elastic foundations. Formulation was carried out on the basis of  quasi-3D hyperbolic 

plate model and solution was performed using Galerkin method. 

2.5 Closure: 

A detailed literature survey in the proposed area of research has been carried out 

and presented in the preceding sections. In the present section, a gist about the research 

works on this regard is provided to outline the scope of further studies. This offers 

justification for the choice of the problems taken up in the present thesis work.  

Literature is abundant with studies on structural analysis in the field of transversely 

functionally graded (TFG) beam/plate subjected to transverse loading. In most of the cases, 

material properties of the beam vary continuously in thickness direction according to a 

power-law form considering the Mori–Tanaka scheme. Geometric nonlinearity and 

corresponding large displacement is dealt with in quite a few of the works reviewed. In 

some of the cases non-uniform geometry is considered while dealing with the static and 

dynamic analysis. To some extent this particular field of study is saturated with 

innumerable research works dealing with various aspects.  

Works on AFG Euler-Bernoulli beam are also available in the literature. In few 

cases, nonlinear analysis is cited. Non-uniform geometry is also considered in some cases. 

On the other hand, studies on AFG Timoshenko beam are limited. Only a few numbers of 

published works is available in standard literature acknowledging AFG Timoshenko beam 

for nonlinear analysis. Literatures on AFG plates are also rare. Only a few literature 

considered the case of in-plane inhomogeneity of the plate structure to analyse the static 

and dynamic aspects. 

Review of existing literature reveals that studies are primarily focused on free 

vibration analysis, where the natural frequencies are computed and their corresponding 

mode shapes are determined. Quite a few different techniques, such as, finite difference 

method, finite element method, variational formulation etc. have been utilized to obtain the 
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above mentioned results for different classes of FG structure. It is also noted that emphasis 

is mainly on developing these methodologies or tools to obtain the natural frequencies 

compared to studying the variations in the dynamic behaviour corresponding to changes in 

system geometry and boundary conditions.  

Literature review exposes the fact that only a few numbers of published works is 

available in standard literature presenting nonlinear forced vibration analysis on AFG 

beam/plate. In majority of the research works the gradation is assumed in the thickness 

direction. Thorough documentation of frequency response curves in the excitation 

frequency response amplitude plane subjected to harmonic excitation is not available in 

literature. The influence of different flexural conditions on the response of such plates is 

also an unexplored domain.  

Regarding boundary conditions, it is found that majority of the studies are confined 

to classical boundary conditions which are ideally clamped, simply supported or free. 

However, real physical systems often are not governed by ideal end conditions and elastic 

restraints in terms of linear and torsional springs may be incorporated in the system to cater 

to these conditions. Similarly, structures may also be supported by linear or non-linear 

elastic foundations. Literature survey reveals that in few cases FG structures on elastic 

foundation are considered. To analyse those cases various types of linear and nonlinear 

foundation are cited considering Winkler, Pasternak, Kerr foundation models. Most of the 

studies deal with the TFG structure on elastic foundation but the cases of AFG structure on 

such foundation are rare. The case of elastic foundation along with classical boundary is 

also hardly found in literature. So, there is no doubt scope for exploring the effects of elastic 

foundation on AFG beam/plate adding the complexity of geometric nonlinearity and non-

uniformity in the system. 
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Chapter 3 

 

FREE VIBRATION: AXIALLY FUNCTIONALLY GRADED 

THIN BEAMS ON ELASTIC FOUNDATION  

 

3.1 Introduction:  

Beams are one of the basic structural elements that can be used to idealise various 

kinds of engineering structures. In their working environment such structural elements are 

expected to successfully carry different types and magnitudes of static and dynamic loads. 

So, understanding and analysis of static and dynamic behaviour of beams under loaded as 

well as unloaded conditions are critical towards design of these structural elements and 

subsequently, complicated engineering systems as a whole. There are multiple theories that 

that deal with the structural mechanics of beams and one of the simplest models utilised is 

the Euler Bernoulli theory. It is applicable for thin beams with sufficiently large length to 

thickness ratio. As one of the lateral dimensions of the beam is considered to be 

comparatively small in relation to its length, the effect of shear deformation and rotary 

inertia can be ignored. Simplicity of Euler Bernoulli beam theory makes it an important 

tool, especially in the field of structural and mechanical engineering.    

Depending on loading, the response of the thin beam is categorized into two 

categories, linear and nonlinear. Many a times the deflection caused by the external loads 

is sufficiently large (of the order of its thickness) to cause the system to exhibit nonlinear 

behaviour. This type of nonlinearity originates due to large deflection and is known as 

geometric nonlinearity. In such a situation a straight-forward linear analysis is unable to 

capture the true system behaviour. Hence, incorporation of the stretching effect into the 

formulation is necessary and it constitutes a geometric nonlinear analysis of the system. In 

the present chapter, large amplitude (geometric nonlinear) free vibration analysis of a 

Euler-Bernoulli (thin) AFG non-uniform beam on elastic foundation is taken up under 

transverse loading. The analysis is carried out under the following basic assumptions: 
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 The beam is considered to be slender enough to neglect rotary inertia and shear 

deformation effects. 

 Geometric nonlinearity induced through large displacement is taken care of by 

nonlinear strain-displacement relations.  

The main focus of the current chapter is to establish the free vibration characteristics 

of the system by providing backbone curves and corresponding mode shapes. In order to 

generate these, it is necessary to find out the natural frequencies of the system under 

undeformed and deformed conditions. The free vibration problem is solved in two steps 

where the objective of the first part is to compute the stiffness matrix in deflected 

configuration through a static analysis. This equivalent stiffness matrix is directly used in 

dynamic analysis (second part) for obtaining eigenvalues and eigenvectors which provide 

the natural frequencies and mode shape of the system, respectively. The static analysis is 

based on principle of minimum total potential energy whereas, Hamilton’s principle is used 

for formulation of the dynamic problem. The nonlinear governing equation of the static 

problem is solved through an iterative scheme using a relaxation parameter and the 

subsequent dynamic analysis is carried out as a standard Eigen value problem. 

The present methodology is an approximate one and it is displacement field based. 

The approximate displacement fields are assumed on the basis of the boundary conditions 

at certain reference points (called Gauss points) distributed over the whole domain. It 

should be mentioned here that the domain is not discretised (as in finite element methods); 

instead the analysis is carried out over the whole domain. The displacement fields are 

expressed as linear combinations of orthogonal kinematically admissible functions and 

unknown parameters. These functions are completely known for a particular boundary 

condition, so the only variables are the unknown parameters. Computation of these 

unknown parameters leads to the displacement fields of the system. Validation of current 

study is done by comparing the results with those already available in the literature. The 

free vibration frequencies are tabulated for non-uniform profile subject to various boundary 

conditions and foundation stiffness. The dynamic behaviour of the system is presented in 

the form of backbone curves to detect the effect of the elastic foundation, material models 

and taper patterns. 
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3.2 Geometric parameter: 

For the present analysis an axially functionally graded non-uniform beam of length 

L, variable width b(x) and variable thickness t(x) is considered, as shown in Figure 3.1(a). 

The beam is considered to be supported on elastic foundation which is idealized as a series 

of linear springs of stiffness K, attached to the bottom surface of the beam (Figure 3.1(b)). 

As already mentioned, the cross-sectional dimensions are considered to be considerably 

smaller than the length of the beam and the effects of shear deformation and rotary inertia 

are neglected. For the mathematical formulation, normalized coordinate ( x L  ) is 

utilized.  

 
          (a) 

  
         (b) 

Figure 3.1: (a) Schematic representation of an AFG beam on elastic foundation, (b) 
idealization of elastic foundation by a series of linear springs. 
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Table 3.1: Different types of taper pattern 
Taper Pattern  t   

Linear taper    0 1t t    

Parabolic taper    2
0 1t t    

Exponential taper:    1 2
0 expt t    

Table 3.2: Values of taper parameter for different taper patterns 
Linear Taper 0   0.2   0.4   0.6   
Parabolic Taper 0   0.2   0.4   0.6   

Exponential Taper 0   0.223144   0.510826   0.916291   

 

 
                                         (a)                                                               (b) 

 
         (c) 

Figure 3.2: Variation of thickness for (a) linear taper (b) parabolic taper and (c) 
exponential taper for different taper parameters 
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Non-uniform beam geometry has also been taken into account in the present 

considering variation in thickness along the axial direction. For that purpose, three different 

taper patterns, linear, parabolic and exponential, are chosen for thickness and the variations 

of thickness are mentioned in the Table 3.1. Here, a beam with uniform width is considered 

for the analysis. Here t0 is the thickness of the beam at the root of the beam, i.e., at the left 

hand end of the beam as shown in Figure 3.1 and 𝛼 is the taper parameter. Four different 

values of the taper parameter (α) are considered for each of the profile and these values are 

shown in Table 3.2. The values of α have been so selected that the thickness at the other 

end remains same for all the taper patterns to provide a better understanding on the effects 

of taper pattern on the results. It should be mentioned here that the case α = 0 corresponds 

to a uniform beam. For four different taper parameter, the variation of the normalized 

thickness along the normalized axial coordinate are shown in Figures 3.2 for three different 

taper pattern. Figure 3.2(a), 3.2(b) and 3.2(c) are plotted respectively for linear, parabolic 

and exponential taper pattern. Here, the thickness is normalized using the root side constant 

thickness value (t0). From the Figure 3.2, it is observed that at α = 0, no variation in the 

thickness can be found. The normalized thickness value will be fixed at constant value 1. 

Whereas, at α = 0.6 the variation will be maximum for linear and parabolic taper and for 

the case of exponential taper pattern maximum variation of the thickness can be found at α 

= 0.916291. 

3.3 Material parameter: 

 The material of beam is considered to be functionally graded continuously along 

spatial directions. The modulus of elasticity, E(x), and the mass density, ρ(x), of the beam 

vary along the axial direction as shown in Figure 3.3. To incorporate this material gradation 

in the analysis, three different material models are selected depending on the gradation of 

the elastic modulus and density in the axial direction. They are mentioned in the Table 3.3 

as a function of normalized axial co-ordinate (ξ). It is apparent that the first model 

corresponds to a homogeneous material and it is included for comparison purpose. The 

variation of the normalized material properties along the along the normalized axial 

coordinate as shown in Figures 3.3 for three different material models. Figure 3.3(a) and 

3.3(b) are plotted respectively to show the variation for elastic modulus and density. It 

should the mentioned that the poission’s ratio (µ) in the present study is kept as constant. 
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Here, the elastic modulus and density is normalized by using the root side constant value 

elastic modulus (E0) and density (ρ0). From the Figures 3.3, it is observed that for material 

1, no variation in the elastic modulus and density can be found. The normalized material 

property value will be fixed at constant value 1. Whereas, for material model 3 the variation 

will be maximum for elastic modulus as well as for material density. 

Table 3.3: Three different material model used for gradation 
Material  E       

Material 1 
0E  0  

Material 2  0 1E    2
0 1     

Material 3 
0Ee  0e

  

 
      (a)                                                              (b) 

Figure 3.3: Gradation of (a) elastic modulus (E()/E0) and (b) density (ρ()/ρ0) in the 
axial direction () for different material model. 

3.4 Mathematical formulation: 

 A displacement field based semi-analytical method that employs appropriate energy 

methods is used for deriving the governing equations of the system. It should be mentioned 

here that prediction of the large amplitude vibration frequencies or loaded natural 

frequencies is carried out by performing a static analysis under external transverse loading, 

followed by an Eigen value problem corresponding to the deformed system stiffness. The 

static analysis yields the initial deflection profile, which is used in the subsequent free 

vibration analysis. For both static and dynamic analysis, the formulation is carried out on 
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the basis of variational form of appropriate energy principles. Geometric nonlinearity is 

incorporated into the system by consideration of non-linear strain-displacement relations. 

3.4.1 Static analysis: 

 The governing set of equations for the static analysis is derived through application 

of principle of minimum total potential energy, which states that,  

  0U V            (3.1) 

where, U represents strain energy of the system and V denotes potential energy due to 

externally applied transverse load.  

In the case of large displacement analysis of beam both bending and stretching 

effects are considered. Therefore, total strain energy in the beam is given by,  

b m fU U U U     

Here, Ub and Um are strain energy stored due to bending and strain energy stored due to 

stretching, respectively, while, Uf is strain energy stored in the foundation, i.e., total strain 

energy stored in the series of linear springs under transverse loading on the beam. The strain 

energies due to bending (Ub) and stretching (Um) of beam are dependent on the axial strain 

due to bending (
b
x ) and stretching (

s
x ), respectively, and these strains are expressed as, 

2

2
-b

x

d w
z

dx


 
  

 
        (3.2a) 

2
1

2
s
x

du dw

dx dx
        

   
       (3.2b) 

 

Quite clearly the strain-displacement relation for stretching (Equation 3.2b) is nonlinear in 

nature and hence, the governing equations derived subsequently would also contain 

nonlinear terms.  

The expressions of the strain energies are given below, 
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  21

2
b

b xvol
U E x dv         (3.3a) 

  21

2
s

m xvol
U E x dv         (3.3b) 

2

0

1

2

L

fU Kw dx          (3.3c) 

So, the total strain energy of the system is given as follows, 

     2 2 2

0

1 1 1

2 2 2

L
b s
x xvol vol

U E x dv E x dv Kw dx       

Substituting the relevant expressions, total strain energy of the system can be expressed as 

follows, 

       
2 2 4 22

2
0 0

2

0

1 1 1

2 2 4

1

2

L L

L

d w du dw dw du
U E x I x dx E x A x dx

dx dx dx dx dx

Kw dx

                       
           



 


 

          (3.4) 

The total potential energy (V) due to externally applied transverse load P(x) is given by,  

 
0

L

V P x wdx          (3.5) 

Figure 3.1 shows the AFG beam subjected to a uniformly distributed load spanning 

the length of the beam. However, as indicated by Equation (3.5), total potential energy 

corresponding to other type of transverse loading pattern P(x), expressible mathematically 

by analytical or numerical functions, can be determined from the above expression. Hence, 

the present formulation is certainly not limited to only uniformly distributed loading.  

Applying the principle of minimum total potential energy and using normalized 

coordinate ( x L  ) following intermediate expression is obtained. 
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 (3.6) 

Performing the variational operation Equation (3.6) reduces to the form as shown in 

Equation (3.7), 
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          (3.7) 

The approximate displacement fields (w and u) of the above expression are assumed 

as linear combination of unknown coefficients (ci) and orthogonal admissible functions ( 

and ψ). In the present method,  

   
1

nw

i i
i

w c  


         (3.8a) 

   
1

nw nu

i i nw
i nw

u c  



 

         (3.8b) 

Here, i and ψi are sets of nw and nu numbers of orthogonal functions for w and u, 

respectively. The functions i are associated with displacements due to bending, whereas 

ψi describe stretching of the mid-plane of the beam. These displacement fields are assumed 

to be kinematically admissible, which implies that they are continuous and differentiable 

within the domain and also satisfy the boundary conditions of the beam. It is also important 
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that these functions come from an orthogonal set in order to obtain satisfactory results. 

Appropriate start functions for these orthogonal sets are selected in such a way that they 

satisfy the flexural and membrane boundary conditions of the beam. The higher-order 

functions are generated from the selected start functions following Gram-Schmidt 

orthogonalization scheme. Substituting the approximate displacement fields into Equation 

(3.8) provides the governing set of equations of the static problem in matrix form. 

    sK c f         (3.9) 

where, [Ks] is the stiffness matrix corresponding to static analysis, {f} is the force vector 

for transverse static external load and {c} is a vector of unknown coefficients. The details 

of the stiffness matrix and load vector elements are provided in Appendix. The present 

formulation being displacement based, the two basic unknowns are the two displacement 

fields (w and u). But once the assumed approximate displacement fields are substituted, the 

problem is reduced to finding a set of unknown coefficients (ci).  

The present analysis is based on a methodology where the solution of the static 

displacement field of the AFG beam on elastic foundation under uniformly distributed 

transverse loading is obtained. The solution methodology of the static problem involves an 

iterative numerical scheme using successive relaxation due to presence of nonlinearity in 

the stiffness matrix. 

3.4.2 Dynamic analysis: 

To formulate the dynamic problem Hamilton’s principle is utilized, which is 

represented as, 

 
2

1

0T U d




 
 

   
 
        (3.10) 

In the above expression T denotes the kinetic energy of the system and τ is time. U 

is the total strain energy stored in the system and has the same expression as presented in 

Equation (3.4) of static analysis segment. Expression for the kinetic energy of the system 

is as follows. The spring being massless do not contribute towards total kinetic energy and 

hence are ignored in Equation (3.11).  
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Assuming approximate dynamic displacement fields w and u to be separable in time 

and space and the spatial part being represented by linear combination of unknown 

coefficients (di) and orthogonal admissible functions ( and ψ), they can be written as,  
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 

          (3.12b) 

where, ω is the natural frequency of the system and di represents a new set of unknown 

coefficients that denote the eigenvector in the matrix form. The spatial functions are 

identical to those for the static analysis in Equation (3.6). Substitution of the kinetic (T) and 

strain energy (U) expressions along with the dynamic displacement fields gives the 

governing equation of the free vibration problem in the following matrix form.  

     2 0M d K d          (3.13) 

Here, [M] is mass matrix, the elements of which are provided in Appendix. 

Equation (3.13) is a standard eigenvalue problem, whose solution is obtained using 

Matlab subroutine ‘eig’. 

3.5 Solution procedure: 

From the mathematical formulation for the static analysis it is clear that the elements 

of the stiffness matrix [Ks] are functions of the unknown parameter, ci. Hence the governing 

equation (Equation (3.9)) is nonlinear in nature and cannot be solved directly. To solve the 

set of equations an iterative numerical technique is introduced and a direct substitution 

technique with successive relaxation scheme is utilized. The solution steps are given below, 

Step 1: The input parameters i.e. appropriate load, allowable error limit and the relaxation 

parameter are defined. It is assumed that the unknown coefficients have zero value at the 

initial stage. 
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Step 2: Utilizing the input parameter the stiffness matrix for bending and stretching (and 

thus the total stiffness matrix) are generated, along with the load vector. As the initial values 

for ci are zero the initial stiffness matrix corresponds to a linear situation. 

 
Figure 3.4: Flowchart of the solution procedure  

Step 3: A new set of unknown coefficients are evaluated by inversion of the stiffness matrix 

and subsequent pre-multiplication with the load vector. {c}(n + 1) = [Ks({c}(n))]-1{f}, 

where n represents the iteration counter. 
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Step 4: The calculated set of unknown coefficients is compared with the ones from previous 

iteration and if the error is above the predefined allowable error limit, the next iteration is 

performed with modified values of unknown coefficients. The modification takes into 

account a relaxation parameter to predict the guess for the next iteration. 

Step 5: The modified coefficient values are used to generate the modified stiffness matrix 

and the process is repeated till convergence is achieved, i.e., the error value falls below the 

predefined limit. The corresponding flowchart for the solution procedure is given in Figure 

3.4. The converged stiffness matrix from the static analysis is carried into the dynamic 

analysis, which is a standard eigenvalue problem. The solution to Equation (3.13) is 

obtained by developing a Matlab code that utilizes the subroutine ‘eig’. The square root of 

the eigenvalues gives the natural frequency of the system at the deflected configuration, 

whereas the eigenvectors associated with these eigenvalues can be processed to plot the 

mode shapes of the vibrating system. 

Table 3.4: Base functions for assume displacement field (w, u) 
Flexural Boundary Condition  1   

CC   2
1   

CF  2 2 4 6     

SS  sin   

CS  2 22 5 3     

In-plane Boundary Condition   1   

Immovable  1   

3.6 Result and discussion: 

The main objective of the present study is to investigate the large amplitude 

dynamic behavior of axially functionally graded non uniform beams supported on elastic 

foundation and the variation of the loaded natural frequencies with the change in the taper 

profile, material model and stiffness of the foundation. In the present analysis, it is 

considered that the AFG taper beam on elastic foundation is subjected to uniformly 

distributed transverse load for different flexural boundary condition. The present paper also 

investigates the effect of different boundary conditions on the large amplitude free vibration 

behavior of the system. Four different boundary condition, namely, CC, CS, SS, CF, are 
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considered arising out of combinations of Clamped (C), Simply supported (S) and Free (F) 

ends. The same formulation can be utilized to handle non-classical boundary conditions 

such as elastically restrained ends. The different boundary conditions are used for selecting 

the base functions for the transverse displacement (w) where as for the axial displacement 

(u) the membrane boundary conditions are used. The in-plane displacement at the 

boundaries are assumed as zero. These functions are tabulated in Table 3.4. Gram-Schmidt 

orthogonalization scheme is used to generate the higher order functions. 

The other aspect of complexity of the current system is the elastic foundation upon 

which the system rests. As already mentioned, the foundation has been incorporated into 

the mathematical formulation by a series of parallel massless linear springs with equivalent 

spring stiffness (K).Four different values of dimensionless stiffness (Kf) are taken for the 

present study which are varied from 0 to 30 in the interval of 10. The foundation stiffness 

(K) is normalized using the expression, as given as Kf =K {(L/t0)3/E0b}. Here, the situation 

with 0 spring stiffness corresponds to a case where the foundation is absent, i.e., the beam 

is not supported by the foundation at all. This case has also been included to provide a better 

comparison for the response with and without the foundation. Following geometrical 

dimensions and material properties are used to generate the results: L = 1.0 m, b = 0.02 m, 

t0 = 0.005 m, E0 = 210 GPa, ρ0 = 7850 kg/m3.  

3.6.1 Convergence study: 

The solution methodology, specially adopted in the present study for the nonlinear 

system, employs an iterative numerical scheme using the technique of successive 

relaxation, as described in the previous section. It is surmised that the outcome of the 

numerical scheme is dependent on several parameters – number of orthogonal functions, 

number of Gauss points, tolerance value of the error limit etc. So, it is important to carry 

out extensive convergence studies involving the above mentioned parameters, in order to 

determine the correct values of these parameters to be used while generating results. The 

studies are performed on a clamped (CC) AFG beam which following material model 2 and 

linear taper pattern with taper parameter 0.4. The normalized foundation stiffness value is 

taken as 10.  
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Results of the various convergence studies are presented in Figure 3.5. Number of 

functions corresponding to two orthogonal directions, transverse and in-plane, are denoted 

by nw and nu respectively. Figure 3.5(a) presents the convergence results for variation in 

number of orthogonal functions keeping all the other parameter as unchanged and the 

change in dimensionless first natural frequency  2
0 0 0 0L A E I    of the system is 

indicated. The figure shows that the values of dimensionless first natural frequency 

decreases with the increase of number of orthogonal function and the difference of the 

values for nw/nu = 7 and 8 are minimal. It is also expected from the figure that for the next 

value (nw/nu = 9) the difference will be negligible but the computational time will increase 

due to involvement of more number of orthogonal functions. So, the number of functions 

along each coordinate direction is chosen as 8. 

 
           (a)                                                                  (b) 

Figure 3.5: Convergence studies for (a) no of orthogonal functions (nw=nu) and (b) no of 
gauss point (ng)  

Similar way the convergence study on number of gauss point (ng) is also conducted 

where the dimensionless first natural frequency  2
0 0 0 0L A E I    of the system is 

plotted against the number of gauss point as shown in Figure 3.5 (b). A choice of 24 Gauss 

points for the present work is made from this study and the posion of the number of gauss 

points in the normalized coordinate () is tabulated in the Table3.5. The tolerance value of 

the error limit () for the numerical iterative scheme is fixed at 0.50% and the relaxation 
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parameter (  ) is taken as 0.50. The solution of the dynamic problem is obtained using 

MATLAB routines. 

