Abstract

The synthesis, characterization and photocatalytic performance study of bismuth-based reduced graphene oxide (rGO) supported photocatalysts for selective photo-reduction of CO₂ to renewable fuel are described in the thesis. In particular, two unresolved research gaps or challenges are addressed in this thesis: (a) achievement of selective photocatalytic CO₂ reduction for fuel generation utilizing visible light from the solar spectrum; (b) enhancement in yield of CO2-reduced selective fuel for commercialization. In the context of alternative renewable fuels like methanol (CH₃OH), ethanol (C₂H₅OH), and formic acid (HCOOH) generation, the photocatalytic CO₂ reduction system with the appropriate light source giving 1 sun light intensity is optimized. Photocatalyts, including rGOsupported Bi₂S₃, Bi₂MoO₆, and BiVO₄-based composites, are synthesized by hydrothermal treatment. To achieve the highest yield of selective fuel generation from photocatalytic CO₂ reduction process, rGO/Bi₂S₃ and rGO/Bi₂MoO₆ photocatalyts are modified by the optimal amount of Cu doping, and rGO/BiVO₄ photocatalyts are modified by the optimal amount of N-doping. The optimal amount of Cu and N doping in an rGO-supported bismuth-based photocatalyst actually manifests the smallest band gap, the lowest resistance of charge transfer, the lowest recombination rate of electron-hole pair, and the highest absorption edge-red shift for achieving the highest yield of selective photocatalytic CO₂reduced fuel generation. In 1% Cu doped 1D-Bi₂S₃/rGO photocatalyst, 100% selective methanol (CH₃OH) with the highest yield of 719 μmol g_{cat.} -1 h⁻¹ as photocatalytic CO₂ reduced product is achieved. The 2% Cu-(2D) Bi₂MoO₆ nanoribbon/rGO composite exhibits a 100% selective ethanol (C₂H₅OH) with the evolution rate of 133.10 µmol g_{cat.} -1 h⁻¹. It is also found that the 1.5% N-(2.5%)rGO/BiVO₄ photocatalyst is the active photocatalyst for increased photocatalytic reduction of CO2 to selective formic acid (HCOOH), with the productivity of 592.80 μmol g_{cat.} h⁻¹.