Table 3.5: Position of Gauss points within computational domain 
Gauss Point Number Position in normalised coordinate (ξ) 

1 0.0024 
2 0.0126 
3 0.0309 
4 0.0568 
5 0.0900 
6 0.1299 
7 0.1760 
8 0.2273 
9 0.2831 

10 0.3425 
11 0.4044 
12 0.4680 
13 0.5320 
14 0.5956 
15 0.6575 
16 0.7169 
17 0.7727 
18 0.8240 
19 0.8701 
20 0.9100 
21 0.9432 
22 0.9691 
23 0.9874 
24 0.9976 

 

3.6.2 Validation study: 

Validation for the present formulation and solution technique is done by comparison 

with established results already available in literature. The backbone curve for fundamental 

mode of a clamped-clamped homogeneous uniform beam is validated with the results 

published by Gupta et al. (2009) as shown in Figure 3.6. The two sets of results show similar 

trends and the values show satisfactory matching, hence, establishing the validity of the 

present method. 
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Figure 3.6: Comparison of backbone curves for fundamental mode of a clamped-clamped 

homogeneous uniform beam. 

3.6.3 Natural frequencies: 

Dimensionless natural frequencies  2
0 0 0 0L A E I    for the first two modes 

(Ω1 and Ω2) for four different boundary conditions (CC, CS, SS, CF) of AFG beams are 

provided in Tables 3.6-3.17 for different combination of material models, taper patterns, 

taper parameters and foundation stiffness values. For each boundary condition, separate 

three tables are furnished to accommodate linear, parabolic and exponential taper pattern 

accordingly. The taper parameter (α) is varied from 0.0 to 0.6 for each linear and parabolic 

taper pattern whereas for the case of exponential taper pattern the variation is considered 

from 0 to 0.916291 and under each taper pattern four different foundation stiffness values 

are considered, which is varied from 0 to 30 in the fixed interval of 10. The values of α 

have been so selected that the thickness at the other end remains same for all the taper 

patterns to provide a better understanding on the effects of taper pattern on the results. 

Under three different material model four boundary separate boundary conditions are 

chosen to tabulate first two non-dimensional natural frequency of the system. These are to 

be noted that taper parameter 0.0 indicates the case of uniform beam, foundation stiffness 

0 implies the case of beam without foundation and material 1 indicates the case of 

homogeneous beam (without material gradation). 
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Table 3.6: Values of dimensionless natural frequencies  2
0 0 0 0L A E I   for 1st and 

2nd mode (Ω1 and Ω2) corresponding to linearly tapered CC AFG beam for different 
combinations of taper parameter, spring stiffness and material properties 

Taper 
Pattern 

Taper 
Parameter 

Stiffness  
Material 1 Material 2 Material 3 

CC CC CC 
Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 

Linear 

0 

0 22.28 61.42 20.30 56.31 22.43 61.61 
10 24.84 62.39 22.01 56.94 24.01 62.21 
20 27.14 63.34 23.52 57.55 25.50 62.81 
30 29.27 64.28 24.93 58.16 26.90 63.40 

0.2 

0 20.00 55.11 18.15 50.27 19.96 55.06 
10 23.11 56.31 20.11 51.03 21.89 55.79 
20 25.84 57.49 21.90 51.77 23.66 56.52 
30 28.31 58.65 23.55 52.51 25.309 57.24 

0.4 

0 17.57 48.38 15.77 43.84 17.35 48.08 
10 21.49 49.95 18.24 44.81 19.78 49.02 
20 24.79 51.47 20.42 45.75 21.94 49.94 
30 27.70 52.95 22.38 46.68 23.90 50.84 

0.6 

0 14.90 40.99 13.18 36.81 14.51 40.45 
10 20.11 43.21 16.47 38.13 17.74 41.73 
20 24.20 45.32 19.20 39.41 20.47 42.92 
30 27.68 47.34 21.59 40.65 22.87 44.35 

Table 3.7: Values of dimensionless natural frequencies  2
0 0 0 0L A E I   for 1st and 

2nd mode (Ω1 and Ω2) corresponding to parabolic tapered CC AFG beam for different 
combinations of taper parameter, spring stiffness and material properties 

Taper 
Pattern 

Taper 
Parameter 

Stiffness  
Material 1 Material 2 Material 3 

CC CC CC 
Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 

Parabolic 

0.2 

0 20.36 56.63 18.47 51.66 20.32 56.57 
10 23.28 57.75 20.32 52.36 22.13 57.26 
20 25.87 58.85 22.01 53.06 23.80 57.94 
30 28.23 59.93 23.58 53.73 25.35 58.61 

0.4 

0 18.28 51.39 16.42 46.58 18.07 51.08 
10 21.71 51.73 18.58 47.41 20.18 51.89 
20 24.67 54.05 20.51 48.23 22.09 52.68 
30 27.30 55.33 22.28 49.03 23.85 53.46 

0.6 

0 15.96 45.45 14.16 40.85 15.59 44.88 
10 20.15 47.16 16.78 41.87 18.16 45.87 
20 23.60 48.81 19.46 42.88 20.41 46.84 
30 26.59 50.41 21.07 43.85 22.44 47.80 

In Table 3.6 for CC boundary condition results pertaining to α = 0, i.e., a uniform 

beam, has also been presented. However, in the subsequent tables (Table 3.7 and 3.8)  
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Table 3.8: Values of dimensionless natural frequencies  2
0 0 0 0L A E I   for 1st and 

2nd mode (Ω1 and Ω2) corresponding to exponential tapered CC AFG beam for different 
combinations of taper parameter, spring stiffness and material properties 

Taper 
Pattern 

Taper 
Parameter 

Stiffness  
Material 1 Material 2 Material 3 

CC CC CC 
Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 

Exponential 

0.223144 

0 19.47 53.33 17.69 48.68 19.45 53.31 
10 22.80 54.62 19.80 49.50 21.53 54.11 
20 25.70 55.89 21.70 50.31 23.41 54.89 
30 28.30 57.13 23.45 51.11 25.16 55.67 

0.510826 

0 16.39 44.45 14.75 40.36 16.23 44.25 
10 21.02 46.35 17.70 41.54 19.14 45.40 
20 24.80 48.17 20.22 42.69 21.65 46.52 
30 28.08 49.93 22.46 43.81 23.90 47.62 

0.916291 

0 12.89 34.38 11.46 30.98 12.62 34.03 
10 20.04 37.63 16.07 32.97 17.18 35.96 
20 25.22 40.63 19.62 34.85 20.77 37.80 
30 29.50 43.42 22.61 36.63 23.81 39.55 

Table 3.9: Values of dimensionless natural frequencies  2
0 0 0 0L A E I   for 1st and 

2nd mode (Ω1 and Ω2) corresponding to linear tapered CS AFG beam for different 
combinations of taper parameter, spring stiffness and material properties 

Taper 
Pattern 

Taper 
Parameter 

Stiffness  
Material 1 Material 2 Material 3 

CS CS CS 
Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 

Linear 

0 

0 15.39 49.87 13.23 45.00 14.35 49.01 
10 18.89 51.06 15.43 45.76 16.56 49.76 
20 21.84 52.22 17.36 46.51 18.50 50.49 
30 24.43 53.35 19.08 47.25 20.25 51.22 

0.2 

0 14.23 45.16 12.20 40.55 13.27 44.25 
10 18.39 46.63 14.82 41.48 15.89 45.15 
20 21.77 48.05 17.04 42.38 18.13 46.03 
30 24.70 49.43 18.99 43.27 20.12 46.90 

0.4 

0 12.97 40.14 11.07 35.83 12.08 39.17 
10 18.05 42.04 14.27 36.99 15.27 40.31 
20 21.99 43.85 16.87 38.12 17.91 41.42 
30 25.32 45.60 19.12 39.22 20.20 42.50 

0.6 

0 11.54 34.63 09.79 30.66 10.71 36.63 
10 18.01 37.29 13.87 32.24 14.79 35.16 
20 22.68 39.78 17.01 33.74 17.97 36.64 
30 26.51 42.14 19.64 35.18 20.66 38.05 

results for α = 0 condition has been omitted to avoid repetition. It should be mentioned here 

that the mathematical expressions for the different taper profiles are such that in each case 
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α = 0 corresponds to a uniform beam and hence, same natural frequency values are obtained 

in these cases. For CS, SS and CF boundary conditions as well such type pattern in the table 

of natural frequencies can be found. 

Table 3.10: Values of dimensionless natural frequencies  2
0 0 0 0L A E I   for 1st 

and 2nd mode (Ω1 and Ω2) corresponding to parabolic tapered CS AFG beam for different 
combinations of taper parameter, spring stiffness and material properties 

Taper 
Pattern 

Taper 
Parameter 

Stiffness  
Material 1 Material 2 Material 3 

CS CS CS 
Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 

Parabolic 

0.2 

0 14.64 46.62 12.58 41.88 13.68 45.71 
10 18.54 47.99 15.03 42.74 16.13 46.54 
20 21.75 49.32 17.13 43.58 18.25 47.37 
30 24.54 50.61 18.99 44.41 20.14 48.18 

0.4 

0 13.77 43.06 11.82 38.47 12.90 42.09 
10 18.19 44.69 14.59 39.47 15.66 43.06 
20 21.73 46.25 16.91 40.44 18.00 44.01 
30 24.77 47.77 18.94 41.39 20.06 44.93 

0.6 

0 12.70 39.03 10.89 34.63 11.93 37.98 
10 17.88 41.07 14.11 35.84 15.13 39.16 
20 21.84 43.02 16.73 37.01 17.77 40.30 
30 25.17 44.89 18.99 38.14 20.06 41.41 

Table 3.11: Values of dimensionless natural frequencies  2
0 0 0 0L A E I   for 1st 

and 2nd mode (Ω1 and Ω2) corresponding to exponential tapered CS AFG beam for different 
combinations of taper parameter, spring stiffness and material properties 

Taper 
Pattern 

Taper 
Parameter 

Stiffness  
Material 1 Material 2 Material 3 

CS CS CS 
Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 

Exponential 

0.223144 

0 13.70 43.54 11.74 39.13 12.76 42.68 
10 18.16 45.13 14.55 40.13 15.57 43.66 
20 21.72 46.66 16.90 41.11 17.95 44.62 
30 24.77 48.14 18.95 42.07 20.04 45.56 

0.510826 

0 11.79 36.54 10.05 32.67 10.95 35.69 
10 17.78 38.85 13.86 34.11 14.77 37.09 
20 22.21 41.02 16.81 35.48 17.78 38.45 
30 25.88 43.09 19.32 36.81 20.34 39.75 

0.916291 

0 09.53 28.52 08.64 25.32 08.81 27.72 
10 18.29 32.41 13.71 27.70 14.50 30.05 
20 24.02 35.89 17.62 29.90 18.51 32.22 
30 28.60 39.08 20.80 31.95 21.79 34.25 



Free vibration of AFG Thin Beam on Elastic Foundation 

53 

For the tables 3.6-3.17, it is prominent that in all cases with the increase of stiffness 

of the foundation the natural frequencies in all cases increase. This is due to the fact that  

Table 3.12: Values of dimensionless natural frequencies  2
0 0 0 0L A E I   for 1st 

and 2nd mode (Ω1 and Ω2) corresponding to linear tapered SS AFG beam for different 
combinations of taper parameter, spring stiffness and material properties 

Taper 
Pattern 

Taper 
Parameter 

Stiffness 
Material 1 Material 2 Material 3 

SS SS SS 
Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 

Linear 

0 

0 09.87 39.47 09.28 36.37 09.73 39.56 
10 14.74 40.96 12.21 37.34 12.96 40.51 
20 18.37 42.40 14.72 38.29 15.50 41.44 
30 21.39 43.80 16.84 39.22 17.67 42.35 

0.2 

0 08.85 35.44 08.13 32.52 08.84 35.45 
10 14.56 37.28 11.88 33.69 12.58 36.59 
20 18.59 39.04 14.69 34.83 15.44 37.70 
30 21.89 40.73 17.04 35.96 17.83 38.78 

0.4 

0 07.73 31.19 07.15 28.47 07.81 31.11 
10 14.54 33.58 11.65 29.95 12.30 32.55 
20 19.04 35.82 14.84 31.36 15.55 33.93 
30 22.66 37.93 17.45 32.71 18.22 35.26 

0.6 

0 06.47 26.60 06.36 24.11 06.63 26.43 
10 14.78 29.96 11.61 26.10 12.20 28.38 
20 19.82 33.00 15.27 27.96 15.93 30.19 
30 23.77 35.81 18.21 29.70 18.94 31.91 

Table 3.13: Values of dimensionless natural frequencies  2
0 0 0 0L A E I   for 1st 

and 2nd mode (Ω1 and Ω2) corresponding to parabolic tapered SS AFG beam for different 
combinations of taper parameter, spring stiffness and material properties 

Taper 
Pattern 

Taper 
Parameter 

Stiffness  
Material 1 Material 2 Material 3 

SS SS SS 
Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 

Parabolic 

0.2 

0 09.27 36.85 08.53 33.80 09.26 36.86 
10 14.61 38.56 12.01 34.89 12.74 37.92 
20 18.46 40.20 14.68 35.95 15.45 38.95 
30 21.64 41.77 16.93 37.98 17.74 39.96 

0.4 

0 08.58 33.98 7.93 31.01 08.66 33.90 
10 14.50 36.00 11.80 32.27 12.51 35.12 
20 18.62 37.93 14.68 33.48 15.42 36.30 
30 21.98 39.76 17.07 34.64 17.87 37.44 

0.6 

0 07.72 30.73 07.20 27.86 07.91 30.55 
10 14.44 33.26 11.59 29.37 12.27 32.02 
20 18.87 35.62 14.72 30.81 15.44 33.42 
30 22.42 37.85 17.29 32.19 18.06 34.77 
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natural frequency is the function of mass and stiffness. While stiffness of the foundation is 

increased, overall stiffness of the system increases but the mass of the overall system  

Table 3.14: Values of dimensionless natural frequencies  2
0 0 0 0L A E I   for 1st 

and 2nd mode (Ω1 and Ω2) corresponding to exponential tapered SS AFG beam for different 
combinations of taper parameter, spring stiffness and material properties 

Taper 
Pattern 

Taper 
Parameter 

Stiffness  
Material 1 Material 2 Material 3 

SS SS SS 
Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 

Exponential 

0.223144 

0 08.44 33.91 07.75 31.16 08.41 33.95 
10 14.54 35.92 11.78 32.44 12.45 35.20 
20 18.75 37.82 14.73 33.68 15.46 36.41 
30 22.17 39.62 17.18 34.88 17.96 37.59 

0.510826 

0 06.86 27.84 06.33 25.49 06.89 27.82 
10 14.97 30.77 11.66 27.33 12.25 29.62 
20 19.75 33.46 15.21 29.07 15.88 31.32 
30 23.68 35.94 18.06 30.72 18.82 32.94 

0.916291 

0 05.07 21.01 04.71 19.14 05.15 20.95 
10 15.92 25.99 12.24 22.21 12.76 23.95 
20 21.86 30.20 16.63 24.92 17.28 26.62 
30 26.44 33.93 20.07 27.37 20.84 29.05 

Table 3.15: Values of dimensionless natural frequencies  2
0 0 0 0L A E I   for 1st 

and 2nd mode (Ω1 and Ω2) corresponding to linear tapered CF AFG beam for different 
combinations of taper parameter, spring stiffness and material properties 

Taper 
Pattern 

Taper 
Parameter 

Stiffness 
Material 1 Material 2 Material 3 

CF CF CF 
Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 

Linear 

0 

0 03.52 22.03 02.43 18.60 02.56 20.03 
10 11.50 24.60 07.37 20.24 07.73 21.67 
20 15.89 26.93 10.12 21.75 10.61 23.19 
30 19.30 29.08 12.25 23.18 12.84 24.63 

0.2 

0 03.61 20.62 02.51 17.38 02.65 18.77 
10 12.50 23.71 08.01 19.31 08.40 20.69 
20 17.30 26.44 11.03 21.07 11.56 22.46 
30 21.03 28.92 13.37 22.70 14.02 24.10 

0.4 

0 03.74 19.12 02.62 16.07 2.78 17.41 
10 13.84 22.98 08.89 18.43 09.31 19.76 
20 19.17 26.30 12.28 20.52 12.87 21.86 
30 23.29 29.27 14.92 22.42 15.63 23.78 

0.6 

0 03.94 17.49 02.78 14.66 02.96 15.94 
10 15.74 22.72 10.20 17.70 10.69 18.97 
20 21.65 27.13 14.16 20.29 14.82 21.58 
30 26.03 31.07 17.23 22.59 18.03 23.91 
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remain same. It is also can be seen that It is also observed that for particular taper parameter, 

foundation stiffness value and material model, the natural frequency is the lowest for CF 

boundary condition as the system is less stiff under CF boundary condition and highest for 

CC boundary condition. For fixed non-zero taper  parameter  it  can  be  observed  that  in  

Table 3.16: Values of dimensionless natural frequencies  2
0 0 0 0L A E I   for 1st 

and 2nd mode (Ω1 and Ω2) corresponding to parabolic tapered CF AFG beam for different 
combinations of taper parameter, spring stiffness and material properties 

Taper 
Pattern 

Taper 
Parameter 

Stiffness  
Material 1 Material 2 Material 3 

CF CF CF 
Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 

Parabolic 

0.2 

0 03.71 21.44 02.57 18.09 02.72 19.53 
10 12.35 24.33 07.94 19.88 08.32 21.31 
20 17.06 26.91 10.91 21.53 11.43 22.97 
30 20.71 29.26 13.23 23.06 13.86 24.51 

0.4 

0 03.95 20.85 02.76 17.56 02.92 19.01 
10 13.40 24.19 08.67 19.57 09.08 21.01 
20 18.49 27.15 11.94 21.39 12.50 22.84 
30 22.41 29.85 14.49 23.07 15.17 24.53 

0.6 

0 04.28 20.29 03.02 17.05 03.19 18.53 
10 14.75 24.44 09.66 19.41 10.11 20.87 
20 20.17 28.13 13.32 21.51 13.92 22.98 
30 24.23 31.50 16.16 23.43 16.89 24.91 

Table 3.17: Values of dimensionless natural frequencies  2
0 0 0 0L A E I   for 1st 

and 2nd mode (Ω1 and Ω2) corresponding to exponential tapered CF AFG beam for different 
combinations of taper parameter, spring stiffness and material properties 

Taper 
Pattern 

Taper 
Parameter 

Stiffness  
Material 1 Material 2 Material 3 

CF CF CF 
Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 

Exponential 

0.223144 

0 03.39 19.69 02.35 16.59 02.49 17.91 
10 12.57 23.02 08.03 18.69 08.42 20.00 
20 17.49 25.93 11.09 20.59 11.63 21.91 
30 21.23 28.54 13.45 22.32 14.11 23.67 

0.510826 

0 03.19 17.00 02.23 14.29 02.37 15.46 
10 14.14 21.62 09.00 17.17 09.44 18.34 
20 19.72 25.42 12.51 19.65 13.12 20.84 
30 24.03 28.73 15.20 21.86 15.94 23.08 

0.916291 

0 02.87 13.76 02.04 11.52 02.17 12.51 
10 16.74 20.94 10.65 15.97 11.17 16.97 
20 23.36 26.33 14.89 19.45 15.62 20.50 
30 28.32 30.90 18.15 22.40 19.05 23.51 
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between linear and parabolic taper pattern, the system with parabolic taper pattern has the 

higher natural frequency. It is also observed that for all the cases with increase in taper 

parameter the natural frequency decreases. Reduction in cross-sectional area and moment 

of inertia causes a softening effect, which is manifested in this decrement of frequencies. 

Comparing the values, it is observed that softening effect is severe in exponentially tapered 

beam and least in parabolic tapered beam. It is also observed that for particular taper 

parameter, boundary condition and foundation stiffness value, the natural frequency is the 

highest for Material 1 and lowest for Material 2. 

 
          (a)                                                               (b) 

 
          (c)                                                               (d) 

Figure 3.7: Backbone curves of AFG linear taper beam (Material 1) for different 
boundary conditions: (a) CC (b) CS (c) SS and (d) CF 
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3.6.4 Backbone curves: 

Backbone curves of a vibratory system provide information about the measure of 

amplitude dependence of natural frequencies of the system. The dynamic behavior of the 

system is shown in Figures 3.7-3.14 as backbone curves for the first modes in non-

dimensional frequency amplitude plane, where the ordinate is dimensionless amplitude 

(wmax/t0) and abscissa is normalized frequency (ωnf/ωl). In the present study (wmax/t0) is 

taken as 2.0 for all cases. The fundamental frequency (ωl) is used to normalize the nonlinear 

frequencies are taken from Tables 3.6-3.17. 

 
          (a)                                                               (b) 

 
          (c)                                                               (d) 

Figure 3.8: Backbone curves of AFG linear taper beam (Material 2) for different 
boundary conditions: (a) CC (b) CS (c) SS and (d) CF 
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For all the cases, stiffness of the beam increases with increasing load due to 

geometric nonlinearity present in the system. This increased stiffness causes the increase 

in free vibration frequencies with increase in the deflection of the beam, as can be observed 

from any of the figures. So, hardening type nonlinear behaviour is exhibited by the system 

for all combinations of taper profile, stiffness values and boundary conditions. 

 
          (a)                                                               (b) 

 
          (c)                                                               (d) 

Figure 3.9: Backbone curves of AFG linear taper beam (Material 3) for different 
boundary conditions: (a) CC (b) CS (c) SS and (d) CF 

3.6.4.1 Effects of foundation stiffness: 

Figures 3.7-3.9 represent the backbone curve for fundamental mode of linearly 

tapered beam with three different material models (Material 1, Material 2 and Material 3).In 
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each figure, there are four sets of plots for four different boundary condition (CC, CS, SS, 

CF) and in each plot four backbone curves are depicted corresponding to various spring 

stiffness values which varies from 0 to 30. The taper parameter is kept as constant, at 0.4 

to plot the results with an objective to study the influences of the foundation stiffness. 

Similar plots for parabolic tapered beams are provided in Figures 3.10-3.11, whereas 

backbone curves for exponential AFG beams are shown in Figures 3.12-3.13. However, in 

these figures results corresponding to material 1 is only furnished for linear taper pattern. 

As material 1 is fully homogeneous for the comparison purpose the results are generated 

and are shown at Figure 3.7. It should also be mentioned that the taper parameter values in 

Figures 3.12-3.13 are α = 0.223144, 0.510826 and 0.916291 (as shown in Table 3.3). 

 
          (a)                                                               (b) 

 
          (c)                                                               (d) 

Figure 3.10: Backbone curves of AFG parabolic taper beam (Material 2) for different 
boundary conditions: (a) CC (b) CS (c) SS and (d) CF 
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It is observed from Figure 3.7-3.14, in all the cases, with the increase of the 

foundation stiffness the slope of the backbone curve is increasing in nature. This effect is 

severe for CF boundary condition whereas for CC beam backbone curves are closely 

clustered. From the above discussion it can be concluded that nonlinearity involved in case 

of CF beam is higher than the other two taper patterns. For CC and CS beam profile the 

difference between the backbone curves is found to be small. 

 
          (a)                                                               (b) 

 
          (c)                                                               (d) 

Figure 3.11: Backbone curves of AFG parabolic taper beam (Material 2) for different 
boundary conditions: (a) CC (b) CS (c) SS and (d) CF 

For linear taper pattern, it is quite cleared that the change in backbone curve for different 

material model is hardly found for a particular case of boundary condition, as shown in 

Figures 3.7 -3.9. For other type of taper pattern i.e. parabolic and exponential taper same 
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trend can be found. It is also observed from the figures that for particular boundary 

condition and material model, in exponential taper the backbone curves are more openly 

clustered than the other two (linear and parabolic) for different foundation stiffness values. 

 
          (a)                                                               (b) 

 
          (c)                                                               (d) 

Figure 3.12: Backbone curves of AFG exponential taper beam (Material 2) for different 
boundary conditions: (a) CC (b) CS (c) SS and (d) CF 

3.6.4.2 Effect of taper parameter: 

Figure 3.14 shows the effect of taper parameters on backbone curve for CC AFG 

beam. Curves are depicted for three different taper pattern in which taper parameter varied 

from 0 to 0.6 for linear and parabolic taper whereas, in case of exponential taper variation 

of taper parameter is taken from 0 to 0.916291. Material 2 is selected for all the cases 

whereas foundation stiffness is fixed at 10. It is to be noted that taper parameter 0 represents  
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                                              (a)                                                                   (b)                    

 
          (c)                                                               (d) 

Figure 3.13: Backbone curves of AFG exponential taper beam (Material 3) for different 
boundary conditions: (a) CC (b) CS (c) SS and (d) CF 

 
          (a)                                                                   (b)                   Continued 
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       (c) 

Figure 3.14: Effect of taper parameters on backbone curves of CC AFG beam for 
different taper pattern: (a) linear taper (b) parabolic taper and (c) exponential taper 

the case of uniform beam and used for comparison purpose only. From the figure, it is 

observed that for all the cases with the increase of taper parameter values, the slope of the 

backbone curve is decreasing in nature. 

3.6.4.3 Backbone curves at higher modes: 

Backbone curves at higher modes (modes 2-5) of the linear taper AFG beam 

corresponding to four boundary conditions are presented in Figure 3.15. Results are plotted 

starting from modes 2 and continued upto mode 5. Results beyond mode 5 are also possible 

but it will create difficulty to accommodate all those into a single figure. For better clarity 

results are not shown beyond mode 5. Each of these figures consists of two different sub- 

plots for two different material models i.e. material 2 and material 3. In this regard, plot for 

the material 1 is not furnished as it is the case of homogeneous material. For all the cases 

the taper parameter is considered as 0.4, whereas, foundation stiffness is fixed at 10. 

3.6.5 Mode shapes: 

First three mode shape of the linear taper AFG beam corresponding to four 

boundary conditions are provided in Figure 3.16. Each of these figures consists of two 

different sub- plots for two different material models i.e. material 2 and material 3. Mode 

shape plot for the material 1 is not furnished as it is the case of homogeneous material. For 

all the cases the taper parameter is considered as 0.4, whereas, foundation stiffness is fixed  
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(a) 

 
         (b) 

 
(c)                                                       Continued 
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        (d) 

Figure 3.15: Backbone curves at higher modes of linear taper AFG beam corresponding to 
different boundary conditions: (a) CC (b) CS (c) SS (d) CF. 

 
        (a) 

 
          (b)                                                       Continued 
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         (c) 

 
          (d) 

Figure 3.16: Mode shape of linear taper AFG beam corresponding to different boundary 
conditions: (a) CC (b) CS (c) SS (d) CF. 

at 10. It is also worth pointing out that amplitude of vibration has an effect on the mode 

shape of the system. To study this aspect in more detail, two mode shape plots 

corresponding to linear (wmax/t0 = 0) and nonlinear (wmax/t0 = 2) frequencies are given for 

each of the vibration modes. It should also be noted that the amplitude of vibration for all 

the plots is normalized by the corresponding maximum deflection. It was observed that 

difference in linear and nonlinear mode shapes increase when the boundary condition 

changes from CC to CF, CS and SS due to the decreasing rigidity at the boundary. However, 

no considerable change in the mode shapes could be identified for the different material 

models perhaps due to normalization of the maximum displacement. 
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3.7 Closure: 

In the present analysis, large amplitude free vibration behaviour of axially 

functionally graded thin taper beam with various taper profile and material gradation is 

investigated. The beam is further assumed to be on elastic foundation and subjected to 

uniformly distributed load. Different flexural boundary conditions are considered. 

However, the present methodology can be applied for other type of classical and non-

classical boundary as well. Energy principle is applied for the mathematical formulation 

and the problem can be solved in two part, static and dynamic respectively. For the static 

problem minimum total potential energy principle is utilized whereas for dynamic analysis 

the formulation is based on Hamilton’s principle. The methodology is general in nature as 

it can be applied for other type of material gradation and taper pattern. The obtained results 

are validated from previously published results and were found to be in good agreement. 

Results pertaining to various taper parameter and spring stiffness for different flexural 

boundary condition are furnished as backbone curve for the fundamental mode. Backbone 

curves of taper AFG beam for CC, CS, SS and CF boundary condition are supplied at 

different taper pattern, taper parameter and spring stiffness. For all combinations of the 

system parameters hardening type of nonlinearity is observed. Mode shape plots are also 

presented to show comparison between the linear and nonlinear mode shapes. 
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Chapter 4 

 

FORCED VIBRATION: AXIALLY FUNCTIONALLY 

GRADED THIN BEAMS ON ELASTIC FOUNDATION  

 

4.1 Introduction:  

Analysis of dynamic behaviour of structural elements under time varying external 

force or excitation can be termed as forced vibration analysis. In engineering applications 

such dynamic loading conditions are generally produced by unbalance in rotating 

machinery, forces produced by the reciprocating machines, or the motion of machine itself. 

Harmonic excitation, i.e., forces varying harmonically with time is a very common example 

of dynamic loading condition. Pure harmonic excitation is less likely to occur in working 

environment than periodic or other types of excitation, but understanding the behaviour of 

a system under harmonic excitation is essential in order to comprehend how the system will 

respond to more general types of excitation. It is also understood that the response of a 

system under harmonic excitation may be periodic but non-harmonic. However, in the 

present scenario such conditions are not taken into account as it is assumed that harmonic 

excitation is going to produce harmonic response of the same frequency. 

Forced vibration analysis is conducted with an objective to find out the response of 

the system, in terms of displacement amplitude, under externally applied time varying 

excitations. Presently, large amplitude forced vibration analysis of AFG beams resting on 

elastic foundation subjected to transverse harmonic excitation is performed. The foundation 

has been mathematically incorporated into the analysis as a set of linear springs attached 

uniformly at the bottom surface of the beam. The mathematical formulation is displacement 

based and derivation of governing equations is accomplished following Hamilton’s 

principle. In the current study, only steady-state response is presented and frequency of 

response of the undamped system is assumed to be equal to that of the external excitation. 

Broyden method, which is a multidimensional secant method used for numerically solving 

the system of nonlinear equations. The large amplitude dynamic behaviour of the system 
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in terms of non-dimensional frequency response curves is validated against established 

results and new results are furnished for tapered AFG beam on linear elastic foundation. 

4.2 System Geometry and Material Property Variation: 

The present system under consideration is same as that described in Chapter 3. A 

different view of the system (from those presented in the previous chapter) is shown in 

Figure 4.1, which also details the geometric and material parameterms associated with the 

system. The figure depicts the deflected configuration of the beam under transverse external 

excitation along with the undeformed state. The tapered AFG beam, resting on linear elastic 

foundation, has a length L, while the cross-sectional dimensions are represented as variable 

width b(x) and variable thickness t(x). Gradation of material properties i.e. modulus of 

elasticity, E(x), and mass density, ρ(x) is along the longitudinal axis. The foundation 

stiffness is taken as K and the effect of the foundation on the system is incorporated in terms 

of series of linear springs with stiffness coefficient, K (Figure 4.1) same as that of the 

foundation. In this representative figure the thickness variation has not been depicted, 

although the formulation is certainly able to handle taper in either thickness or width 

individually or in conjunction.  

 

 

Figure 4.1: AFG beam supported on elastic foundation represented as series of linear  
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4.3 Mathematical formulation: 

An indirect approach is adopted for formulation and corresponding solution to the 

problem. Here it is reduced to a static scenario by assuming that under maximum amplitude 

of excitation, i.e., when the system suffers maximum deformation, the dynamic system 

fulfils force equilibrium conditions. This supposition converts the problem of solving for 

the dynamic system into an equivalent static situation, where the excitation frequency and 

amplitude of the harmonic excitation are the parameters that control system response. 

In the present chapter, the mathematical formulation is carried out taking the beam 

to follow Euler – Bernoulli hypothesis, as a result of which the effect of rotary inertia and 

shear deformation is neglected. It should be mentioned here that according to the above 

hypothesis plane cross-section of the beam remains plane and normal to the deformed axis 

once deformation has taken place. To introduce geometric nonlinearity into the 

formulation, Von Karman type nonlinear strain-displacement relations are considered 

along with Euler-Bernoulli theory. 

2

2

b

x

d w
z

dx
            (4.1a) 

2
1

2

s
x

du dw

dx dx
    

 
 

        (4.1b) 

In the overall expression of axial strain due to bending ( b
x ) and stretching ( s

x ), 

terms corresponding to linear bending strain as well as linear in-plane strain and non-linear 

in-plane strains are present. The nonlinear in-plane term is associated with large 

deformation. The present analysis is a semi-analytical displacement based method that 

employs appropriate energy method to derive the governing equations. Hence the strain-

displacement expressions provided in Equation (4.1) helps derive the energy expressions 

in terms of assumed displacement fields. In the present formulation of geometrically 

nonlinear forced vibration, Hamilton’s principle (mathematically expressed in Equation 

(4.2)) is applied to obtain the governing set of equation. 
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 
2

1

0T U V d




 
 

    
 
        (4.2) 

Here, T is kinetic energy of the system, while, U and V designate total strain energy and 

work potential due to external excitation q(x), respectively. The free vibration analysis 

presented in the previous chapter (Chapter 3) is also formulated on the basis of  Hamilton’s 

principle, but with a significant difference. Previously, in the mathematical expression of 

the principle the work potential of the external forces (V) was set to zero (Equation (3.10)), 

as it does not play any part in case of free vibration analysis. However, for forced vibration 

problem the potential of external excitation term must be retained.  

As already mentioned with regards to strain-displacement relations (Equation 

(4.1)), both bending and stretching effect of the beam is considered to incorporate large 

displacement behaviour. Thus, strain energy components corresponding to both bending 

and stretching are present in the overall strain energy expression. Beside this, strain energy 

stored in the system due to deformation of elastic foundation (equivalently represented by 

deformation of cluster of springs) is also taken into consideration. Therefore, total strain 

energy of the system is presented as,  

mb fU U U U           (4.3) 

Here, Ub and Um are total strain energies caused by bending deformation and stretching, 

respectively, while, Uf is the strain energy stored due to deformation of the elastic 

foundation i.e., in terms of formulation this part of the strain energy is taken care of by the 

deflection of the springs replacing the foundation. Substituting the relevant strain-

displacement expressions, total strain energy of the system can be expressed as, 

       
2 2 4 22

2
0 0

2
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1 1 1
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L L
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d w du dw dw du
U E x I x dx E x A x dx

dx dx dx dx dx

Kw dx

                       
           



 


 

          (4.4) 

The total potential energy (V) due to externally applied transverse harmonic 

excitation can be given by,  
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 
0

L

V q x wdx          (4.5) 

where, q represents harmonic excitation for uniformly distributed type excitation, whose 

expression is given by (x) iq q e  , where   is the frequency of excitation, 1i    and 

q  represents the intensity of the harmonic excitation per unit length of the beam. The 

present formulation can be applied for other type of transverse excitations as well by 

changing the loading pattern in the Equation (4.5). Hence, the present study is certainly not 

limited to only uniformly distributed excitation. 

The kinetic energy of the system can be given by, 

    2 2

0

1
( ) ( )

2

L

T w u x A x dx          (4.6) 

Here, the overdots denote differentiation with respect to time (τ).  

The above mentioned energy functionals are determined from the assumed dynamic 

displacement fields, which are given by, 

   
1

,
nw

i
i i

i

w d e    


        (4.7a) 

   
1

,
nw nu

i
i i

i nw

u d e    


 
          (4.7b) 

The transverse (w) and in-plane (u) displacement fields are defined at the neutral 

axis of the beam and are assumed to be separable in space and time. As shown in Equation 

(4.7), they are approximately represented by linear combinations of a set of unknown 

parameters (di) and orthogonal admissible functions ( i  and i ). It is quite clear that i  is 

associated with the transverse displacement (w), whereas i  defines the in-plane 

displacements (u). Being admissible functions, i  and i  possess certain properties such 

as, continuity and differentiability within the domain. Also satisfaction the flexural and 

membrane boundary conditions of the system is another major criterion. In order to 

generate a complete set of orthogonal admissible functions, first of all a start function 
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satisfying the boundary condition is chosen. For transverse displacement, beam deflection 

functions, derived from static deflection shape of the beam, corresponding to the boundary 

condition of the system are taken as the start function. The starting functions for stretching 

of the beam (u) come from the in-plane boundary conditions. For the present analysis, the 

in-plane boundary conditions are considered as immovable, i.e., no in-plane displacements 

are allowed at the boundaries. Once the start functions are selected, generation of higher 

order functions is accomplished by Gram-Schmidt orthogonalization scheme. The number 

of functions for w and u are denoted by nw and nu, respectively. For the present 

mathematical formulation, it is assumed that number of functions for w and u are equal i.e.,  

nw = nu. 

In expression (4.7),   is the response frequency of the system and according to the 

basic assumption of current analysis response frequency is equal to the excitation 

frequency. It should be noted that the orthogonal functions are generated in a normalised 

computational domain that varies from 0 to 1. The physical domain in x coordinate is 

converted to the computational domain by dividing the coordinate by the beam length (L), 

i.e., ξ = x/L. In this computational domain ng number of Gausss points are generated that 

work as the reference points with respect to which all the numerical computations are 

performed.  

Substitution of the Equation (4.4), (4.5) and (4.6), as well as the dynamic 

displacement fields, in Equation (4.2) the governing equation of the geometrically 

nonlinear forced vibration problem in the following matrix form. 

       2 M d K d f          (4.8) 

[K], [M] and {f} are stiffness matrix, mass matrix and load vector, respectively.  d  is the 

vector of unknown coefficient. It should be mentioned here that the governing equation of 

the presesent problem is quite similar to that derived for free vibration analysis (Equation 

(3.13)), with the exception that the right hand side here is not zero (due to presence of 

potential of the external excitation term). The form of the above mentioned matrices and 

vector are given in Appendix. 
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4.4 Solution procedure: 

Equation (4.8) represents the governing set of nonlinear equations for the dynamic 

system. But the basic assumption of the present study reduces the problem to an equivalent 

static case. At the peak excitation amplitude value it is assumed that the system satisfies 

the force equilibrium condition and thus the problem can be considered as a static one 

where the system response is dependent on the excitation frequency and the amplitude of 

the harmonic excitation. So, at each excitation frequency for a given harmonic excitation 

amplitude the corresponding unknown coefficients are to be determined. However, 

determination of these unknown parameters is not straightforward and cannot be directly 

implemented through simple matrix inversion followed by pre-multiplication with the load 

vector as shown in Equation (4.9), as the stiffness matrix ([K]) itself is a function of the 

unknown parameters. A closer look at the stiffness matrix elements presented in the 

Appendix clearly shows that certain terms indeed contain the unknown coefficients (di). 

This coupling arises due to the consideration in-plane stretching term in the strain-

displacement relation at the mathematical formulation stage. 

       12d K M f


           (4.9) 

To solve the set of nonlinear governing equations an iterative procedure with an 

initial guess value of the unknowns must be employed. In the present work, a 

multidimensional quasi-Newton method, known as Broyden’s method that utilizes the 

Jacobian matrix and subsequent updation/correction of the initial Jacobian, is used for the 

numerical solution of the nonlinear system equations. Determination of the Jacobian matrix 

is usually an extensive and difficult computational task. Even for sufficiently simple 

functions, for which the partial derivatives can be analytically found out, the extent of 

computations necessary may well be excessive. In case of majority of practical problems, 

however, complicated functions are encountered and numerical determination of an 

approximation to the Jacobian matrix is inevitable. In the present scenario, an initial 

Jacobian of the system is computed based on the initial guess and subsequently, only 

updates, ensuring the minimum change to the Jacobian from the previous iteration, are 

effected, instead of determination of the whole Jacobian matrix in each step of iterations. 

So, in this case, the partial derivatives are not estimated or evaluated directly, but 



Chapter 4 

76 
 

corrections to the approximate Jacobian matrix are computed from the function values. The 

function is constituted by rearranging the terms of the governing Equation (4.8) as follows, 

    2( ) [ ] [ ]F d K M d f         (4.10) 

So, the objective of the Broyden method is to solve for the roots of the set of equations, 

F(d) = 0. The codes for implementation of Broyden method is developed in Matlab 

following the algorithm provided by Press et al. (2005). Once the values of the unknown 

parameters are solved for a given excitation amplitude and frequency, the displacement 

fields can be computed following Equation (4.7). Finally, the maximum deflection (wmax) 

value corresponding to a frequency step is searched out from within the transverse 

displacement field (w).  

4.5 Results and discussions: 

The present work investigates the influence of various classical flexural boundary 

conditions as well as material property variations and stiffness of the elastic foundation on 

the large amplitude forced vibration behavior of axially functionally graded taper beams 

under harmonic excitation. For the current analysis only uniformly distributed excitation 

pattern, mathematically expressed as (x) iq q e  , has been considered. The intensity of 

the harmonic excitation, q , is made dimensionless using the expression, 𝑞ത* = 𝑞ഥ (L4/ E0I0t0)  

in the present study, 𝑞ത* is varied from 30 to 60 in the interval of 10. But it is possible to 

replace the given expression with mathematical form of any other type of excitation pattern 

as well. Three different taper patterns are taken for the beam, which are linear taper, 

parabolic taper and exponential taper respectively and the variations of thickness are 

mentioned in the previous chapter (Chapter 3, Section 3.2) and tabulated in Table 3.1. Here 

four different taper parameter values are considered for each taper pattern and these values 

are shown in Table 3.2 as indicated in the Chapter 3 (Section 3.2). Variation of frequency 

response of the system with respect to taper pattern (such as linear, exponential etc.) and 

taper parameter value are also interesting avenues of study. Material property variations 

along the length of the beam are taken into account by considering gradation of elastic 

modulus and density. Three different models for variation of these two material parameters 

are presented in the present chapter. They are mentioned in the Table 3.3 in Chapter 3. It is 



Forced Vibration of AFG Thin Beams On Elastic Foundation   

77 

clear from the relations that material model 1 refers to a homogeneous beam, which has 

been included for comparison purpose. The other aspect of complexity of the current system 

is the elastic foundation upon which the system rests. As already mentioned, the foundation 

has been incorporated into the mathematical formulation by a series of parallel massless 

linear springs with equivalent spring stiffness  K . Four different values of non-

dimensional stiffness (Kf) are taken for the present study and these values are 0, 10, 20 and 

30 respectively. The conversion between dimensional (N/m) and non-dimensional stiffness 

follows the relationship, Kf =K {(L/t0)3/E0b}. Here, the situation with 0 spring stiffness 

corresponds to a case where the foundation is absent, i.e., the beam is not supported by the 

foundation at all. This case has also been included to provide a better comparison for the 

response with and without the foundation. Following geometrical dimensions and material 

properties are used to generate the results: L = 1.0 m, b = 0.02 m, t0 = 0.005 m, E0 = 210 

GPa, ρ0 = 7850 kg/m3. 

Three different classical flexural boundary conditions are considered (clamped-

clamped (CC), clamped-simply supported (CS) and simply supported-simply supported 

(SS)), whereas the in-plane boundary is assumed to be immovable. The start functions for 

transverse displacement (w) and for axial displacement (u) are chosen fulfilling the 

conditions outlined in the Mathematical Formulation segment. It is imperative that these 

chosen functions satisfy the boundary conditions of the system. The start functions for 

transverse displacements corresponding to the boundary conditions are listed in tabular 

form in Table 3.4 in Chapter 3. The start function for in-plane boundary conditions 

(immovable i.e., no displacement at the two ends, ξ = 0 and ξ = 1) is taken as  1  .  

4.5.1 Convergence study: 

These selected start functions are used to generate the higher order functions with 

the help of Gram-Schmidt orthogonalisation principle. One important aspect to decide is 

the number of higher order functions for w and u to be generated. Similarly, the number of 

Gauss points (ng) also has significant influence on the accuracy of the results obtained. 

Hence, necessary convergence tests must be performed to arrive at acceptable values for 

these parameters. The convergence study is carried out for a clamped beam resting on an 

elastic foundation of stiffness, K = 103 N/m and the profile of the beam is parabolic in 
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nature with taper parameter of 0.2. Material model for this particular study is considered as 

model 2. In order to conduct the test, the maximum normalised deflection of the system is 

tracked against the variation of relevant parameters at a given excitation amplitude (10 

N/m) and excitation frequency value (31.85 Hertz). The results of the convergence study 

are presented in Figure 4.2. Normalized maximum deflection (wmax/t0) of the system is 

plotted against number of Gauss points (ng) is plotted in Figure 4.2(a). A choice of 24 

Gauss points for the present work is made from this study. The positions of these Gauss 

points within the computational domain are indicated in Table 3.5 in the chapter 3. It is 

evident that these points are equally spread out and they are densely spaced at the two 

extremities, while sparsely spaced towards the middle. The second part of the convergence 

study fixes the number of functions to be generated. The previously mentioned system is 

analyzed for variation in number of orthogonal functions assuming that the number of 

functions for w and u are equal (nw = nu). The convergence results are furnished in Figure 

4.2(b) and a choice of 8 functions are made. 

 
                                          (a)                 (b) 

Figure 4.2: Convergence study for (a) number of gauss point and (b) number of 
orthogonal functions 

4.5.2 Validation study: 

Once the above-mentioned parameter values corresponding to the numerical 

scheme are ascertained, the next task is to establish the validity of the present methodology 

and solution technique. The validation of the current method is carried out through 

comparison with previously established results. However, the authors are not aware of any 
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benchmark results that provide frequency response curves for the system under 

consideration. So, comparison with a system having reduced complexity is undertaken. A 

simple clamped homogeneous uniform beam under a point harmonic excitation at the mid-

span is considered (Ribeiro, 2004). In the present formulation the system is simulated by 

considering a foundation stiffness K = 0 N/m, while the taper parameter is reduced to 0. 

The generated results for frequency response curve as shown in Figure 4.3 exhibit good 

agreement with result published by Ribeiro (2004).  

 
Figure 4.3: Validation plot for large amplitude forced vibration response of clamped 

uniform beam under point load (0.134 N) at mid-span of the beam following Broyden’s 
method 

4.5.3 Frequency response curves: 

Numerical results for large amplitude forced vibration analysis are presented in 

terms of normalised frequency response plots, where the normalised excitation frequency 

(ωf/ω1) is the abscissa, while ordinate represents normalised maximum deflection. 

Maximum amplitude of vibration is normalized by root thickness (t0) of the beam. On the 

other hand normalization of the forcing frequency is carried out by dividing with the 

fundamental frequency (ω1) of the system. It should be mentioned here that the natural 

frequencies of the system are determined following a separate geometrically nonlinear free 

vibration analysis, whose details are provided in Chapter 3. 

To determine the response curves frequency sweep is initiated at or near zero excitation 

frequency with a particular excitation amplitude and gradually increased beyond resonance. 



Chapter 4 

80 
 

Such a sweep is designated as sweep up, while, another frequency sweep, categorized as 

sweep down, is conducted by gradually reducing the excitation frequency from a finite high 

value towards zero. 

 
                                          (a)                                                              (b) 

 
                                                                          (c) 

Figure 4.4: Effects of the excitation amplitude on frequency response for different 
boundary conditions: (a) CC (b) CS and (c) SS 

The frequency response curves are categorized into two distinct zones. In the first 

zone, with the increase in excitation frequency, the response amplitude increases, while, in 

the other zone response amplitude reduces. Nonlinear behaviour of the system can be 

observed in the Multi response zone where two response amplitudes corresponding to the 

previously mentioned distinct zones are found. The branches of the response curve in these 

two zones are stable solutions. Theoretically, a third zone, where an unstable steady-state 
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solution is possible, exists but could not be captured through current methodology. The 

discontinuous appearance of the response curves is due to the fact that solutions in the 

unstable zone are not obtained. 

 
                                          (a)                                                              (b) 

 
                                                                          (c) 

Figure 4.5: Frequency response of AFG linear taper beam (Material 1) for different 
boundary conditions: (a) CC (b) CS and (c) SS 

4.5.3.1 Effect of exitation amplitude: 

The effect of excitation amplitude on the frequency response of AFG beam is shown 

in Figure 4.4. Three plots for three different boundary conditions (CC, CS and SS) are 

presented corresponding to linear taper beam and material 2. Foundation stiffness and taper 

parameter have been fixed at 10 and 0.4, respectively, whereas the non-dimensional 
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excitation amplitude is varied from 30 to 60 in steps. The normalizing factor (fundamental 

frequency) for excitation frequency for the three boundary conditions are different and 

these values are furnished in Table 3.6, Table 3.9 and Table 3.12 for CC, CS and SS beam 

respectively in Chapter 3. Backbone curves corresponding to the system are also 

incorporated into the frequency response plots of Figure 4.4. These backbone curves are 

generated from the large amplitude free vibration analysis performed in the previous 

chapter. It is observed from Figure 4.4 that at a given excitation frequency, the response 

amplitude of beam with SS boundary conditions (Figure 4.4(c)) is the highest, whereas for 

beam with CC boundary conditions (Figure 4.4(a)) it is lowest.  

 
                                          (a)                                                              (b) 

 
                                                                          (c) 

Figure 4.6: Frequency response of AFG linear taper beam (Material 2) for different 
boundary conditions: (a) CC (b) CS and (c) SS 
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                                          (a)                                                              (b) 

 
                                                                          (c) 

Figure 4.7: Frequency response of AFG linear taper beam (Material 3) for different 
boundary conditions: (a) CC (b) CS and (c) SS 

It is evident from the figures that the general behaviour of the frequency response 

curves are similar. In all the cases two separate response branches are visible. In one branch, 

response amplitude monotonically increases with excitation frequency, while, in the other 

one it decreases with increase in forcing frequency. Interestingly, after a certain frequency 

value a multiple response zone is obtained, where, corresponding to one excitation 

frequency two responses are present. It is also observed that the plots are tilted towards the 

right of vertical in all three cases. This behaviour can be attributed to the stretching effect 

associated with large deflection resulting in additional stiffening of the system. It is also 

observed that the two segments of the frequency response envelop the backbone curve of 
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the system. As the excitation amplitude is continuously decreased the amplitude of the 

response also decreases and at very low excitation amplitude the response curve is likely 

to merge with the backbone curve. In fact, this behaviour corroborates the statement that 

the backbone curve is actually system response under zero amplitude excitation. 

 
                                          (a)                                                              (b) 

 
                                                                          (c) 

Figure 4.8: Frequency response of AFG parabolic taper beam (Material 2) for different 
boundary conditions: (a) CC (b) CS and (c) SS 

4.5.3.2 Effect of foundation stiffness: 

Figures 4.5-4.7 represent the frequency response in the vicinity of fundamental mode of 

vibration of linearly tapered beam on elastic foundation with three different material 

models (Material 1, Material 2 and Material 3). In each figure, there are three sets of plots 
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for three different boundary condition (CC, CS and SS) and in each plot four response 

curves are depicted corresponding to various spring stiffness values which varies from 0 to 

30. The taper parameter is kept as constant, at 0.4 to plot the results with an objective to 

study the influences of the foundation stiffness. Similar plots for parabolic tapered beams 

are provided in Figures 4.8-4.9, whereas response curves for exponential AFG beams are 

shown in Figures 4.10-4.11. Results corresponding to Material 1, which corresponds to a 

homogeneous material, is included for linearly tapered beams only. For the other two taper 

patterns (parabolic and exponential), results are provided only for Materials 2 and 3.  

 
                                          (a)                                                              (b) 

 
                                                                          (c) 

Figure 4.9: Frequency response of AFG parabolic taper beam (Material 3) for different 
boundary conditions: (a) CC (b) CS and (c) SS 
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In these sets of plots, with change in the foundation stiffness, four different 

backbone curves would have been obtained and putting them all together in the same figure 

would have made it cluttered. Hence, a conscious decision not to incorporate these system 

backbones is taken in order to maintain the clarity of the figures. 

 
                                          (a)                                                              (b) 

 
                                                                          (c) 

Figure 4.10: Frequency response of AFG exponential taper beam (Material 2) for 
different boundary conditions: (a) CC (b) CS and (c) SS 

It is observed from Figures 4.5-4.11, in all the cases, with increase of foundation 

stiffness the response amplitude decreases in the low excitation frequency zone. But the 

trend is completely opposite in the higher frequency zone. There appears to be cross-over 

point in the response behaviour around ωf/ω1 = 1.00 in each case. Another important 

observation is that the response curves in forward sweep of SS beam are more diverging in 
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the non-dimensional plane from each other than the other two boundaries. From the above 

discussion it may be concluded that nonlinearity involved in case of SS beam is higher than 

the other two taper patterns. For CC and CS beam, the difference between the response 

curves are found to be small.  

 
                                          (a)                                                              (b) 

 
                                                                          (c) 

Figure 4.11: Frequency response of AFG exponential taper beam (Material 3) for 
different boundary conditions: (a) CC (b) CS and (c) SS 

For linear taper pattern, it is quite clear that the change in response curves for 

different material model is hardly found for a particular case of boundary condition, as 

shown in Figures 4.5-4.7. For other type of taper pattern i.e. parabolic and exponential taper 

same trend can be found. It is also observed from the figures that for particular boundary 
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condition and material model, in exponential taper the response curves are more openly 

clustered than the other two (linear and parabolic) for different foundation stiffness values. 

 
                                         (a)                                                               (b) 

 
                                                                          (c) 
Figure 4.12: Effects of the taper parameter on frequency response for CC beam for (a) linear 

taper (b) parabolic taper and (c) exponential taper 

4.5.3.3 Effect of tapering: 

Figure 4.12 shows the effect of taper parameter on forced vibration response of 

AFG Timoshenko beam for different boundaries. Three different taper patterns are 

considered in which CC boundary condition is taken. For linear and parabolic taper pattern 

the taper parameter values are varied from 0 to 0.6, whereas, in the case of exponential 

taper pattern value are varied from 0 to 0.912691. It is to be noted that taper parameter 0.0 

represents the case of uniform beam. The excitation amplitude and foundation stiffness 
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have been fixed at 50 and 10, respectively. From the Figure 4.12, it is observed that with 

the increase of taper parameter values, the amplitude of the response is increasing in nature 

in the low frequency domain, whereas, the trend is reversed at higher frequency range. This 

type of trend is found due to removal of material with increasing taper which further 

contributes to the reduction of beam stiffness. In these sets of figures, the backbone curves 

for the four individual cases are not incorporated for the sake of better clarity. 

4.5.4 Operational deflected shape (ODS): 

 
(a)                                                              (b) 

Figure 4.13: Operational deflection shape (ODS) plots for non-uniform AFG beam with 
clamped boundary conditions under uniformly distributed excitation: (a) response curve 
showing representative points and (b) operational deflection shapes corresponding to the 

representative points. 

The shape attained by the system while vibrating under the influence of external 

excitation is often referred to as operational deflection shape (ODS). For the present 

analysis, evolution of the ODS as one moves along the branches of the frequency response 

curves is studied carefully. In other words, the effects of excitation frequency on the ODS 

is investigated by analysing a clamped parabolic tapered AFG beam with taper parameter 

of 0.2 under the action uniformly distributed excitation with amplitude of 10 N/m. The 

beam is resting on a foundation with stiffness of 103 N/m and the Material model 2 is 

considered. Figure 4.13(a) shows the frequency-response curve along with some 

representative points. The ODS corresponding to these representative points are shown in 

Figure 4.13(b). The  points  on  the  response  curve  at  which  the  ODS  are  shown 

correspond to different  frequency-amplitude  combinations. The start of the multi-response 
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zone is designated by point ‘a’ on the higher branch of the response. Point ‘a1’ is obtained 

by moving vertically down from point ‘a’ and it corresponds to the same excitation 

frequency level as ‘a’. Point ‘b’ represents the case when the system attains normalized 

response amplitude of 2.0. Point with the same frequency as point ‘b’ but on the lower 

branch is represented by point ‘b1’. The ODS of different representative points seems 

similar with different maximum response amplitude. However, one major difference that 

can be noted is that the response at the lower branch is out of phase with the response in 

the increasing branch. 

4.6 Closure: 

In the present chapter, large amplitude force vibration analysis is performed on a 

axially functionally graded tapered thin beam which is resting on elastic foundation with 

different end condition. A displacement based semi-analytical method along with energy 

principles is employed for the mathematical formulation and the governing differential 

equation of the system is developed through application of Hamilton’s principle. Due to 

consideration of nonlinear strain-displacement relations the set of governing equations also 

exhibits nonlinear features. To solve for the set of nonlinear equations Broyden’s method 

(quasi-Newton method) is applied and numerical solutions in terms of transverse and in-

plane displacement fields are obtained. A convergence study is performed to determine the 

values for various parameters related to the numerical scheme. Established result from 

existing literature is used to provide validation for the present method and solution 

procedure. The geometric nonlinear forced vibration characteristic of the system is 

represented through frequency response curves in non-dimensional excitation frequency-

maximum response amplitude diagrams. New results, capable of acting as benchmark 

results, are provided for a combination of four flexural boundary conditions, three material 

models and four foundation stiffness values. However, the general nature of the formulation 

and solution technique ensures that other type of taper pattern, material gradation as well 

as excitation pattern can be handled with minimum modifications.  
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FREE AND FORCED VIBRATION ANALYSIS: AXIALLY 

FUNCTIONALLY GRADED TIMOSHENKO BEAM ON 

ELASTIC FOUNDATION  

 

5.1 Introduction:  

In case of beams with sufficient thickness, shear deformation and rotational bending 

effects across a section cannot be ignored without compromising the accuracy of the 

analysis. Hence, Timoshenko beam theory, which considers the shear deformation of a 

beam cross-section, is more suitable to describe the behaviour of thick beams. Governing 

equations in case of Timoshenko beam theory is of higher order and contains a second-

order partial derivative, unlike Euler–Bernoulli beam theory. Physical significance of 

considering this theory is that the additional rotation of the cross-section with respect to the 

neutral axis lowers the stiffness of the beam. As a result there is larger deflection under 

static loading, while the predicted eigen-frequencies for a particular boundary condition is 

lower. For this reason, the Euler–Bernoulli model always overestimates the analysis 

outcomes i.e. deflections in static analysis, natural frequencies in free vibration analysis 

and the frequency response in forced vibration analysis. In the present chapter both free 

and forced vibration analysis has been carried out for an axially graded Timoshenko beam 

resting on elastic foundation. 

The free and forced vibration analyses are carried out in two separate sections with 

different basic assumptions. The nonlinear free vibration problem is solved in two steps. 

The objective of the first part is to compute the stiffness matrix in deflected configuration 

through a static analysis. In the second step, this equivalent stiffness matrix is directly used 

in dynamic analysis for obtaining eigenvalues and eigenvectors which form the natural 

frequency and mode shape of the system, respectively. In this regard, it is important to note 

that separate static analysis in not performed and kept out of the present chapter to avoid 
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repetitiveness and maintain brevity, as it is an in-built part with the free vibration analysis. 

The assumption in the nonlinear forced vibration analysis is that all the forces acting on the 

system attains equilibrium at the peak amplitude. This unique assumption enables the 

dynamic problem to be solved as an equivalent static problem.  

In the context of this chapter, it is important to note that the relations for material 

property variations and thickness variations, as well as the solution procedures used in free 

vibration problem of Timoshenko are similar to those presented in relation to analysis of 

Euler Bernoulli beams (Chapter 3). These are not repeated here to maintain conciseness. 

Similarly, the adopted solution techniques and procedures for forced vibration analysis are 

same as forced vibration problem of Euler Bernoulli beams which are presented in the 

previous chapter (Chapter 4). However, for forced vibration scenario a separate material 

model is considered along with linear taper pattern for thickness variation.  

 
                                    (a)                                                             (b) 
Figure 5.1: (a) AFG beam on elastic foundation, (b) front and top view of the taper beam. 

5.2 Geometric and material parameter: 

A non-uniform AFG Timoshenko beam of length L, width b and variable thickness 

t(x), subjected to uniformly distributed transverse loading is considered as shown in Figure 

5.1. The variation of thickness of the beam, t(x), is along the axial direction (Figure 5.1(b)). 

Similarly, the gradation of material properties i.e. modulus of elasticity, E(x), and the mass 

density, ρ(x), of the beam is considered along the longitudinal axis (x-axis) of the beam 

(Figure 5.1(b)). In the present formulation, the beam is considered to be supported on elastic 

foundation (Figure 5.1(a)). The foundation stiffness is quantified by the stiffness coefficient 

of the linear spring and it is denoted by kf. The details about the thickness variation, material 
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property variation and characteristic of the elastic foundation are discussed in the Chapter 

3 (Section 3.2 & 3.3). 

5.3 Nonlinear free vibration analysis: 

The effect of elastic foundation on free vibration of initially deflected non-uniform 

axially functionally graded (AFG) thick beam on elastic foundation on the basis of 

Timoshenko beam theory is studied. The elastic foundation is idealized as a set of parallel 

linear springs. Formulation is carried out through displacement based energy principle. 

First, the static problem is solved to find out the unknown displacement field by using 

minimum total potential energy principle. Solution methodology involves an iterative 

technique known as direct substitution with relaxation scheme. Secondly, subsequent 

dynamic problem is set up as an eigenvalue problem on the basis of the known displacement 

field. The governing set of equations in dynamic problem is obtained by using Hamilton’s 

principle and solved with the help of Matlab’s intrinsic solver. The results of the present 

method are validated with previously published articles. Frequency vs. displacement curve 

corresponding to different combinations of system parameters are presented in non-

dimensional plane and are capable of serving as benchmark results. 

5.3.1 Mathematical formulation: 

Mathematical formulation of the problem is performed in such a way that it can be 

broken down into two distinct but interlinked problems - first, a static analysis and second, 

a free vibration analysis based on the static solution. The static analysis deals with the 

system under uniform transverse loading that imposes transverse deflection on the beam. 

This problem takes into account geometric nonlinearity and hence addresses the large 

deflection effect. Nonlinear strain-displacement relations are considered in order to 

incorporate geometric nonlinearity. Once the solution to the static problem is obtained pre-

loaded static configuration of the beam under application of uniformly distributed load 

becomes known. Now, the system is assumed to execute a small amplitude vibration about 

the deflected configuration. Hence, the free vibration problem is formulated with the 

objective of finding out the loaded natural frequencies of the deformed system. The effect 

of the statically inflicted large deflection is incorporated into the dynamic system. Both the 

static and dynamic analyses are formulated based on variational form of appropriate energy 
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principles. Also, shear deformation and rotary inertia are incorporated by virtue of 

employing Timoshenko beam theory. 

5.3.1.1 Static analysis: 

The static analysis is based on the minimum total potential energy principle, which 

states that the total potential energy of the system is minimized by a kinematically 

admissible displacement field (out of all the kinematically admissible displacement fields) 

corresponding to the stable equilibrium. The principle is mathematically expressed as,  

  0U V            (5.1) 

Here, δ designates variational operator, U is the total strain energy stored in the system 

(which includes the beam as well as the foundation) due to external loadings and V is the 

work done by the external loading. Total strain energy in the system is made up of strain 

energy stored in the beam and the foundation. Moreover, strain energy of the beam can 

again be split into two components, namely, strain energy due to axial strain (Ua) and strain 

energy due to shear strain (Us). This implies that the total strain energy can be expressed as 

the summation of three distinct parts, as follows: U = Ua +Us +Uf. Here, Uf is the strain 

energy stored in the system due to deformation of the elastic foundation. 

The present formulation is a semi-analytical displacement based approximate 

method, which indicates that in the expression of strain energies, the strains (axial as well 

as shear) are to be replaced by appropriate displacement relations. In order to express the 

strain energies in terms of displacement fields, following strain-displacement expressions 

are invoked (Shames and Dym, 2009) for axial strain (εa) and shear strain (εs). 

2
1

2a

dw du d
z

dx dx dx

     
 

       (5.2) 

1

2s

dw

dx
    

 
        (5.3) 

It is important to note that Equation (5.2) is nonlinear in nature and on neglecting 

the third term of the expression it resembles von Karman type nonlinear strain-

displacement relation. The displacement fields associated with the above expressions are 
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as follow: transverse displacement field (w), in-plane displacement field (u) and rotational 

field (ψ) of beam section due to bending. All these displacement fields are dependent on 

the axial coordinate and they are defined at the mid-plane of the beam. Substituting the 

strain-displacement expressions, the strain energies, Ua, Us and Uf, can be expressed as 

follows, 
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ksh is termed as shear correction factor. It is well known that for rectangular cross-section 

the numerical value of ksh is taken as 5/6. Here, G(x) is shear modulus which is expressed 

by, G(x) = E(x)/2(1+µ). In order to implement the minimum total potential energy 

principle, expression for potential for external work need to be obtained and it is provided 

corresponding to uniformly distributed load q(x) in Equation (5.7). It is noteworthy that in 

the present study, only uniformly distributed load has been taken into account. However, 

this is not a limitation on the present methodology. Any other form of transverse loading 

(such as concentrated load, triangular load, hat load etc.) can be accommodated in the 

analysis, as long as it can be expressed mathematically in terms of analytical or numerical 

functions. 

0

L

V qwdw           (5.7) 

As the present method is an approximate one, the displacement fields need to be 

approximated through finite linear combinations of kinematically admissible functions and 

unknown coefficients, as shown 
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In the above expressions, φi, αi and βi represent the set of orthogonal admissible 

functions corresponding to the displacement fields w, u and ψ, respectively, whereas, di 

denotes the set of unknown coefficients. The number of functions in these sets are taken as 

nw, nu and nsi (corresponding to w, u and ψ) and from the point of view of the numerical 

scheme for solution, nw = nu = nsi. The choice of the admissible functions are solely based 

on the boundary conditions of the beam. In fact, the first function within the set (φ1, α1 and 

β1) is known as the start function and it is selected carefully satisfying the requisite 

boundary conditions, i.e., flexural, in-plane and end rotation conditions. It should also be 

pointed out that these functions need to be continuous and differentiable within the domain. 

Consequently, the higher order functions (upto nw/nu/nsi) are generated following a 

numerical implementation of Gram–Schmidt orthogonalization scheme. Once the 

approximate displacement fields are substituted into the appropriate energy functionals, the 

problem reduces to finding out the unknown coefficients (di). 

Substituting the expression of the energy functionals, given by Equations (5.4), 

(5.5), (5.6) and (5.7) into Equation (5.1) and considering the assumed displacement fields, 

given by Equation (5.8), the governing set of equations are obtained in matrix form, as 

follows,  

    K d f         (5.9) 

where, [K] are the stiffness matrix and {f} are the load vector. The dimensions of these each 

matrix will be (nu + nw + nsi). The form and elements of [K] and {f} are furnished in detail 

in the Appendix. 
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5.3.1.2 Dynamic analysis: 

Starting point for the dynamic analysis is Hamilton’s principle, which is utilized to 

derive the governing sets equations, 

 
2
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0T U V d




 
 

    
 
        (5.10) 

Here, T is the kinetic energy of the beam due to external excitation, U refers to the system 

strain energy with respect to deflected configuration and τ is the time. The expression of U 

remains unchanged from that described by Equations (5.4) – (5.6) in static analysis. Kinetic 

energy of the present system is expressed through the expression shown in Equation (5.11). 

It needs to be mentioned here that the present free vibration study is performed on a pre-

stressed beam, whose static solution has already been obtained in the previous step. So, the 

potential energy of the external load (V) can be set to zero. 
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Here, ρ(x) is the mass density of the beam. The displacement fields associated with the 

above expression are dynamic in nature with a time varying component. So, these fields 

contain a spatial and a temporal part and it is assumed that these two parts are completely 

separable. The assumed dynamic displacement fields are expressed as follows, 
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Here, the spatial part apparently seems same as that considered in the static analysis and cis 

are a set of unknown coefficients different from the unknown parameters defined in the 

static analysis. However, φi, αi and βi are same as the static problem. ω denotes the natural 
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frequency of the vibratory system and 1j   . Substituting the expressions of strain 

energy (Equations (5.4), (5.5) and (5.6)) and kinetic energy (Equation (5.11)), as well as 

the assumed dynamic displacements (Equation (5.12)) into Equation (5.10), the governing 

equation is obtained as follows: 

     2 0K c M c         (5.13) 

Here, [K] is the stiffness matrix of the system at deflected configuration and [M] is mass 

matrix, respectively. The elements of [M] are provided in Appendix. 

5.3.2 Solution procedure: 

  A glance at the elements of the stiffness matrix reveals that the unknown 

coefficients (di) appear in certain terms. It means that stiffness matrix is a function of the 

undetermined parameters by virtue of considering nonlinear strain-displacement relations 

and consequently large deformation. Hence, the set of governing equations represented by 

Equation (5.9) is nonlinear in nature. A direct solution involving inversion of the stiffness 

matrix, followed by pre-multiplication with the load vector is not an option. Approximate 

solution for the unknown coefficients (di) from the set of nonlinear equations is obtained 

following direct substitution method with successive relaxation. This is a numerical 

iterative technique dependent on an initial guess. All the stiffness matrix elements can be 

completely evaluated on the basis of the converged static solution, while the elements of 

the mass matrix are derived from the problem definition. It is to be noted that the system 

governing equations given by Equation (5.13) represent a standard eigenvalue problem, 

solution to which is obtained by using Matlab's intrinsic solver. Natural frequencies of the 

pre-stressed system are provided by the square root of the eigenvalues. Mode shapes of the 

vibrating system are obtained from the eigenvectors. The techniques and solution 

procedures used are similar to those presented in relation to analysis of beams described in 

Chapter 3 (Section 3.5). 

5.3.3 Result and discussion: 

 In the present study, free vibration analysis of transversely loaded non-uniform 

AFG Timoshenko beam resting on elastic foundation is performed. The static analysis 

inflicting large deformation under transverse uniform loading is geometrically nonlinear in 
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nature, while an eigenvalue analysis is undertaken to determine the loaded natural 

frequencies of the system. The geometric dimensions of the beam for length (L) and width 

(b) are taken as 0.2 m and 0.02 m respectively, whereas, length-to-thickness ratio (L/t0) is 

taken as 20. Three different types of taper pattern are considered, which are linear, parabolic 

and exponential taper, respectively, and the expressions are tabulated in Table 3.1 in 

Chapter 3. Four taper parameter (α) are considered as indicated in Table 3.2 in Chapter 3. 

Three different material models are selected for the AFG beam, where gradation of material 

properties (i.e. elastic modulus and density) are considered in the axial direction. The details 

of the property variations in terms of expressions are provided in Table 3.3 (Chapter 3). 

Elastic modulus and mass density of the root side of the beam and taken as 210 GPa and 

7850 kg/m3, respectively, which resemble the property of structural steel. It is important to 

note that Poisson ratio (µ) is taken as constant throughout the entire analysis which is 0.3. 

Table 5.1: List of start functions for the displacement fields. 
Displacement field Boundary Conditions Function 

w CC w(0)= 0, w(L)= 0 1=(x/L){1-(x/L)} 
CS 
SS 

u CC u(0) = 0, u(L)= 0 α1= (x/L){1-(x/L)} 
CS 
SS 

ψ CC ψ(0)= 0, ψ(L)= 0 β1=sin(πx/L) 
CS ψ(0)= 0, ψ(L) ≠ 0 β1=sin(πx/2L) 
SS ψ(0)≠ 0, ψ(L) ≠ 0 β1=cos(πx/L) 

Three different flexural boundary conditions, namely, CC, CS and SS, of the beam 

are selected, while for in-plane boundary conditions it is assumed that all the ends are 

immovable. At the clamped (C) end the rotational field has a zero value, whereas it has a 

non-zero value at the simply supported (S) end. The selected start functions for each of the 

displacement fields are given in Table 5.1 for all the three boundary conditions under 

consideration. Higher order functions to complete the orthogonal set are generated by 

implementing a numerical scheme for Gram–Schmidt orthogonalization principle, where 

the start function and the number of functions to be generated serve as inputs. The 

appropriate number of functions to be used is decided after a careful convergence study and 

these results are discussed in the next paragraph. In practical applications beams are seldom 

supported by classical boundary conditions. Either they are supported by elastic restrain at 
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the ends or rested on elastic foundation. To make the problem more realistic, the beam 

under consideration is taken to be resting on elastic foundation. Four different value of the 

non-dimensional foundation stiffness, Kf = kf[(L/t0)3/E0b] is consider here. These values are 

0, 10, 20 and 30 respectively. Here, kf is the dimensional value of stiffness. 

 
     (a)                                                         (b) 

 
         (c)                                                              (d) 

Figure 5.2: (a)-(b) Convergence studies for no. of orthogonal functions (nw = nu = nsi) 
corresponding to static and free vibration analysis and (c)-(d) Convergence studies for 

gauss points (ng) corresponding to static and free vibration analysis. 

5.3.3.1 Convergence study: 

In order to create the reference points for numerical evaluation within the 

computational domain, number of gauss points are generated along the length of the beam. 



Dynamics of AFG Timoshenko Beam on Elastic Foundation 

101 

Choice of number of gauss points (ng) is an important issue, as it influences the outcome 

of the numerical scheme. Hence, detailed convergence study is necessary for selection of 

proper number of gauss points. This convergence study, along with the one carried out for 

determining the number of functions, is carried out on a linear tapered (α = 0.2) AFG 

(Material 2) beam with clamped ends and supported on an elastic foundation having Kf  = 

100. There are two aspects to these studies, first, comparison of normalised maximum static 

deflection and second, comparison of dimensional fundamental frequency with respect to 

the relevant parameters. For the static scenario, intensity of the distributed load is taken as 

750 kPa, while, for the dynamic case, no load condition is assumed. The results of the study 

are presented in Figure 5.2 and from these figures, number of gauss points (ng) and number 

of orthogonal functions (nw = nu = nsi) are selected as 24 and 8, respectively. 

Table 5.2: Comparisons of first four dimensionless  2
0 0 0 0L A E I   natural 

frequencies of graded and non-uniform Timoshenko CC beam for different n value. 

Literatures Ω n=1 n=2 n=3 n=4 

Shahba et al. (2011) 

1 

- 12.4689 - - 

Huang et al. (2013) 12.6816 12.4633 12.3753 12.3622 

Present study 12.6487 12.4292 12.3405 12.3267 

Shahba et al. (2011) 

2 

- 26.4153 - - 

Huang et al. (2013) 26.4910 26.3804 26.3188 26.3116 

Present study 26.4306 26.3181 26.2551 26.2465 

Shahba et al.(2011) 

3 

- 43.0904 - - 

Huang et al. (2013) 42.642 42.9611 43.0839 43.135 

Present study 42.5356 42.8552 42.9763 43.0256 

Shahba et al. (2011) 

4 

- 59.6829 - - 

Huang et al. (2013) 58.6685 59.4023 59.6994 59.8150 

Present study 58.5090 59.2332 59.5247 59.6382 

5.3.3.2 Validation study: 

The present methodology and analysis is validated with the results of previously 

published articles of Shahba et al. (2011) and Huang et al. (2013) for fully axial graded 

(ZrO2 - Al) and non-uniform Timoshenko beam without elastic foundation. The comparison 

of linear dimensionless natural frequencies  2
0 0 0 0L A E I   for first four mode are 

tabulated in Table 5.2 for CC end conditions. For this purpose, the length (L) and moment 
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of inertia to cross-section ratio (I0/A0) at root side of the beam are used as 1.0 m and 0.01, 

respectively. The material gradation along the axial direction follows the expressions, 

E(ξ)= E0+(E1-E0)(n) and ρ(ξ)= ρ0+(ρ1-ρ0)(n).  The material properties used for 

comparison are as follows, E0 = 200 GPa, ρ0= 5700 kg/m3, E1 = 70 GPa and ρ1 = 2702 

kg/m3. The non-uniform pattern of the beam is considered according to the expression, 

t(ξ)= t0(1−αξ) with taper parameter, α = 0.1. From the above comparison, it can be 

observed that the current results match satisfactorily with the established results. 

5.3.3.3 Natural frequencies: 

Table 5.3: Values of dimensionless natural frequencies  2
0 0 0 0L A E I   for 1st 

and 2nd mode (Ω1 and Ω2) corresponding to linearly tapered CC AFG beam for different 
combinations of taper parameter, spring stiffness and material properties 

Taper 
Pattern 

Taper 
Parameter 

Stiffness  
Material 1 Material 2 Material 3 

CC CC CC 
Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 

Linear 

0 

0 21.92 59.16 20.06 54.23 22.06 59.33 
10 22.46 59.36 20.40 54.35 22.39 59.46 
20 22.99 59.56 20.73 54.48 22.71 59.58 
30 23.50 59.76 21.06 54.61 23.03 59.70 

0.2 

0 19.74 53.47 17.91 48.77 19.70 53.41 
10 20.40 53.71 18.32 48.92 20.10 53.56 
20 21.05 53.96 18.73 49.08 20.50 53.71 
30 21.67 54.21 19.12 49.24 20.89 53.86 

0.4 

0 17.39 47.26 15.61 42.82 17.17 46.96 
10 18.25 47.59 16.14 43.03 17.69 47.16 
20 19.07 47.91 16.65 43.23 18.19 47.35 
30 19.85 48.22 17.15 43.43 18.68 47.54 

0.6 

0 14.80 40.31 13.08 36.21 14.40 39.77 
10 15.98 40.77 13.81 36.48 15.11 40.04 
20 17.08 41.22 14.50 36.75 15.78 40.30 
30 18.12 41.67 15.15 37.02 16.43 40.56 

Dimensionless natural frequencies  2
0 0 0 0L A E I    for the first two 

modes (Ω1 and Ω2) for three different boundary conditions (CC, CS and SS) of AFG 

Timoshenko beams are provided in Tables 5.3-5.11 for different combination of material 

models, taper patterns, taper parameters and foundation stiffness values. For each boundary 

condition, three tables are furnished to accommodate linear, parabolic and exponential taper 

pattern accordingly. The taper parameter (α) is varied from 0.0 to 0.6 for each linear and 
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parabolic taper pattern whereas for the case of exponential taper pattern the variation is 

considered from 0 to 0.916291. The values of α have been so selected that the thickness at 

the other end remains same for all the taper patterns to provide a better understanding on 

the effects of taper pattern on the results. Under each taper pattern four different foundation 

stiffness values are considered, as it is varied from 0 to 30 in the fixed interval of 10.  

Table 5.4: Values of dimensionless natural frequencies  2
0 0 0 0L A E I   for 1st 

and 2nd mode (Ω1 and Ω2) corresponding to parabolic tapered CC AFG beam for different 
combinations of taper parameter, spring stiffness and material properties 

Taper 
Pattern 

Taper 
Parameter 

Stiffness  
Material 1 Material 2 Material 3 

CC CC CC 
Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 

Parabolic 

0.2 

0 20.08 54.83 18.22 50.02 20.03 54.77 
10 20.70 55.06 18.60 50.16 20.41 54.91 
20 21.30 55.29 18.99 50.31 20.78 55.03 
30 21.89 55.52 19.36 50.45 21.15 55.19 

0.4 

0 18.07 50.03 16.24 45.35 17.86 49.72 
10 18.81 50.30 16.69 45.52 18.30 49.89 
20 19.53 50.58 17.14 45.69 18.74 50.05 
30 20.22 50.85 17.58 45.86 19.17 50.22 

0.6 

0 15.83 44.51 14.04 40.02 15.45 43.94 
10 16.75 44.86 14.61 40.23 16.00 44.14 
20 17.63 45.21 15.15 40.44 16.54 44.35 
30 18.47 45.56 15.68 40.65 17.05 44.55 

Table 5.5: Values of dimensionless natural frequencies  2
0 0 0 0L A E I   for 1st 

and 2nd mode (Ω1 and Ω2) corresponding to exponential tapered CC AFG beam for different 
combinations of taper parameter, spring stiffness and material properties 

Taper 
Pattern 

Taper 
Parameter 

Stiffness  
Material 1 Material 2 Material 3 

CC CC CC 
Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 

Exponential 

0.223144 

0 19.23 51.84 17.47 47.32 19.21 51.81 
10 19.95 52.10 17.91 47.49 19.65 51.98 
20 20.64 52.37 18.35 47.66 20.08 52.14 
30 21.31 52.64 18.78 47.83 20.49 52.30 

0.510826 

0 16.25 43.59 14.62 39.58 16.09 43.38 
10 17.28 43.98 15.26 39.82 16.72 43.62 
20 18.25 44.37 15.88 40.06 17.32 43.85 
30 19.18 44.75 16.47 40.30 17.90 44.09 

0.916291 

0 12.82 33.99 11.40 30.63 12.55 33.64 
10 14.55 34.67 12.46 31.05 13.59 34.04 
20 16.08 35.34 13.44 31.45 14.56 34.43 
30 17.48 35.99 14.35 31.85 15.46 34.82 
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Table 5.6: Values of dimensionless natural frequencies  2
0 0 0 0L A E I   for 1st 

and 2nd mode (Ω1 and Ω2) corresponding to linear tapered CS AFG beam for different 
combinations of taper parameter, spring stiffness and material properties 

Taper 
Pattern 

Taper 
Parameter 

Stiffness  
Material 1 Material 2 Material 3 

CS CS CS 
Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 

Linear 

0 

0 15.24 48.56 13.10 43.83 14.21 47.73 
10 16.01 48.81 13.57 43.99 14.68 47.88 
20 16.74 49.05 14.03 44.15 15.14 48.03 
30 17.44 49.29 14.47 44.30 15.58 48.19 

0.2 

0 14.12 44.18 12.10 39.69 13.16 43.28 
10 15.05 44.48 12.67 39.88 13.73 43.47 
20 15.92 44.78 13.22 40.06 14.27 43.65 
30 16.75 45.08 13.74 40.25 14.80 43.84 

0.4 

0 12.88 39.44 11.00 35.22 12.00 38.49 
10 14.05 39.83 11.72 35.46 12.71 38.72 
20 15.13 40.42 12.39 35.69 13.38 38.95 
30 16.14 40.60 13.03 35.93 14.01 39.19 

0.6 

0 11.48 34.17 9.74 30.27 10.66 33.18 
10 13.04 34.72 10.69 30.60 11.59 33.50 
20 14.43 35.27 11.56 30.92 12.46 33.81 
30 15.70 35.80 12.36 31.24 13.27 34.12 

Table 5.7: Values of dimensionless natural frequencies  2
0 0 0 0L A E I   for 1st 

and 2nd mode (Ω1 and Ω2) corresponding to parabolic tapered CS AFG beam for different 
combinations of taper parameter, spring stiffness and material properties 

Taper 
Pattern 

Taper 
Parameter 

Stiffness  
Material 1 Material 2 Material 3 

CS CS CS 
Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 

Parabolic 

0.2 

0 14.51 45.54 12.47 40.92 13.56 44.64 
10 15.38 45.82 13.00 41.10 14.09 44.81 
20 16.19 46.10 13.51 41.28 14.60 44.99 
30 16.97 46.37 14.00 41.45 15.09 45.16 

0.4 

0 13.66 42.19 11.73 37.72 12.80 41.24 
10 14.66 42.53 12.34 37.92 13.40 41.44 
20 15.59 42.86 12.92 38.12 13.98 41.63 
30 16.48 43.19 13.47 38.33 14.53 41.83 

0.6 

0 12.62 38.36 10.81 34.05 11.85 37.33 
10 13.82 38.78 11.54 34.30 12.56 37.57 
20 14.92 39.19 12.21 34.55 13.23 37.81 
30 15.94 39.61 12.86 34.79 13.87 38.05 

In Table 5.3 for CC boundary condition results pertaining to α = 0, i.e., a uniform 

beam, has also been presented. However, in the subsequent tables (Table 5.4 and 5.5)  
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Table 5.8: Values of dimensionless natural frequencies  2
0 0 0 0L A E I   for 1st 

and 2nd mode (Ω1 and Ω2) corresponding to exponential tapered CS AFG beam for different 
combinations of taper parameter, spring stiffness and material properties 

Taper 
Pattern 

Taper 
Parameter 

Stiffness  
Material 1 Material 2 Material 3 

CS CS CS 
Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 

Exponential 

0.223144 

0 13.60 42.66 11.65 38.35 12.66 41.81 
10 14.60 42.99 12.27 38.55 13.28 42.01 
20 15.54 43.31 12.86 38.76 13.86 42.21 
30 16.43 43.63 13.42 38.96 14.43 42.81 

0.510826 

0 11.73 36.02 10.00 32.21 10.89 35.17 
10 13.15 36.49 10.87 32.50 11.76 35.46 
20 14.43 36.96 11.68 32.80 12.56 35.75 
30 15.61 37.43 12.43 33.09 13.32 36.03 

0.916291 

0 9.50 28.27 8.04 25.10 8.78 27.48 
10 11.79 29.09 9.44 25.60 10.18 27.96 
20 13.70 29.89 10.66 26.08 11.41 28.44 
30 15.38 30.67 11.76 26.56 12.51 28.90 

Table 5.9: Values of dimensionless natural frequencies  2
0 0 0 0L A E I   for 1st 

and 2nd mode (Ω1 and Ω2) corresponding to linear tapered SS AFG beam for different 
combinations of taper parameter, spring stiffness and material properties 

Taper 
Pattern 

Taper 
Parameter 

Stiffness 
Material 1 Material 2 Material 3 

SS SS SS 
Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 

Linear 

0 

0 9.83 71.67 9.01 65.15 9.80 72.11 
10 10.98 71.84 9.73 65.25 10.51 72.21 
20 12.02 72.00 10.39 65.35 11.17 72.32 
30 12.98 72.17 11.02 65.44 11.79 72.42 

0.2 

0 8.86 64.21 8.11 56.89 8.81 64.24 
10 10.25 64.43 8.99 57.01 9.67 64.35 
20 11.48 64.64 9.79 57.12 10.47 64.47 
30 12.58 64.85 10.53 57.24 11.21 64.59 

0.4 

0 7.90 54.74 7.22 47.72 7.83 54.44 
10 9.61 55.04 8.32 47.88 8.91 54.59 
20 11.07 55.35 9.29 48.04 9.88 54.74 
30 12.35 55.66 10.07 48.20 10.76 54.90 

0.6 

0 6.96 43.82 6.35 37.85 6.86 43.37 
10 9.11 44.33 7.76 38.10 8.25 43.62 
20 10.84 44.84 8.94 38.35 9.44 43.85 
30 12.33 45.34 9.99 38.60 10.49 44.09 

results for α = 0 condition has been omitted to avoid repetition. It should be mentioned here 

that the mathematical expressions for the different taper profiles are such that in each case 
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α = 0 corresponds to a uniform beam and hence, same natural frequency values are obtained 

in these cases. For the other two boundary conditions, i.e., CS and SS, same approach in 

the table of natural frequencies has been taken to avoid duplication. It should also be 

pointed out that foundation stiffness ‘0’ implies the case of beam without foundation 

support, while, Material 1 indicates the case of homogeneous beam (without gradation). 

Table 5.10: Values of dimensionless natural frequencies  2
0 0 0 0L A E I   for 1st 

and 2nd mode (Ω1 and Ω2) corresponding to parabolic tapered SS AFG beam for different 
combinations of taper parameter, spring stiffness and material properties 

Taper 
Pattern 

Taper 
Parameter 

Stiffness  
Material 1 Material 2 Material 3 

SS SS SS 
Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 

Parabolic 

0.2 

0 9.28 66.40 8.50 58.88 9.23 66.43 
10 10.56 66.59 9.30 58.99 10.02 66.54 
20 11.70 66.79 10.04 59.10 10.76 66.64 
30 12.74 66.99 10.73 59.20 11.44 66.75 

0.4 

0 8.73 59.32 7.99 51.81 8.66 59.04 
10 10.17 59.58 8.90 51.95 9.56 59.17 
20 11.42 59.84 9.72 52.08 10.38 59.30 
30 12.55 60.10 10.48 52.22 11.14 59.43 

0.6 

0 8.19 50.83 7.47 44.01 8.08 50.41 
10 9.81 51.21 8.51 44.19 9.11 50.59 
20 11.19 51.58 9.44 44.38 10.03 50.77 
30 12.43 51.96 10.28 44.57 10.87 50.94 

Table 5.11: Values of dimensionless natural frequencies  2
0 0 0 0L A E I   for 1st 

and 2nd mode (Ω1 and Ω2) corresponding to exponential tapered SS AFG beam for different 
combinations of taper parameter, spring stiffness and material properties 

Taper 
Pattern 

Taper 
Parameter 

Stiffness  
Material 1 Material 2 Material 3 

SS SS SS 
Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 

Exponential 

0.223144 

0 8.43 62.13 7.72 55.29 8.39 62.24 
10 9.95 62.35 8.69 55.41 9.34 62.37 
20 11.27 62.58 9.55 55.54 10.20 62.50 
30 12.45 62.80 10.34 55.66 10.99 62.62 

0.510826 

0 6.93 50.43 6.35 44.16 6.88 50.28 
10 9.07 50.79 7.72 44.35 8.24 50.46 
20 10.79 51.15 8.89 44.53 9.41 50.64 
30 12.27 51.50 9.92 44.72 10.45 50.82 

0.916291 

0 5.28 36.70 4.83 31.78 5.22 36.40 
10 8.54 37.41 7.01 32.14 7.39 36.74 
20 10.87 38.11 8.65 32.50 9.06 37.08 
30 12.78 38.79 10.03 32.85 10.46 37.44 
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From the tables 5.3-5.11, it is observed that for all the cases with the increase in 

stiffness of the foundation the natural frequency increases, which is quite an expected 

outcome. This increment of frequency is due to reason that stiffer foundation makes the 

system more rigid. It is also observed that the rigidity of the beam edges and consequently 

the boundary conditions significantly affect the free vibration response. That’s why, the 

natural frequency in CC beam is the highest and in SS beam is the lowest for a fixed value 

of foundation stiffness. For fixed non-zero taper parameter it can be observed that in 

between linear and parabolic taper pattern, the system with parabolic taper pattern has the 

higher natural frequency. It is also observed that for all the cases with increase in taper 

parameter the natural frequency decreases. Reduction in cross-sectional area and moment 

of inertia causes a softening effect, which is manifested in this decrement of frequencies. 

Comparing the values, it is observed that softening effect is severe in exponentially tapered 

beam and least in parabolic tapered beam. It is also observed that for particular taper 

parameter, boundary condition and foundation stiffness value, the natural frequency is the 

highest for Material 1 and lowest for Material 2. 

5.3.3.4 Backbone curves: 

Variation of natural frequencies with respect to changes in transverse pre-load value 

is the main focus of the study. However, as the transverse load produces a given static 

deflection, the results are presented in the normalised frequency vs. normalised maximum 

deflection plane. The graphical representation, where the ordinate represents dimensionless 

amplitude (wmax/t0) and abscissa represents the dimensionless frequency (ωnf /ω1), is akin 

to a backbone curve. Backbone curves of a vibratory system provide information about the 

measure of amplitude dependence of natural frequencies of the system. The dynamic 

behavior of the system is shown in Figures 5.3-5.11 as backbone curves for the first mode. 

The formulation has been developed in such a way that the system can be 

equivalently assumed to represent a large amplitude vibration scenario. Such an approach 

is justified on the basis of the assumption that large amplitude vibration analysis of a 

nonlinear system may be considered equivalent to a case where the system undergoes small 

oscillations about the deflected configuration of same large amplitude. It is important to 

note that the fundamental frequencies (ω1) at no load condition, which are already obtained 
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and tabulated in Tables 5.3-5.11, are used here to normalize nonlinear frequencies (ωnf /ω1). 

For all the cases, stiffness of the beam increases with increasing load. This type of 

occurrence is found due to the present of geometric nonlinearity in the system. This type of 

increased stiffness causes the increase in free vibration frequencies with increase in the 

deflection of the beam, which can be observed from any of the figures. So, hardening type 

nonlinear behaviour is exhibited by the system for all combinations of taper profile, 

stiffness values and boundary conditions. 

 
        (a)      (b) 

 
       (c) 

Figure 5.3: Backbone curves of AFG linear taper beam (Material 1) for different 
boundary conditions: (a) CC, (b) CS and (c) SS  
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        (a)      (b) 

 
        (c) 

Figure 5.4: Backbone curves of AFG linear taper beam (Material 2) for different 
boundary conditions: (a) CC, (b) CS and (c) SS 

5.3.3.4.1 Effects of foundation stiffness: 

Figures 5.3-5.5 represent the 1st backbone curve for fundamental mode of linearly 

tapered beam with three different material models (Material 1, Material 2 and Material 3). 

In each figure, there are three sets of plots for three different boundary condition (CC, CS, 

SS) and in each plot four backbone curves are depicted corresponding to various spring 

stiffness values which varies from 0 to 30. The taper parameter is kept as constant, at 0.4 

to plot the results with an objective to study the influences of the foundation stiffness. 

Similar plots for parabolic tapered beams are provided in Figures 5.6-5.7, whereas 
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backbone curves for exponential AFG beams are shown in Figures 5.8-5.9. However, for 

parabolic and exponential taper, results corresponding to Material 1 has been omitted, as it 

represents homogeneous material. It should also be mentioned that the taper parameter 

values in Figures 5.8-5.13 are α = 0.223144, 0.510826 and 0.916291 (as shown in Table 

3.3) as these are the case of exponential taper pattern. 

 
      (a)      (b) 

 
      (c) 

Figure 5.5: Backbone curves of AFG linear taper beam (Material 3) for different 
boundary conditions: (a) CC, (b) CS and (c) SS 

It is observed from Figures 5.3-5.9, in all the cases, with the increase of the 

foundation stiffness the slope of the backbone curve is increasing in nature. This effect is 

severe for SS boundary condition whereas for CC beam backbone curves are closely 

clustered. From the above discussion it can be concluded that nonlinearity involved in case 
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of SS beam is higher than the other two taper patterns. For CC and CS beam profile the 

difference between the backbone curves is found to be small. For linear taper pattern, it is 

quite clear that the change in backbone curve for different material model is hardly 

noticeable for a particular case of boundary condition, as shown in Figures 5.3 - 5.5. For 

other type of taper patterns, i.e., parabolic and exponential taper, which are shown in 

Figures 5.6-5.7 and Figures 5.8-5.9 respectively, same trend can be found. It is also 

observed from the figures that for particular boundary condition and material model, in 

exponential taper the backbone curves are more openly clustered than the other two (linear 

and parabolic) for different foundation stiffness values. 

     
         (a)        (b) 

 
      (c) 

Figure 5.6: Backbone curves of AFG parabolic taper beam (Material 2) for different 
boundary conditions: (a) CC, (b) CS and (c) SS 
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        (a)      (b) 

 
           (c) 

Figure 5.7: Backbone curves of AFG parabolic taper beam (Material 3) for different 
boundary conditions: (a) CC, (b) CS and (c) SS 

 
       (a)      (b)                  Continued 
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        (c) 

Figure 5.8: Backbone curves of AFG exponential taper beam (Material 2) for different boundary 
conditions: (a) CC, (b) CS and (c) SS 

 
                                               (a)                            (b) 

 
         (c) 

Figure 5.9: Backbone curves of AFG exponential taper beam (Material 3) for different boundary 
conditions: (a) CC, (b) CS and (c) SS 
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5.3.3.4.2 Effect of taper parameter: 

 Figure 5.10 shows the effect of taper parameters on backbone curve for CC AFG 

beam. Curves are depicted for three different taper pattern in which taper parameter varies 

from 0 to 0.6 for linear and parabolic taper whereas, in case of exponential taper variation 

of taper parameter is taken from 0 to 0.916291. Material 2 is selected for all the cases 

whereas foundation stiffness is fixed at 10. It is to be noted that taper parameter 0 represents 

the case of uniform beam and provides a basis for comparison. From the figure, it is 

observed that for all the cases with the increase of taper parameter values, the backbone 

curves progressively tilt towards the right side more and more. 

 
     (a)      (b) 

 
(c) 

Figure 5.10: Effect of taper parameters on backbone curves of CC AFG beam for 
different taper pattern: (a) linear taper, (b) parabolic taper and (c) exponential taper 
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5.2.3.4.3 Higher mode backbone curves: 

Backbone curves for higher modes (modes 2-5) of the linear taper AFG beam 

corresponding to three boundary conditions are presented in Figure 5.11. Each of these 

figures consist of two different sub-plots for two different material models i.e. Material 2 

and Material 3. In this regard, plot for the material 1 is not furnished as it is the case of 

homogeneous material. For all the cases the taper parameter is considered as 0.4, whereas, 

foundation stiffness is fixed at 10. 

5.3.3.5 Mode shapes: 

 The free vibration analysis as represented by Equation (5.13) is a standard 

eigenvalue problem and its solution provides not only information regarding the natural 

frequencies but also eigenvectors corresponding to the eigenvalues. In fact, the unknown 

parameters associated with Equation (5.13) denote the eigenvectors in matrix form and the 

contribution of individual spatial functions on the vibration modes. However, it is important 

to note that the stiffness matrix in this eigenvalue analysis corresponds to the converged 

large deflection static solution. So, equivalence may be drawn between large amplitude free 

vibration of a nonlinear system and its free vibration analysis, subjected to a static load 

producing same magnitude of large amplitude deflection. So, the evaluated mode shapes 

can be considered as corresponding to large amplitude vibration about the undeformed 

equilibrium position. First three mode shape of the linear taper AFG beam corresponding 

to three boundary conditions are provided in Figure 5.12. Each of these figures consists of 

two different sub-plots for two different material models i.e. Material 2 and Material 3. 

Mode shape plot for the Material 1 is not furnished as it is the case of homogeneous 

material. It is also worth pointing out that amplitude of vibration has an effect on the mode 

shape of the system. To study this aspect in more detail, two mode shape plots 

corresponding to linear (wmax/t0 = 0) and nonlinear (wmax/t0 = 1.5) frequencies are given for 

each of the vibration modes. It should also be noted that the amplitude of vibration for all 

the plots is normalized by the corresponding maximum deflection. It was observed that 

difference in linear and nonlinear mode shapes increase when the boundary condition 

changes from CC to SS due to the decreasing rigidity at the boundary. However, no 

considerable change in the mode shapes could be identified for the different material 

models perhaps due to normalization of the maximum displacement. 
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(a) 

 
(b) 

 
(c) 

Figure 5.11: Backbone curves at higher modes of linear taper AFG beam corresponding 
to different boundary conditions: (a) CC (b) CS (c) SS. 
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 (a) 

 
(b) 

 
(c) 

Figure 5.12: Mode shape of linear taper AFG beam corresponding to different 
boundary conditions: (a) CC (b) CS (c) SS. 
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5.4 Forced vibration analysis: 

Forced vibration of non-uniform axially functionally graded (AFG) Timoshenko 

beam on elastic foundation is performed under harmonic excitation. A linear elastic 

foundation is considered with three different classical boundary conditions. The present 

approximate method is displacement based and Von-Karman type of geometric 

nonlinearity is considered with rotational component to incorporate transverse shear. The 

gradations of the martial properties are considered in the power law form along the axial 

direction. Hamilton’s principle is used to derive nonlinear set of governing equation and 

Broyden method is implemented to solve the nonlinear equations numerically. The results 

are successfully validated with previously published article. Frequency vs. amplitude curve 

corresponding to different combinations of system parameters are presented and are 

capable of serving as benchmark results. A separate free vibration analysis is undertaken 

to include backbone curves with the frequency response curves in the non-dimensional 

plane. 

5.4.1 Mathematical formulation: 

The present formulation is carried out following energy method where Hamilton's 

principle has been adopted for deriving the governing differential equations of the system. 

The formulation is based on Timoshenko beam theory, where, shear deformation and rotary 

inertia effect is taken into account. In the present system geometric nonlinearity is 

incorporated by considering nonlinear strain-displacement relations. It is assumed that the 

system exhibits dynamic equilibrium at maximum amplitude of excitation which implies 

that at this point of time there exist no unbalanced forces in the dynamic system. This 

unique assumption converts the dynamic problem to static one. 

Hamilton’s principle, whose mathematical form (Shames and Dym, 2009) is 

provided below, is utilized to derive the governing set of equations. 

 
2

1

0T U V d




 
 

    
 
        (5.14) 

Here, δ is the variational operator, T is the kinetic energy of the system, U is the total strain 

energy stored in the system, V is the work done by the external loading/excitation and τ is 
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the time. The expressions for these energy functionals (U, V and T) are furnished in the 

previous section 5.3.1 (Equations. (5.4), (5.5), (5.6), (5.7) and (5.11)). From the expressions 

it is noticeable that all the energy functionals are dependent on the displacement fields. In 

these expressions w, u and ψ are dynamic displacement fields which are completely 

separable by space and time. They are assumed as linear combinations of orthogonal 

admissible functions, φi, αi and βi and a set of unknown coefficients (di) as follows, 

 
1

( , )
nw

j
i i

i

w d e    


        (5.15a) 
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        (5.15b) 

 
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nw nu i i

i

d e      


       (5.15c) 

ω is the response frequency of the vibratory system, j = √−1 and τ is the time. nw, nu and 

nsi are the number of orthogonal functions for each of the displacement fields w, u and ψ, 

respectively. Appropriate start functions for these orthogonal set of functions (φ1, α1 and 

β1) must be selected to satisfy the flexural, in-plane and rotational boundary conditions of 

the beam. These start functions must also be continuous and differentiable within the 

domain. In section 5.3.3, Table 5.1, the selected start functions for each of the displacement 

fields are shown for different boundary conditions. These start functions are used to 

generate the higher order functions (upto nw/nu/nsi) implementing Gram–Schmidt 

orthogonalization scheme (Kumar et al., 2015). 

Substituting the appropriate energy expressions and displacement fields into Eq. 

(12), the governing equation is obtained as follows: 

       2K d M d f         (5.16) 

Here, [K] is the stiffness matrix, [M] is mass matrix, {f} is load vector and {d} is the vector 

of unknown coefficient, respectively. The dimension of these matrices and vectors is (nu + 

nw + nsi).  The elements of [K], [M] and {f} are same as that of free vibration analysis 

which are provided in Appendix.  
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5.4.2 Solution procedure: 

It is noteworthy that the stiffness matrix contains terms with unknown coefficients, 

thus making it nonlinear. As a result, the governing set of equations as represented by 

Equation (5.16) is nonlinear in nature as well. An indirect method, in which the dynamic 

problem is reduced to an equivalent static problem, is adopted to solve nonlinear set of 

equations. The unknown coefficients are calculated for given amplitude of excitation and 

excitation frequency. The analysis assumes that at the peak excitation amplitude value the 

system satisfies the force equilibrium condition. The solution technique adopted in this 

analysis is one of the multidimensional quasi-Newton methods known as Broyden's method 

(Press et al., 2005). In this method the Jacobian is calculated on the basis of an initial guess 

and its value is updated in the successive iterations. The detailed solution technique and 

solution procedure is discussed in Chapter 4. 

5.4.3 Result and discussion: 

Presently, large amplitude forced vibration analysis of AFG Timoshenko beams 

resting on elastic foundation subjected to transverse harmonic excitation is performed to 

find out the frequency response of the system in terms of displacement amplitude. In the 

current study, only steady-state response is presented and frequency of response of the 

undamped system is assumed to be equal to the forcing frequency. An indirect approach is 

adopted for solving the problem, where it is reduced to a static scenario by assuming that 

under maximum amplitude of excitation, i.e., when the system suffers maximum 

deformation, the dynamic system satisfies force equilibrium conditions. This assumption 

converts the dynamic problem into an equivalent static situation, in which the excitation 

frequency and amplitude of the harmonic excitation are the input parameters that control 

system response. 

Linear tapering of thickness in the axial direction from the root (t0) to the other end 

(t1) is considered. The decrement in thickness takes place according to the expression, t(x) 

= t0(1-αx/L), while width of the beam remains constant. Length (L) and width (b) of the 

beam are taken as 0.2 m, 0.02 m, respectively, while, Length-to-thickness ratio (L/t0) values 

are varied from 5 to 100. The length of the beam is fixed throughout the analysis, whereas, 

the thickness is calculated for each value of Length-to-thickness ratio (L/t0). It should be 
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noted that the higher values of (L/t0) correspond to thin beams and are considered here for 

comparison purpose. For AFG beam, variation of elastic modulus and density are taken 

into account along the axial coordinate, according to the following power-law forms.  

Elastic modulus,     0 1 0

n
E x E E E x L    

Density,      0 1 0

n
x x L       

Here, n is the gradient parameter describing volume fraction change of both constituents 

involved. Poisson ratio (µ) is taken as constant throughout the entire analysis. In order to 

have a better weight distribution, material properties are gradually increased from the root 

side (E0 and ρ0) to the other end of the beam (E1 and ρ1), considering opposite distribution 

to the thickness variation. In the present work, two materials are chosen as Aluminium and 

Zirconia, and their material properties are: Al: E0 = 70 GPa, ρ0 = 2702 kg/m3; ZrO2: E1 = 

200 GPa, ρ1 = 5700 kg/m3. It is also important to note that, for the present AFG beam 

model, the root side of the beam (ξ = 0) is purely Aluminium and continuous gradation is 

performed along the length to obtain the material property at the other end (ξ = 1), which 

is purely Zirconia. The gradation of the material properties for different gradient parameter 

(n) are shown in Figure 5.13. From the figures, it is observed that for n = 1 linear gradation 

of the material properties can be obtained, where 50% of each material 

(Aluminium/Zirconia) property contribution is observed. Due to this reason, for the best 

practice gradient parameter (n) beyond 3 and below 1/3 is not considered (Nakamura et al., 

2000). Poisson ratio (µ) with a value of 0.3 is taken as constant throughout the entire 

analysis. 

Three different classical boundary conditions i.e. clamped-clamped (CC), clamped-

simply supported (CS) and simply supported-simply supported (SS) are selected. In-plane 

boundary conditions are assumed as immovable. The beam is subjected to uniformly 

distributed transverse time varying excitation, q(x,t) as shown in Fig. 1(a). The expression 

of the external excitation is given by, q= 𝑞ത(x)ejωτ, where ω is the frequency of excitation, j 

= √−1,  𝑞ത represents the intensity of the harmonic excitation per unit length of the beam 

and τ is the time. Four non-dimensional externally applied time varying excitations [𝑞ത* 

= 𝑞ഥ (L4/ E0I0t0)] are considered which are varied from 20 to 60 in equal steps of 10. Four 
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different value of the non-dimensional foundation stiffness parameter [Kf =kf {(L/t0)3/E0b}] 

is consider here. These values are 0, 20, 40 and 60 respectively. Here, kf is the dimensional 

value of stiffness.  

 
                                         (a)                                                                (b) 

Figure 5.13: Axial gradation of material properties (a) elastic modulus (b) density 
 

 
                                         (a)                                                                 (b) 

Figure 5.14: Convergence study (a) number of gauss points (ng) (b) number of 
orthogonal functions (nw=nu=nsi) 

5.4.3.1 Convergence study: 

In the present study, computation is conducted in a normalized domain ( = x/L). 

For generating the computation points for numerical solution within the normalized 

domain, gauss points (ng) are created along the length of the beam. A detailed convergence 
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study is required for the choice of number of gauss points. Similar study is also applicable 

for the selection of the number of functions in the assumed displacement field as well. Such 

a study is necessary as these selections greatly influence the results of the numerical 

scheme. This convergence study is carried out on CC AFG non-uniform () beam 

with gradient parameter, n = 2 on an elastic foundation having Kf = 10. The comparison of 

non-dimensional fundamental frequency is conducted with respect to the relevant 

parameters considering no load condition. The results of the study are presented in Figures 

5.14 and from these figures, number of gauss points (ng) and number of orthogonal 

functions (nw=nu=nsi) are selected as 24 and 8, respectively. 

Table 5.12 Comparisons of dimensionless natural frequencies  2
1 1 0 0 0 0L A E I    

of homogeneous uniform beam 
Literature Ω1 Ω2 Ω 3 Ω 4 Ω 5 

Ribeiro [2004] 22.0125 59.4594 113.6121 183.3579 217.6559 
Present Study 21.9148 59.1112 112.7598 180.4668 217.2188 

% Error 0.44 0.58 0.75 1.5 0.2 

 

Figure 3.15: Comparison of nonlinear frequency response 

5.4.3.2 Validation study: 

The present methodology and solution procedure is validated with the results of 

previously published paper of Ribeiro (2004) for homogeneous and uniform thick beam 

without considering elastic foundation. The comparison of linear dimensionless natural 

frequencies for first five modes are tabulated in Table 5.12 for CC end conditions. 

Comparison of the nonlinear frequency response is also shown in Figure 5.15. For this 
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purpose, the length (L), width (b) and length to thickness ratio (L/t0) of the beam are taken 

as 0.406 m, 0.02 and 20, respectively. Elastic modulus (E0), Density (ρ0) and Poisson ratio 

(µ) are considered as 71.72 GPa, 2800 kg/m3 and 0.33 respectively. A 2 kN concentrated 

load is considered at the mid span of the beam. From the above comparison, it can be 

observed that the current results have satisfactory matching with the established results. 

5.4.3.3 Frequency response plot: 

The results are generated for different excitation amplitudes, foundation stiffness, 

gradation parameters, taper parameters and length to thickness ratio. These results are 

plotted in a non-dimensional frequency amplitude plane. The abscissa is represented by the 

non-dimensional frequency (ωf/ω1) and the ordinate represents the dimensionless response 

amplitude (wmax/t0). Here, the excitation frequency (ωf) is normalized using the fundamental 

natural frequency (ω1), whereas the maximum deflection (wmax) is normalized using beam 

root thickness root (t0). To detect the effect more accurately, results are plotted separately 

for three different boundary conditions (CC, CS and SS) which are shown in different sub-

plots under the figure caption (a), (b) and (c). 

To obtain the frequency response plots frequency sweep is initiated at zero 

excitation frequency with a particular value of excitation amplitude and increased gradually 

towards resonance. This type of sweep is termed as forward sweep. Conversely, a backward 

frequency sweep is carried out by gradually decreasing the excitation frequency from a 

finite high value. 

From the Figures 5.16-5.20, the frequency response curves are categorized by two 

distinct zones. In the first zone, with the increase in excitation frequency, the response 

amplitude increases, while, in the other zone response amplitude reduces. Nonlinear 

behaviour of the system can be observed in the Multi response zone where two response 

amplitudes corresponding to the previously mentioned distinct zones are found. The 

branches of the response curve in these two zones are stable solutions. Theoretically, a third 

zone, where an unstable steady-state solution is possible, exists but cannot be captured 

through current methodology. 
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(a)                                                               (b) 

 
                                                                           (c) 

Figure 5.16: Effects of the force amplitude on frequency response for (a) CC beam (b) 
CS beam and (c) SS beam 

5.4.3.3.1 Effect of excitation amplitude: 

 The effect of excitation amplitude on the frequency response of AFG beam is shown 

in Figure 5.16. Three plots for three different boundary conditions (CC, CS and SS) are 

presented. Foundation stiffness, gradient parameter, length-to-thickness ratio and taper 

parameter have been fixed at 10, 2, 20 and 0.5, respectively, whereas the non-dimensional 

excitation amplitude is varied from 20 to 50 in steps. It is noted that the normalizing factor 

for the three boundary conditions are different as shown in Table 5.14. As the clamped end 

conditions are replaced by simply supported ends, overall rigidity of the system reduces as 

evidenced by the lower natural frequencies. It is observed from Figure 5.16 that at a given 
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excitation frequency, the response amplitude of beam with SS boundary conditions (Figure 

5.16(c)) are the highest, whereas for beam with CC boundary conditions (Figure 5.16(a)) it 

is lowest. The figures also show that increasing of the excitation amplitude increases the 

forced vibration response amplitude of the beam. 

 
                                         (a)                                                                (b) 

 
                                                                         (c) 

Figure 5.17: Effects of the foundation stiffness on frequency response for (a) CC beam 
(b) CS beam and (c) SS beam 

It is evident from the figures that the general behaviour of the frequency response 

curves is similar. In all the cases two separate response branches are visible. In one branch, 

response amplitude monotonically increases with excitation frequency, while, in the other 

one it decreases with increase in forcing frequency. Interestingly, after a certain frequency 
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value a multiple response zone is obtained, where, corresponding to one excitation 

frequency two responses are present. It is also observed that the plots are tilted towards the 

right of vertical in all three cases. This behaviour can be attributed to the stretching effect 

associated with large deflection resulting in additional stiffening of the system. Another 

important observation that can be made from these figures is that, if the excitation 

amplitude is continuously decreased the amplitude of the response is also going to decrease 

and at very low excitation amplitude the response curve will tend to almost merge with the 

backbone curve. 

Table 5.13: First dimensionless  2
1 1 0 0 0 0L A E I   natural frequencies of axially 

graded and non-uniform thick beam on elastic foundation for different foundation stiffness 
(Kf) considering L/t0  = 20, n = 2,  

BC 
Foundation Stiffness (Kf) 

0 20 40 60 
CC 17.4861 18.8479 20.1176 21.3118 
CS 12.4992 14.3216 15.9368 17.4027 
SS 7.8575 10.5490 12.6815 14.5037 

5.4.3.3.2 Effect of the foundation stiffness: 

 The effect of the foundation stiffness on frequency response is shown in Figure 

5.17. The excitation amplitude, gradient parameter, length-to-thickness ratio and taper 

parameter have been fixed at 60, 2, 20 and 0.5, respectively. Plots are generated considering 

four dimensionless foundation stiffness values, which are varied from 0 to 60. It is to be 

noted that foundation stiffness value ‘0’ represents the case where the beam is without any 

foundation. Table 5.13 shows that, with the increase in foundation stiffness values 

fundamental natural frequencies increase in magnitude. The trend can be intuitively 

attributed to overall increase in stiffness of the system. From the figures, it is clear that, for 

CC beam (Figure 5.17(a)) with the increase of the foundation stiffness the response 

amplitude decreases in the low excitation frequency zone. But the trend is completely 

opposite in the higher frequency zone. Similar trends can be seen for CS and SS beam 

(Figures 5.17(b)-5.17(c)) as well. There appears to be cross-over point in the response 

behaviour around ωf/ω1 = 1.00 in each case. Another important observation is that the 

response curves of SS beam are more diverging in the non-dimensional plane from each 

other than the other two boundaries. Here, with change in foundation stiffness, four 



Chapter 5 

128 
 

amplitude decreases in the low excitation frequency zone. But the trend is completely 

opposite in the higher frequency zone. Similar trends can be seen for CS and SS beam 

(Figures 5.17(b)-5.17(c)) as well. There appears to be cross-over point in the response 

behaviour around ωf/ω1 = 1.00 in each case. Another important observation is that the 

response curves of SS beam are more diverging in the non-dimensional plane from each 

other than the other two boundaries. Here, with change in foundation stiffness, four 

different backbone curves would be obtained. These backbone curves are not included in 

the figures in order to make them less cluttered. 

 
         (a)                                                               (b) 

 
                                                                          (c) 

Figure 5.18: Effects of the gradation index on frequency response for (a) CC beam (b) 

CS beam and (c) SS beam 
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Table 5.14: First dimensionless  2
1 1 0 0 0 0L A E I   natural frequencies of axially 

graded and non-uniform thick beam on elastic foundation for different gradient parameter 
(n) considering L/t0  = 20, Kf  = 10,  

BC 
Gradient parameter (n) 

1/3 1/2 1 2 3 
CC 18.1331 17.9085 17.8151 18.1798 18.4563 
CS 13.8023 13.5641 13.3417 13.4413 13.5562 
SS 9.4313 9.4069 9.3503 9.3011 9.2918 

5.4.3.3.3 Effects of the gradation index: 

 The effects of the gradation parameter on frequency response are shown in Figure 

5.18. The excitation amplitude, foundation stiffness, length-to-thickness ratio and taper 

parameter have been fixed at 60, 10, 20 and 0.5 respectively. Plots are generated 

considering five gradation parameter, which are varied from 1/3 to 3. From the Figure, it is 

observed that in case of CC beam (Figure 5.18(a)), with the increase of gradation parameter 

the response amplitude is increasing in nature. Same trend can be found for the CS (Figure 

5.18(b)) and SS beam (Figure 5.18(c)) as well. 

Table 5.15: First dimensionless  2
1 1 0 0 0 0L A E I   natural frequencies of axially 

graded and non-uniform thick beam on elastic foundation for different taper parameter (α) 
considering L/t0  = 20, Kf  = 10, n =2 

BC 
Taper parameter () 

0.0 0.2 0.4 0.6 
CC 24.6796 22.1867 19.5582 16.7477 
CS 16.0843 15.0841 14.0113 12.8443 
SS 11.3748 10.4817 9.6674 8.9706 

5.4.3.3.4 Effect of taper parameter: 

 Figure 5.19 shows the effect of taper parameter on forced vibration response of 

AFG Timoshenko beam for different boundaries. The excitation amplitude, foundation 

stiffness, length-to-thickness ratio and gradient parameter have been fixed at 60, 10, 20 and 

2 respectively. The taper parameter is varied from 0.0 to 0.6 with intermediate values of 

0.2 and 0.4. It is to be noted that taper parameter 0.0 represents the case of uniform beam. 

From Table 5.15 it is observed that the fundamental natural frequencies decrease with the 

increase of taper parameter values. This type of trend is found due to removal of material 

with increasing taper which further contributes to the reduction of beam stiffness. From the 
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figures, it is observed that with the increase of taper parameter values, the amplitude of the 

response is increasing in nature in the low frequency domain, whereas, the trend is reversed 

at higher frequency range. In these sets of figures, the backbone curves for the four 

individual cases are not incorporated for the sake of better clarity. 

 
                                          (a)                                                              (b) 

 
                                                                          (c) 

Figure 5.19: Effects of the taper parameter on frequency response for (a) CC beam (b) CS 
beam and (c) SS beam 

5.4.3.3.5 Effects of the length-to-thickness ratio: 

The effects of the length-to-thickness ratio on frequency response are shown in 

Figure 5.20. The excitation amplitude, foundation stiffness, gradation parameter and taper 

parameter has been fixed at 60, 10, 2 and 0.5, respectively. Plots are generated considering 
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four different length-to-thickness ratio values, which are 5, 20, 25 and 100. It is important 

to note that the beam with length-to-thickness ratio value 5 indicates that it is a very thick 

beam, whereas beam with length-to-thickness ratio value 100 resembles as a very thin 

beam. From Table 5.16, it is observed that the fundamental frequency increases with the 

increase of length-to-thickness ratio value. From Figure 5.20, it is noted that, with the 

increase of length-to-thickness ratio value, the response amplitude is decreasing in nature 

for all three boundary conditions. In case of CC beam (Figure 5.20(a)) the effect is more 

prominent than the other two. CS beam shows the moderate effect (Figure 5.20(b)), 

whereas this is negligible for SS beam, in which all the branches of curves for four different 

length-to-thickness ratio values are coinciding as a single curve (Figure 5.20(c)). However, 

it is important to keep in mind that these trends are obtained in the non-dimensional plane. 

In terms of dimensional values there is bound to be sufficient differences between the 

curves corresponding to different length to thickness ratios. 

Table 5.16: First dimensionless  2
1 1 0 0 0 0L A E I   natural frequencies of axially 

graded and non-uniform thick beam on elastic foundation for different Length-to-thickness 
ratio (L/t0) considering α  = 0.5, Kf  = 10, n =2 

BC 
Length-to-thickness ratio (L/t0) 

5 10 25 100 
CC 16.2471 17.7276 18.2368 18.3334 
CS 12.5017 13.2315 13.4674 13.5112 
SS 9.0525 9.2481 9.3077 9.3206 

5.4.3.4 Operational Deflected Shape (ODS): 

The effects of excitation frequency on the operational deflected shape (ODS) is 

studied and furnished in Figure 5.21. For that purpose, a CC beam is considered with taper 

parameter of 0.5. The excitation amplitude, foundation stiffness, length-to-thickness ratio 

and gradient parameter have been fixed at 60, 10, 20 and 2, respectively. Figure 5.21(a) 

shows the representative points on the frequency-response curve at different frequency-

amplitude combinations. On the increasing curve, the start of the multi-response zone is 

denoted by point ‘a’ and point ‘b’ represents the point at wmax/t0 = 2. Point ‘a1’ and ‘b1’ are 

obtained on the same excitation frequency level as ‘a’ and ‘b’ respectively but on lower 

curve. The operational deflected shape corresponding to these representative points are 

shown in Figure 5.21(b). The ODS corresponding to different representative points appear 

similar in nature but with different maximum response amplitude. However, one major 
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issue can be noted that the response at the lower branch is out of phase with the response 

in the upper branch. 

 
                                          (a)                                                              (b) 

 
                                                                          (c) 

Figure 5.20: Effects of the length-to-thickness ratio on frequency response for (a) CC beam (b) 

CS beam and (c) SS beam 

5.5 Closure: 

A non-uniform AFG Timoshenko beam on elastic foundation under pre-loaded 

condition is analysed. Three different boundary conditions, which are combinations of 

clamped and simply supported edges, are selected. The elastic foundation, in the present 

study, is idealized as a set of parallel linear spring of constant stiffness and various values 

of the foundation stiffness are considered. The primary objective for free vibration study is 

to find out the effect of loading on the  vibration  frequencies  of  the  system,  whereas  for  
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                                          (a)                                                              (b) 

Figure 5.21: Operational deflected shape (ODS) (a) nonlinear frequency response with 

representative points (b) deflected shape of the system at corresponding points 

forced vibration analysis it is to represent the frequency response under harmonic 

excitation. The mathematical formulation for free vibration study is such that it sub-divides 

the problem into two distinct parts. At the initial stage the geometrically nonlinear static 

problem is solved through an iterative scheme with relaxation. Next, the free vibration 

problem is formulated as an eigenvalue analysis with statically converged stiffness matrix 

as an input. Subsequently, forced vibration is taken into account by considering dynamic 

displacement field and solved using a quasi-Newton method, known as Broyden’s method. 

These problems are formulated using appropriate energy principles. The static analysis is 

based on total minimum potential energy principle, while the dynamic analyses are based 

on Hamilton’s principle. The methodology of the mathematical formulation is general in 

nature. It has enough flexibility of solving with other different type of loading pattern, 

elastic foundation, gradation pattern, taper pattern and end conditions as well. Results 

generated from the proposed method are compared with previously published results and a 

certain degree of accuracy is observed in between the two sets of results. Overall, the 

present methodology and solution procedure are successfully validated, albeit for a system 

with reduced complexity (as the elastic foundation is not present in the validation problem). 

New results are furnished for an AFG Timoshenko beam in the normalised loaded natural 

frequency vs. normalised maximum deflection of the system for free vibration analysis and 

frequency response curve for forced vibration problem. These results are capable of serving 

as benchmark results. 
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Chapter 6 

 

STATIC AND FREE VIBRATION ANALYSIS: AXIALLY 

FUNCTIONALLY GRADED THIN PLATES ON ELASTIC 

FOUNDATION 

 

6.1 Introduction:  

A plate is a structural element which is characterized by two key properties. First, 

its geometric configuration is a three-dimensional solid whose thickness is very small when 

compared with other dimensions. Second, the effects of the loads that are expected to be 

applied on it only generate stresses whose resultants are, in practical terms, exclusively 

normal to the element's thickness. Plates are widely utilised structural elements with variety 

of engineering and industrial applications. Specifically, plates on elastic foundation can be 

considered as idealisation of various critical and frequently used load bearing components 

(for example, rail track, bridge decks, rigid pavements, mat and raft foundations etc.). 

Arising out of its varied applications, both static and dynamic analyses are relevant in case 

of such structures. In the present chapter, a basic static analysis under transverse loading is 

performed, followed by a free vibration study.  

The nonlinear static problem is solved in the first part to obtain the load-deflection 

characteristics and deflection shape under loading. The computed stiffness matrix of the 

system in deflected configuration is used in subsequent dynamic analysis for obtaining 

eigenvalues and eigenvectors, which provide the natural frequencies and mode shapes, 

respectively. The static analysis in the first part is based on principle of minimum total 

potential energy whereas Hamilton’s principle is used in formulating the governing 

equations of free vibration. In static analysis, unknown co-efficient of the governing 

equations are solved using an iterative method, direct substitution with relaxation scheme, 

while the free vibration frequencies are solved with the help of intrinsic Matlab solver. The 

results of both the studies are validated with existing data, albeit for a system with reduced 
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complicacy. New results corresponding to different combinations of system parameters are 

furnished and, in absence of previously published results, are capable of serving as 

benchmark results. 

6.2 Geometric and Material Parameters: 

 
(a)      (b) 

 
(c) 

Fig. 6.1: (a) Plate on elastic foundation, (b) loading and elastic foundation and (c) front 
and top view of the tapered plate 

A non-uniform plate with in-plane inhomogeneity is considered to be resting on an 

elastic foundation. The length and breadth of the plate are a and b, respectively. The 

stiffness of the elastic foundation is considered as kf  and the foundation is idealized as a set 

of parallel linear springs as shown in Figure 6.1. The stiffness parameter is normalised 

according to the following relation, 4 /f fK a k D , where, Kf is the non-dimensional 
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stiffness and  3 2
0 0 /12 1D E t   . The plate is loaded with uniformly distributed pressure 

type load of magnitude, q(x,y) according to Figure 6.1(b). The thickness of the plate, t(x), 

is varying along the axial direction. Similarly, the gradation of the elastic modulus, E(x), 

and density, ρ(x), are considered in axial direction as shown in Figure 6.1(c). It should be 

noted here that both tapering of the plate and material gradation is considered along only 

one coordinate (x) direction, while along the orthogonal direction (y) they are taken to be 

uniform or constant. However, the present formulation and solution technique are definitely 

capable of handling non-uniformity in thickness along either direction individually or in 

combination. Similarly, material gradation in two orthogonal directions can also be taken 

care of as long as they are expressible in terms of mathematical relations dependent on the 

coordinates. 

One important aspect of the system under consideration is the boundary conditions. 

It is well known that there are three classical end conditions, i.e., clamped (C), simply 

supported (S) and free (F) ends and a total of 21 different boundary conditions can be 

derived for a plate, which, obviously, has four edges. The notations used to denote the 

boundary conditions are four letters representing the individual end conditions sequentially 

starting with the edge along y-axis and proceeding counter-clockwise. 

6.3 Nonlinear static analysis: 

A geometrical nonlinear static analysis is performed for an in-plane inhomogeneous 

(axially graded) tapered plate on elastic foundation under transverse loading. Governing set 

of equations of the system is obtained through appropriate energy principle and the derived 

nonlinear equations are handled through an iterative method known as direct substitution 

method. The geometric nonlinearity is introduced by considering nonlinear strain-

displacement relations that incorporate stretching of mid-plane of the plate into the system. 

The effect of the elastic foundation is represented through load vs maximum deflection plot 

and deflected shape plots.  

The successful formulation of static deflection problem and subsequent 

implementation of the solution methodology serves as a stepping stone to the large 

amplitude dynamic analysis axially graded tapered plates on elastic foundation. In the 

present thesis, computation of large amplitude vibration frequencies (or loaded natural 
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frequencies) is conducted by executing a static analysis under external transverse loading, 

followed by an eigen value problem corresponding to the deformed system stiffness. So, 

the significance of the work presented in this section is that it establishes the basic kernel 

which is extended to perform large amplitude free vibration analysis. 

6.3.1 Mathematical formulation: 

Formulation is performed entirely in normalized domain defined by normalized 

coordinate parameters, which are represented as  = x/a and as  = y/b. Numerical values 

 

Figure 6.2: Computational points in the domain 

of ξ and η vary from 0 to 1. The computational domain of the present study consists of a 

grid of computational points. In order to create this grid, points are generated along 

normalized   and  direction and constant   and constant  lines are drawn. Intersection 

points between these two sets of lines provide the computational reference points (as shown 

in Figure 6.2), where all displacement fields and their respective derivatives are evaluated. 

The present formulation considers large deflection induced due to geometric 

nonlinearity (as already mentioned), which implies that effect of stretching of mid-plane of 

the plate must be incorporated besides the effect of pure bending. So, the total strain energy 

of the plate consists of strain energy of plate due to pure bending (Ub) and strain energy of 

plate due to stretching (Us). These strain energies can be expressed in terms of axial strains 

corresponding to bending and stretching and for the present analysis Von Karman type 
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strain-displacements relations are considered. On the other hand, the foundation on which 

the plate rests gives rise to another component of strain energy (Uf). So, total strain energy 

(U) of the system is represented as, 

b s fU U U U           (6.1) 

The expression of Ub, Us and Uf of the system can be written as, 
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Potential energy due to external load (V) of the system can be expressed as, 

   
1 1

0 0

V ab qw d d           (6.3) 

where, w, u and v are assumed displacement fields in the transverse (w) and in plane (u and 

v) directions. τ is the time co-ordinate. In equation (6.2) parameters such as elastic modulus, 
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density as well as cross-sectional area and moment of inertia appear within the integration 

sign to take care of the material gradation and tapering of the plate.  

The static displacement fields (w, u and v) are assumed as linear combinations of 

orthogonal admissible functions (, α, β) and unknown coefficients (di) as shown, 
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where, nw, nu and nv are number of orthogonal functions of the displacement field w, u and 

v respectively. It is important to note that , α, β are kinematically admissible functions, i.e. 

they satisfy the following conditions: continuous and differentiable within the domain and 

satisfy the boundary conditions. So, appropriate start functions for these sets must be 

chosen in such a manner that they comply with the flexural and membrane boundary 

conditions of the plate. Equation (6.4) clearly indicates that these functions are dependent 

on the two coordinate directions and they are obtained through the process described in the 

following paragraph. 

The first functions in these sets are known as the start function or basis and these 

2D functions are derived dimensional (1D) functions corresponding to the two coordinate 

directions. For example, for a plate with SSSS end condition, the plate (2D) start function 

are generated from the ordered mortification of 1D start function of SS and SS in two 

normalized coordinate direction  and , respectively. These 1-D start functions for 

transverse displacement are beam deflection functions derived from static deflection shape 

of the beam, corresponding to the boundary condition of the plate along the particular 

coordinate axis. The higher order functions are generated from the start functions 

numerically by following Gram-Schmidt orthogonalization procedure. Objective of the 

numerical implementation of Gram Schmidt orthogonalization scheme is to determine a set 

of orthogonal functions (admissible) in the interval 0 ≤ ,  ≤ 1,  provided the first function 
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of the set is known. Similarly, the functions for the in-plane boundary conditions are also 

obtained. In all the cases the start function is chosen to satisfy zero displacement condition 

at the edges of the plate. It should be pointed out that at the free end of the plate transverse 

displacements are unrestricted, but the in-plane boundary condition is immovable, i.e., in-

plane displacements are restricted. 

The starting point for the static formulation is the minimum total potential energy 

principle, mathematically expressed in equation (6.5). The governing set of equations is 

derived from the above-mentioned principle by substituting the appropriate energy 

functionals and approximate displacement fields. 

  0U V           (6.5) 

The governing equation of the system in matrix form is represented in equation 

(6.6), where [K] is the stiffness matrix, {f} is the load vector, while {d} is the vector of 

unknown coefficients. 

    K d f         (6.6) 

Due to consideration of large deflection, along with the bending effect stretching 

effect is also present in the current formulation and the stiffness matrix can be broken up 

into three distinct parts. These parts are stiffness matrix due to bending [Kb], stretching [Km] 

and elastic foundation [Kf] respectively. The form and individual elements of stiffness 

matrices and load vector are shown in Appendix. 

6.3.2 Solution procedure: 

 It can be observed from the stiffness matrix elements that certain terms in the 

stretching part of the matrix contain the unknown coefficients (d). This implies that the 

stiffness matrix has become a function of the undetermined parameters and hence equation 

(6.6) is undoubtedly nonlinear in nature. Approximate solution for the unknown 

coefficients (di) is obtained with the help of an iterative technique, known as direct 

substitution with successive relaxation. As with most general approximate techniques the 

method is dependent on an initial guess. At the end of the static analysis the displacement 

field corresponding to transverse load is completely known along with the deformed system 
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stiffness. The techniques and solution procedures used are similar to those presented in 

relation to analysis of beams in Chapter 3 and are omitted here for the sake of conciseness. 

6.3.3 Result and discussion: 

 In the static problem, non-linear structural behaviour of non-uniform AFG plate on 

elastic foundation is carried out considering clamped (CCCC) and simply supported (SSSS) 

end condition under pressure type of loading. This two boundary conditions are used for 

selecting the base functions for the transverse displacement (w) where as for the axial 

displacement (u) the membrane boundary conditions are used. The in-plane displacement 

at the boundaries are assumed as zero. The start functions for CCCC and SSSS boundary 

condition are tabulated in Table 6.1.  

Table 6.1: Start functions for CCCC and SSSS boundary conditions 
End conditions Start functions 

CCCC      2 2
1 1       

SSSS    sin sin   

Inmovable    1 1       

The thickness of the plate, t(x), varying (parabolic) along the axial direction, is 

expressed as,    2
0 1t t   , where, t0 and α are root thickness and taper parameter 

respectively. The geometric dimensions of the plate are taken as, a = b = 0.4 m and t0 = 

0.0025 m. The taper parameter for the parabolic taper pattern of the plate is considered as 

α = 0.2. Similarly, the gradation of the elastic modulus, E(x), and density, ρ(x), are 

considered in axial direction, these are expressed mathematically by,    0 1E E    

and    2
0 1       . In this case, the corresponding root values are E0 and ρ0, 

respectively. The material properties at root side of the plate are considered as, E0 = 210 

GPa, ρ0 = 7850 kg/m3 and μ = 0.3, which resemble the material properties of mild steel. 

The non-dimensional elastic foundation stiffness [ 4 /f fK a k D ] values for each result 

are taken as, Kf = 0, 100, 1000 and 10000, respectively. Here, kf is dimensional value of 

stiffness and  3 2
0 0 /12 1D E t   . It is to  be noted  that in the present  study  results  are  
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generated when dimensionless maximum amplitude (wmax/t0) is less than 2.0 to minimize 

the computation time. 

6.3.3.1 Convergence study: 

Number of orthogonal functions along a coordinate direction is selected as 5. Hence 

total number of functions corresponding to a particular displacement is 25 (5×5). Number 

of Gauss points (ng) along a coordinate direction is taken as 24 and thus, total number of 

computational points within the domain comes out to be 24×24. The numbers quoted here 

are outcomes from the convergence study undertaken and the results of the study are 

depicted in Figure 6.3., An axially graded CCFF plate, in which linear material property 

 
 (a)        (b) 

Figure 6.3: Convergence study for (a) no. of orthogonal functions (b) gauss point 

(i.e. elastic modulus and density) gradation [    0 1E E   and    0 1     ] 

and linear tapering of the thickness, [    0 1t t   ] in the axial direction (with taper 

parameter, α, and material gradation parameter, β, of 0.5) on foundation (Kf = 100) is 

analysed for maximum normalised deflection when subjected to uniformly distributed 

transverse load of 1 kPa. Figure 6.3(a) and 6.3(b) show the convergence results for variation 

in number of orthogonal functions (along a coordinate direction) and number of Gauss 

points by indicating the change in normalized maximum deflection (wmax/t0) of the system, 

respectively. The figures sufficiently justify choice of 5 orthogonal functions and 24 gauss 

points for the present analysis. However, it should be mentioned here that difference in 
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wmax/t0 values for nw/nu/nv = 5 and 6 is minimal, but there is considerable increase in 

computation time. Hence, number of functions along each coordinate direction is chosen 

as 5. 

6.3.3.2 Validation study: 

 The present methodology and solution procedure is validated with the results of 

previously published articles of Timoshenko and Woinowsky-Krieger (1964). It must be 

mentioned here that the validation is carried out for a simplified system. To the best of 

author’s knowledge there is no established results for the specific type of problem under 

consideration. Hence, the validation is carried out by comparison with an unsupported 

uniform homogeneous plate under transverse loading. In the present formulation, the 

parameters catering to tapering of the plate (α), material inhomogeneity (β) along with 

foundation stiffness (kf) is set to zero in order to achieve equivalence. From Figure 6.4, it 

can be observed that the current results match satisfactorily with the established results.  

 
Figure 6.4: Comparison plot of load vs deflection curve 

6.3.3.3 Load vs. amplitude plot: 

In Figure 6.5, the load vs. deflection curves are shown in dimensionless load and 

deflection plane for CCCC and SSSS end conditions, respectively. The effects of the 

foundation stiffness on the deflection amplitude of the system can be found through this 

plot. Four curves are considered corresponding to different spring stiffness values (Kf = 0, 

100, 1000 and 10000). It can be observed that with the increase of the foundation stiffness 
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value the curve gradually shifts towards the right side of the non-dimensional plane. Such 

type of results are found due to the reason that increase of foundation stiffness make the 

system more stiff to deflection under the application of same load. As a usual consequence 

of the increase in stiffness the load bearing capacity of the system also increases. It is also 

observed that for the same load application the deflection of the SSSS plate is more than 

the CCCC plate. This type of occurrence happen due to the reason that the CCCC plate is 

stiffer to deflect as compared to SSSS plate. 

 
(a)                                                                     (b) 

Figure 6.5: Load vs deflection plot for different boundary conditions (a) CCCC and (b) 
SSSS 

 
(a)                                                                     (b) 

Figure 6.6: Deflected shape of the plate at centreline along axial direction for different 
boundary conditions (a) CCCC and (b) SSSS. 
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6.3.3.4 Deflected shape plot: 

Figure 6.6 represents the deflected shape of the plate centreline along axial (ξ) 

direction for four different foundation stiffness values. These plots are obtained taking a 

specific external load value of 100 KN/m2 and 15 KN/m2 for CCCC and SSSS plate, 

respectively. From the plot, it is seen that deflection is maximum near the middle of the 

plate. It is also observed that at zero value of stiffness the deflection is maximum and it is 

minimum when stiffness is maximum. Again it is also clear from the plots that SSSS plate 

deflect more than the CCCC plate under same load application. 

6.4 Nonlinear free vibration analysis: 

Effect of geometric nonlinearity on free vibration behaviour of a non-uniform in-

plane inhomogeneous plate on elastic foundation is studied in the present section. The 

formulation is semi-analytical displacement based and it is carried out in two distinct steps. 

First, the static problem is solved to find out the unknown displacement field by using 

minimum total potential energy principle. Secondly, subsequent dynamic problem is set up 

as an eigenvalue problem on the basis of the known displacement field. The governing set 

of equations of the dynamic problem is obtained by using Hamilton’s principle. The 

converged stiffness matrix from the static analysis is utilised at this step to set up the 

dynamic problem governing equations. Solution to this set of equations is obtained with 

the help of intrinsic Matlab solver. The results of the present method are validated with 

existing data.  

It is well known that large amplitude free vibration behaviour, represented through 

backbone curves, is different from linear free vibration. Amplitude dependency of vibration 

frequencies is an important nonlinear feature, which is not exhibited in the linear case. 

Hence, backbone curve, which is the nonlinear frequency-vibration amplitude plot, should 

be studied in detail in order to understand the large amplitude behaviour of the system. A 

typical phenomenon that is sometimes observed in relation to backbone curves is mode 

switching, where backbone curves corresponding to two different modes intersect. The 

linear and nonlinear mode shapes are also furnished to support the presence of switching 

phenomenon. The effects of the boundary conditions and non-uniformity of the plate shape 

are also highlighted. 
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6.4.1 Mathematical formulation: 

 To derive the governing set of equations in the dynamic analysis, Hamilton’s 

principle is utilized, which is expressed as, 

 
2

1

0T U V d




 
 

    
 
        (6.7) 

Here, T is the kinetic energy of the system and U represents the strain energy of the system 

with respect to deflected configuration. U has the same expression as equations (6.1) and 

(6.2), while, kinetic energy (T) expression for the present system is furnished in equation 

(6.8). In expression (6.3) potential of external forces (V) has been reduced to zero as a free 

vibration scenario is under consideration.  

   
2 2 21 1

0 02

a w u v
T A d d    

  
                          

     (6.8) 

The assumed dynamic displacement fields, which are considered to be separable in 

space and time, are expressed by, 

   
1

, , ,
nw

j
i i

i

w d e      


       (6.9a) 
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   
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, , ,
nw nu nv

j
i i nw nu

i nw nu

v d e      
 

 
  

       (6.9c) 

Here, the displacement field is made up of a spatial part, where, the kinematically 

admissible orthogonal functions are identical to those considered in the static analysis at 

Section 6.2.2, and a temporal part. However, in this expression, {d} represents a set of 

unknown parameters which are different from those considered in the static analysis. These 

unknown parameters denote the eigenvectors in matrix form and they represent the 

contribution of individual spatial functions on different vibration modes. Here, ω is the 

natural frequency of the system and τ is the time co-ordinate. Substituting the strain energy 
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(U) and kinetic energy (T) expressions from equations (6.2) and (6.8) along with the 

approximate dynamic displacement fields from equations (6.9) into equation (6.7), set of 

the governing equations are found as, 

     2 0M d K d          (6.10) 

Here, [K] and [M] are stiffness matrix of the system at the deflected configuration and mass 

matrix, respectively. The details of the elements of the mass matrix are furnished in 

Appendix.  

6.4.2 Solution procedure: 

 These matrices are completely known as [K] is already solved in the static analysis 

in Section 6.3.2 and [M] is known from the problem definition. Equation (6.10) represents 

a standard eigenvalue problem and can be solved through usage of Matlab's intrinsic solver. 

Square root of the evaluated eigenvalues corresponds to the natural frequencies of the 

system, whereas, eigenvectors corresponding to the eigenvalues are exploited to obtain 

mode shapes of the vibrating system. 

6.4.3 Result and discussion: 

The plate in the present analysis is considered to be tapered one due to wide 

application of similar structures in the industry. The geometric dimensions of the plate for 

length and width are taken as, a = b = 0.4 m. Linear tapering of the thickness is considered 

in the axial direction as expressed as,    0 1t t   , in which t0 and taper parameter (α) 

are taken as 0.0025 m and 0.5 respectively. Effect of variation in taper parameter on the 

large amplitude vibration behaviour is kept outside the purview of the present study. The 

plate in the present analysis has in-plane inhomogeneity as linear material property (i.e. 

elastic modulus and density) gradation is considered in the axial direction and these are 

expressed mathematically by,    0 1E E   and    0 1     , where, E0, ρ0 and 

gradation parameter (β) are considered as 210 GPa, 7850 kg/m3 and 0.5, respectively. It is 

to be pointed out that variation of gradation parameter is not included as part of the present 

study. Constant value of 0.3 for Poisson ratio (µ) is taken throughout the entire analysis. 
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The end conditions of the plate are selected in such a manner that at least two 

opposite edges of the plate are clamped (C) and free (F) end condition. So, herein the 

obtained end conditions are CCCF, CCFF, CCSF and SCSF respectively. These four 

different end conditions which are combinations among clamped (C), free (F) and simply 

supported (S), are selected for the present study. The start functions for these boundary 

conditions are generated following the similar procedure which is discussed in the Section 

6.3.1 and are mentioned in Table 6.2. From these start functions higher order functions are 

generated following a numerical scheme. 

Table 6.2: Start functions for different boundary conditions 
End conditions Start functions 
CCCF     2 2 21 4 6       

 
CCFF    2 2 2 24 6 4 6         

 
CCSF    2 2 2 22 5 3 4 6         

 
SCSF    2 2sin 4 6     

 
Immovable    1 1     

   
Table 6.3: Comparison of Linear dimensionless Frequencies  2

0 0/a t D  for 

different Boundary Conditions 

Boundary 
Condition 

Literature 
Linear dimensionless Frequencies 

ω1 ω2 ω3 ω4  ω5  ω6 

CCCF 
Leissa (1973) 24.012 40.029 63.471 76.745 80.704 116.799 
Saha et al. (2004) 23.934 40.029 63.290 78.065 80.678 118.067 
Present Study 23.869 39.972 63.115 78.000 80.519 117.985 

CCFF 
Leissa (1973) 6.935 24.038 26.677 47.765 63.031 65.826 
Saha et al. (2004) 6.935 23.934 26.599 47.739 63.885 67.042 
Present Study 6.927 23.944 26.614 47.761 63.866 67.019 

CCSF 
Leissa (1973) 17.621 36.044 52.060 71.182 74.339 106.294 
Saha et al. (2004) 17.543 36.044 51.853 71.182 75.684 106.398 
Present Study 17.517 36.013 51.780 71.091 75.650 106.181 

SCSF 
Leissa 12.679 33.068 41.685 63.005 72.398 90.614 
Saha et al 12.679 33.068 41.736 63.083 73.769 91.261 
Present Study 12.680 33.061 41.709 63.051 73.744 91.106 

In practical applications plates are seldom supported by classical boundary 

conditions. Either they are supported by elastic restrain at the end or rested on elastic 

foundation. To make the problem more realistic, the plate under consideration is assumed 
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to be resting on an elastic foundation. Five different value of the non-dimensional 

foundation stiffness ( 4
f fK a k D ) is consider here. They are 0, 10, 100, 1000 and 10000 

respectively. Here, kf is dimensional value of stiffness and  3 2
0 0 12 1D E t    with t0 = 

0.0025 m. 

  
       (a)                                  (b) 

 
         (c) 

Figure 6.7: Comparison of first four backbone Curves for uniform homogeneous plate 
corresponding to (a) CCCC, (b) CCCF and (c) CCFF boundary conditions 

6.4.3.1 Validation study: 

Validation of the present analysis and solution methodology is carried out in the 

form of comparisons with established results. In this respect results corresponding to 

inhomogeneous plates with in-plane gradation and elastic foundation are not available in 
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published literature. Hence, comparative studies are performed for systems with reduced 

complicacy. First of all, the linear dimensionless frequency parameters  2
0 0/a t D

for various boundary conditions are compared with the results of previously published 

articles of Saha et al. (2004) and Leissa (1973). Here, Ω is dimensional frequency. The 

system under consideration is homogeneous and uniform plate without elastic foundation. 

To comply with the system considered in those papers, the taper parameter (α) and 

gradation parameters (β) are equated to zero. Also, foundation spring stiffness (kf) is also 

set to zero to neglect the effect of the elastic foundation. The comparison of linear 

dimensionless natural frequencies for first six modes is tabulated in Table 6.3 and it is 

evident that there is a good match between the different sets of results.  

As the focus of the present paper is on the backbone curves of the system, the same 

is also validated through comparisons with published results. Figure 6.7 presents the 

comparison of first four backbone curves for CCCC, CCCF and CCFF boundary 

conditions, respectively. It is to be pointed out that in Figure 6.7(a), i.e., in case of backbone 

curves for CCCC plate, 2nd and 3rd modes are overlapping each other and hence it 

apparently looks like only 3 curves are present. The figures show that there is satisfactory 

matching of the results to establish the validity of the present method, although for system 

with reduced complexity. 

6.4.3.2 Natural frequencies: 

Results for linear dimensionless natural frequency parameters for first four modes 

corresponding to different boundary conditions and foundation stiffness are presented in 

Table 6.4. These results are generated for no load condition, i.e., the intensity of transverse 

uniformly distributed load is set to 0. As a result, these results are equivalent to linear 

vibration frequencies. It is observed that for all the cases with the increase in stiffness of 

the foundation the natural frequency increases. This increment of frequency is due to the 

fact that stiffer foundation increases the overall stiffness of the system. It is also observed 

that the rigidity of the plate edges and consequently the boundary conditions significantly 

affect the free vibration response. That’s why the natural frequency in CCCF plate is 

highest and in CCFF plate is lowest for a fixed value of foundation stiffness. 
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Table 6.4: Linear dimensionless Frequencies  2
0 0/a t D  for different Boundary 

Conditions 

Boundary Condition 
Stiffness of 
Foundation 

Linear dimensionless Frequencies 
ω1 ω2 ω3 ω4 

CCCF 

0 15.82 30.46 39.16 58.47 
10 16.72 30.84 39.55 58.66 

100 23.17 34.08 42.91 60.34 
1000 50.51 60.51 66.23 75.96 

10000 130.05 141.62 153.80 164.41 

CCFF 

0 6.50 17.86 21.57 35.38 
10 8.40 18.63 22.12 35.71 

100 17.74 24.46 26.69 38.65 
1000 46.34 51.95 57.46 62.74 

10000 127.59 131.54 144.11 151.28 

CCSF 

0 12.33 27.89 32.84 51.87 
10 13.45 28.30 33.30 52.08 

100 20.82 31.87 37.13 53.99 
1000 48.92 59.54 61.67 71.53 

10000 129.27 138.29 153.22 160.34 

SCSF 

0 9.73 26.04 27.13 46.31 
10 11.10 26.49 27.68 46.55 

100 19.30 30.30 32.10 48.69 
1000 47.93 57.84 58.89 68.13 

10000 128.74 135.71 152.79 154.13 

6.4.3.3 Backbone curves: 

 Large amplitude vibration behaviour of the system is represented through backbone 

curves in a non-dimensional plane, where the abscissa and ordinate are normalised 

frequency and normalised deflection, respectively. Nonlinear frequency (ωnl) is normalised 

with respect to the fundamental frequency (ω1) of the system, whereas, the normalised 

deflection is the ration of maximum deflection (wmax) to the root thickness of the plate (t0). 

Although the results in the present paper are in a non-dimensional plane, the dimensional 

values can be obtained with the help of data provided in Table 6.4 and the system 

(geometric, stiffness and material) parameter values. 

6.4.3.3.1 Effect of boundary condition: 

The effect of the boundary conditions of the plate on the backbone curves are shown 

in Figure 6.8, where two separate plots are furnished to demonstrate the first four backbone 

curves at Kf = 0. From the figures, it is observed that for a particular value of foundation 
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stiffness, the backbone curves obtained in case of SCSF end condition have lesser slope 

and in the case of CCCF it is higher. This type of occurrence happens due to the reason that 

the rigidity of the plate edges and consequently the boundary conditions significantly affect 

the free vibration response.in general, all the backbone curves lean towards the right, which 

implies that with increase in deflection, the vibration frequencies increase and it is referred 

to as hardening type nonlinearity. However, from these figures it is not clear whether any 

of the backbone curves corresponding to a particular boundary condition have intersection 

with another. In order to study this feature in detail backbone curves for different boundary 

conditions need to be plotted separately. It should also be mentioned that the backbone 

curves for the systems represented in the present paper have not been reported previously. 

 
Figure 6.8: Effect of boundary conditions on backbone curves at Kf = 0 and α, β = 0.5 

 
6.4.3.3.2 Mode switching phenomenon: 

 To detect the mode switching phenomenon, first four backbone curves are plotted 

in normalised frequency-amplitude plane for each boundary condition corresponding to 

four foundation stiffness parameter values [Kf = 10, 100, 1000 and 10000]. Figures 6.9-

6.12 provides these results for CCCF, CCFF, CCSF and SCSF boundary condition, 

respectively. In each of these figures there are four plots for the four foundation parameter 

values and in each plot there are four backbone curves. In all these cases the gradation 

parameter values are kept fixed at 0.5, i.e., α = β = 0.5. From Figure 6.9 it is clear that 

switching does not take place for low stiffness values, but at Kf = 10000 mode switching 

takes place between backbone curves 2 and 3. It is  also  clearly  visible   that    the   fourth  
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Figure 6.9: Backbone curves of CCCF plate for various foundation stiffness at α, β = 0.5 

 

 
Continued 
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Figure 6.10: Backbone curves of CCFF plate for various foundation stiffness at α, β = 0.5 

 

 

 
Figure 6.11: Backbone curves of CCSF plate for various foundation stiffness at α, β = 0.5 
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Figure 6.12: Backbone curves of SCSF plate for various foundation stiffness at α, β = 0.5 

backbone curve has a broken and discontinuous appearance, which indicates that switching 

takes place between 4th and 5th mode as well. Similarly, for CCFF plate, switching 

phenomenon is observed between backbone 3 and 4 at Kf = 10000 as shown in Figure 6.10. 

However, in Figure 6.11, for CCSF boundary none of the situations considered clearly 

exhibit mode switching. But, the fourth backbone curve of the plate on foundation with Kf 

= 10000 does show slight bend near the maximum normalised deflection of 2.0. This may 

be indicative of intersection between backbone 4 and 5 and requires further investigation. 

Finally, from Figure 6.12 it is observed that switching occurs between mode 2 and 3 at 

quite low normalized deflection for Kf = 1000. At the highest value of stiffness parameter 

(Kf = 10000) the fourth backbone curve has a sharp bend indicating switching between 4th 

and 5th backbone curves.  
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Figure 6.13: Linear and non-linear mode shape plots for CCSF plate at Kf = 10000 and α, 

β = 0.5 
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Figure 6.14: Linear and non-linear mode shape plots for CCFF plate at Kf = 10000 and α, 

β = 0.5 
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Figure 6.15: Linear and non-linear mode shape plots for SCSF plate at Kf = 1000 and α, β 

= 0.5 
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Figure 6.16: Linear and non-linear mode shape plots for CCCF plate at Kf = 10000 and α, 

β = 0.5 
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Whether mode switching takes place, the modes between which it occurs and the 

normalised amplitude at which switching happens is dependent on the system parameters, 

such as boundary conditions, stiffness parameter, gradation parameters etc. It can be 

definitely concluded from the furnished results that there is a higher chance of occurrence 

of mode switching phenomenon at higher stiffness parameter values. However, influence 

of the boundary conditions also needs to be acknowledged as it is observed that even for 

high foundation stiffness value (all other parameter values remaining same) there is 

apparently no switching for CCSF plate. Further detailed studies are necessary to find out 

how certain other parameters, such as taper and gradation parameters, effect the occurrence 

of this phenomenon. 

6.4.3.4 Mode shape: 

Mode shape plots can be used to reinforce the idea of mode switching between 

different modes. In the following figures (Figures. 6.13 – 6.16) mode shape plots for four 

vibration modes are presented for the plates with four different boundary conditions and a 

specific foundation stiffness parameter value. Mode shape plots for all the combinations of 

boundary condition and stiffness parameter are not presented in order to maintain the 

brevity of the paper. Instead, only significant situations of interest with respect to switching 

phenomenon are considered for mode shape results.  For each mode of vibration, mode 

shapes, in terms of surface plots along with corresponding contour plots, are provided at 

linear (wmax/t0 = 0) and nonlinear (wmax/t0 ≠ 0) frequencies.  

As pointed out in previous paragraph, there is need for further investigation to 

ascertain whether switching takes place for CCSF plate with Kf = 10000 (Figure 6.11). So, 

this case is taken as an example and the mode shape plots are provided in Figure 6.13. It is 

clear from the figures that linear and nonlinear mode shapes corresponding to a backbone 

curve without switching are similar. But slight variations in the shapes are apparent from 

the contour plots. This underlines the effect of vibration amplitude on the free vibration 

behaviour of the system. Interestingly, linear mode shape of the 4th mode is drastically 

different from the nonlinear one. It indicates that there is indeed switching between the 4th 

and 5th backbone curves for CCSF plate. Figure 6.14 represents the linear and non-linear 

mode shape plots for CCFF plate at Kf = 1000 and α, β = 0.5. As observed from Figure 6.10 

there is clear indication of intersection between mode 3 and 4 and the fact is confirmed by 
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interchanging of the linear and nonlinear mode shapes. It is observed that the linear mode 

shape for mode 3 is similar to the nonlinear one of mode 4, whereas, the linear mode shape 

of mode 4 corresponds to nonlinear mode shape of mode 3. Figure 6.15 provides the 

relevant mode shape plots for in-plane inhomogeneous tapered plate with SCSF boundary 

condition having Kf = 1000 and α, β = 0.5. These mode shape results also support the 

occurrence of mode switching between 2nd and 3rd backbone curves as indicated by Figure 

6.12. Similar results corresponding to CCCF plate is also presented in Figure 6.16. From 

the results it can be concluded that mode switching phenomenon for tapered plates with in-

plane gradation is likely to occur at high values of foundation stiffness that render the entire 

system stiff. 

6.5 Closure: 

The present chapter studies the effect of geometric nonlinearity on static deflection 

and free vibration behaviour of a non-uniform axially graded plate on elastic foundation. 

The main objective of the static analysis is to represent the load-deflection characteristics 

and deflected shape of the plate under static loading, whereas, free vibration analysis is 

devoted to investigate the mode switching phenomenon for backbone curves with emphasis 

on variation of foundation stiffness and flexural boundary conditions. Different boundary 

conditions involving clamped, simply supported and free end has been considered. As part 

of the formulation, the elastic foundation is idealized as a set of parallel linear spring of 

constant stiffness. Mathematical formulation is based on energy principle and the problem 

is set up in two parts. First, a static large deflection problem is set up under uniformly 

distributed loading. Minimum total potential energy is employed to obtain the governing 

equations while substitution method with relaxation scheme is utilized to solve for the 

displacement field. The effect of the foundation is found out through load vs amplitude plot 

and deflected shape plot for five foundation stiffness values. Subsequently, the free 

vibration analysis is set up on the basis of deformed static field, thereby incorporating the 

large deformation effect. Hamilton's principle is used to obtain the standard eigenvalue 

problem. The methodology of the mathematical formulation is general in nature. It has 

enough flexibility to cope with other different type of elastic foundation, gradation pattern, 

taper pattern and boundary conditions as well. Results generated through present 

methodology are compared with previously published results and it is observed that the 
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current results match satisfactorily with the established ones. The effect of elastic 

foundation and end conditions on free vibration behaviour is shown through natural 

frequencies and backbone curves. Mode switching has been observed for different 

combinations of boundary conditions and foundation stiffness. However, it is observed that 

switching occurs at high values of the stiffness parameter for all the boundaries considered. 

Mode shape surface plots with contours are also provided to confirm the occurrence of the 

above mentioned phenomenon. Moreover, the results documented in the present paper is 

capable of serving as benchmark results for axially graded plates on elastic foundation.  
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Chapter 7 

 

CLOSURE 

 

7.1 Conclusions:  

The endeavour of the present thesis work is to analyse static and dynamic behaviour 

of axially functionally graded structural elements on elastic foundation with different 

boundary conditions. The structural elements which include both beams and plates, are 

considered to be resting on elastic foundation with different classical boundary conditions. 

The foundation has been mathematically incorporated into the analysis as a set of linear 

springs attached uniformly at the bottom surface of the structure. For beam analyses, both 

Euler-Bernoulli and Timoshenko beam model are separately considered to study free 

vibration and forced vibration characteristics. Free vibration study of the system is 

performed at loaded and unloaded condition. In the present thesis, forced vibration study is 

performed as an equivalent static one assuming force equilibrium condition at maximum 

amplitude of excitation. For beams separate results for static analysis are not furnished, 

although it is in-built with the loaded free vibration study. For plates both static and free 

vibration analysis are performed, whereas, forced vibration study has not been included 

within the scope of the present thesis. For all the studies presented in the thesis, geometric 

nonlinearity induced in the system through large displacement has been taken into 

consideration. To account for the nonlinearity, Von Karman’s nonlinear strain-

displacement relations are employed to obtain the equations of motion. All the studies are 

restricted within the elastic limit as consideration of material nonlinearity is kept out of the 

scope of the thesis. Various classical boundary conditions including free edges along with 

the elastic foundation are taken into account.  

Non-uniform geometry has also been taken into account in the present analysis 

considering variation in thickness along the axial direction. Three different taper patterns, 

i.e., linear, parabolic and exponential, are chosen for the variations of thickness as a 
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function of axial coordinates, whereas other dimensions (i.e. length and width) of the 

structures are taken as constant.  

The material of the structures is considered to be functionally graded continuously 

along spatial directions. To incorporate this material gradation in the analysis, three 

different material models are selected depending on the gradation of elastic modulus and 

density in the axial direction. For forced vibration analysis of Timoshenko beams a separate 

material model is considered, which exhibits continuous gradation of material properties 

from pure form of metal to pure ceramic. Poisson’s ratio throughout the whole thesis is 

kept as constant. 

Mathematical formulation, solution methodologies and techniques used in the entire 

thesis are general in nature and flexible enough to incorporate other type of material 

gradation, taper pattern and loading type. A displacement based semi-analytical method 

associated with the whole physical domain of the system is utilized for formulation of the 

problems throughout the thesis. In other words, the formulation for all the simulation 

studies is based on the displacement fields, which are again dependent on the entire domain. 

Although, the physical domain is not discretized, a grid of reference points is generated in 

order to transform the physical domain of interest into suitable computational domain for 

the two dimensional problem. According to whether the problem under consideration is 

static or dynamic in nature, suitable energy methods are adopted to derive the governing 

equations of the system. For static problem, governing equations are obtained by applying 

the principle of minimum total potential energy. On the other hand, Hamilton’s principle is 

employed to formulate the free and forced vibration problems.  

The displacement fields associated with the problem can be approximated as finite 

linear combination of admissible orthogonal coordinate functions and a set of unknown 

coefficients, which are to be evaluated. The start functions for the above mentioned set of 

orthogonal functions are suitably selected so as to satisfy the flexural and membrane 

boundary conditions. The higher order orthogonal functions are generated numerically by 

using Gram Schmidt scheme from the selected start functions. Due to consideration of 

geometric nonlinearity, the set of governing equations are found to be nonlinear in nature. 

The set of nonlinear equations, describing the static system behaviour under transverse 

external load, are solved using direct substitution technique with suitable successive 
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relaxation scheme throughout the present thesis. The converged solution at the end of the 

static analysis provides the stiffness matrix for the deformed configuration and it is used as 

input to the formulation of free vibration problem. The governing equations for large 

amplitude free vibration analysis are in the form of a classical eigenvalue problem and 

solutions are achieved by utilising in-built Matlab functions. In case of forced vibration 

analysis (system governing equations here are again non-linear due to consideration of 

large displacement), a multi-dimensional secant method, known as Broyden method, is 

utilized for solution in the vicinity of natural frequency (fundamental mode) of the system. 

In case of all the studies, the results generated from the present formulation and solution 

technique has been validated with established data, albeit for systems with less complexity.  

The main concern of the static analysis is to represent the load versus deflection 

plot and deflected shape plot under the application of steady state loading considering the 

effect of various parameters viz. material model, material gradient, system geometry and 

elastic foundation. As already mentioned, static analysis results are specifically furnished 

in case of axially graded plates on elastic foundation. It is observed that with the increase 

of the foundation stiffness the load-deflection curve gradually shifts towards the right side 

of the non-dimensional plane. It is also observed that for the same load application the 

deflection of the SSSS plate is more than the CCCC plate. From the deflected shape plot of 

plate, it is seen that deflection is maximum near the middle of the plate.  It is also observed 

that at zero value of stiffness the deflection is maximum and it is minimum when stiffness 

is maximum. Further, it is also clear from the plots that SSSS plate deflect more than the 

CCCC plate under same load application. These are reasonably expected outcomes that can 

be thought of as universally true. But the novelty of such results is in the fact that these can 

be considered as benchmark for the system under consideration. 

The main focus of the free vibration analysis is to represent backbone curves and 

corresponding mode shapes. In order to generate these, it is necessary to find out the natural 

frequencies of the system under undeformed and deformed conditions. The free vibration 

problem is solved in two steps where the objective of the first part is to compute the stiffness 

matrix in deflected configuration through a static analysis. This equivalent stiffness matrix 

is directly used in dynamic analysis (second part) for obtaining eigenvalues and 

eigenvectors which provide the natural frequencies and mode shape of the system, 
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respectively. For all the structural elements under consideration (thin as well as thick beams 

and plates, on elastic foundation) in the current thesis, the free vibrational frequencies are 

tabulated for different taper profiles, taper parameters and foundation stiffness. The 

dynamic behaviour of the system is presented in the form of backbone curves in 

dimensionless frequency-amplitude plane. The linear and nonlinear mode shapes are also 

furnished to support the presence of nonlinearity in the system. It must be reiterated that 

such detailed results for backbone curves for axially graded structural elements on 

foundation are furnished for the first time and hence worthy of serving as benchmark. For 

AFG plates on elastic foundation, mode switching is detected in certain specific situations. 

To support the presence of switching phenomenon backbone curves along with the linear 

and nonlinear mode shapes are also furnished. 

Forced vibration analysis is conducted with an objective to find out the response of 

the system, in terms of displacement amplitude, under externally applied time varying 

excitations. In the present work, only steady-state response is presented and frequency of 

response of the undamped system is assumed to be equal to that of the external excitation. 

An indirect approach is adopted for solving the problem, where it is reduced to a static 

scenario by assuming that under maximum amplitude of excitation, i.e., when the system 

suffers maximum deformation, the dynamic system fulfils force equilibrium conditions. 

This supposition converts the problem of solving for the dynamic system into an equivalent 

static situation, where the excitation frequency and amplitude of the harmonic excitation 

are the parameters that control system response. Frequency vs. amplitude curve 

corresponding to different combinations of system parameters are presented and are 

capable of serving as benchmark results. The effects of excitation frequency on the 

operational deflected shape (ODS) is also presented. 

7.2 Future Scope of Work: 

This study invokes few other possibilities which may be treated as scope for future 

research activities in this area.  

1. Large amplitude forced vibration study of in-plane inhomogeneous plates on 

elastic foundation has not been included in the present thesis. Incorporation of Broyden 
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solution technique to solve for the nonlinear governing equations of the system is a valid 

an interresting extension of the present study. 

2. The damping effect has not been included in the present thesis but may provide 

an interesting avunue of study involving damped graded structures in nonlinear dynamics. 

3. There is always scope for improving the simulation model by incorporating 

complications hitherto neglected. Analysis of AFG thick plates on elastic foundation is also 

very important topic in this regard and can be explored in near future. For better 

representation of the practical situation, there is always scope to extend the present study 

considering other type of elastic foundations (Pasternak foundation, Kerr foundation etc.) 

and introducing elastic restrains at the boundaries. 

4. FGMs with macroscopic properties varying in two or three directions to 

withstand a more general temperature field can be considered as a natural extension of the 

present analysis. There is a scope to investigate bi-directional or tri-directional functionally 

graded structural elements that are supported on elastic foundation. 

6. In the present work geometric nonlinearity is incorporated in the methodology 

using Von Karman’s strain-displacement relations, which neglects the effect of large 

rotations. Hence in the near future similar studies including the effect of large rotation may 

be performed, based on Green Lagrange strain-displacement relations.  

7. In structural analysis another form of nonlinearity is encountered very often and 

it is material nonlinearity, which is manifested by nonlinear stress-strain relationship. There 

is a scope for extending the studies carried out in the present thesis work to post-elastic 

domain.  

8. Generalized problem which includes both geometric and material nonlinearity 

can also be considered in near future. Incremental nonlinear analysis incorporating Updated 

Lagrangian (UL) formulation to capture appreciable change in geometry is a potential 

domain to explore. 

9. Investigation of free vibration and frequency response of other two dimensional 

structural elements with regular (circular plates, disks, skew plates etc.) and irregular 
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geometry (plates with cut outs of various shapes, cracked beam etc.) may be considered as 

future scope of the present thesis work.  

10. Further experimental investigations are required to understand various nonlinear 

phenomena associated with the dynamic characteristics of structures. Especially, 

experimental studies of axially graded structures are quite limited. Experimental studies on 

free/forced vibration problems considering AFG beams and plates can be performed in 

future. 
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A1: Axially Functionally Graded Thin Beams on Elastic Foundation 

The form of stiffness matrix is given by, 

  11 12

21 22
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The form of load vector is given by, 
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The elements of the load vector are, 
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The form of mass matrix is given by, 
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The elements of the mass matrix are, 
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A2: Axially Functionally Graded Timoshenko Beam on Elastic Foundation 

The elements of the stiffness matrix [Kij] are: 
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The elements of the load vector {fi} are, 
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The elements of the mass matrix [Mij] are, 
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Rest all other elements of the mass matrix [Mij] are zero. 

A3: Axially Functionally Graded Thin Plates on Elastic Foundation 

The of the stiffness matrix due to bending [Kb], stretching [Km] and elastic 

foundation [Kf] are as follow: 



Appendix 

174 
 

11 12 13

21 22 23

31 32 33

b b b

b b b b

b b b

k k k

K k k k

k k k

 
 

       
  

 

11 12 13

21 22 23

31 32 33

m m m

m m m m

m m m

k k k

K k k k

k k k

 
 

       
  

 

11 12 13

21 22 23

31 32 33

f f f

f f ff

f f f

k k k

K k k k

k k k

 
 

       
  

 

The individual elements of stiffness matrices and load vector are presented as 

follows: 
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