Development of Electrochemical Sensors for the Detection of Different Dyes Used as Artificial Food Colorants

Synopsis submitted
by
Samhita Dasgupta

Doctor of Philosophy (Engineering)

Under the supervision of **Prof. Bipan Tudu**

Department of Instrumentation and Electronics Engineering

Faculty Council of Engineering and Technology

Jadavpur University

Kolkata- 700032, India

2024

1. Introduction

In the realm of culinary aesthetics, food colour plays a pivotal role far beyond mere visual appeal. It serves as a potent tool in influencing human perception and expectations, rendering a food product more marketable. Achieving consistency in colour is paramount in meeting these consumer expectations. To this end, different natural and artificial food colourants are employed. Initially, natural colourants derived from plants and microbes held sway in the industry but were gradually supplanted by synthetic alternatives. Synthetic food colourants, primarily derived from coal tar compounds, mostly belong to the azo group of dyes, with some being natural identical man-made colours like riboflavin. While natural food colours are often perceived as healthier and more consumer-friendly, they come with certain shortcomings, like, being costlier, less durable, and more susceptible to degradation from heat, light, and pH changes [1]. In contrast, synthetic colourants are more stable across various environmental factors, ensuring consistent colour uniformity, water solubility, and less susceptibility to pathogenic contamination [2].

In light of these considerations, the usage of artificial food dyes is on the rise in Indian marketplaces. Key examples of artificial food dyes currently in use include Amaranth (AMR), Indigo carmine (ICN), Malachite green (MG), Erythrosine, Ponceau 4R, Allura red, Sunset yellow, Tartrazine, Brilliant blue, and Azorubine. As consumer preferences and market dynamics continue to evolve, the role of food colourants in shaping the sensory experience and marketability of food products remains indispensable.

The excessive consumption of artificial colours in food poses significant health risks to the human body. The widespread use of both authorized and unauthorized food colourants, coupled with their associated toxicities and potential adulterations, presents global concerns of varying severity across different countries. Diseases like irritations, diarrhea, vomiting, tumors, and permanent damage to the cornea and conjunctiva may arise from unlimited intake of these artificial food dyes. To address these concerns, the Joint Food and agriculture organization of the United Nations (FAO) and the World health organization (WHO) expert committee on food additives (JECFA) have fixed the highest allowable daily intake limits for these colours, with some dyes even being banned. Regrettably, in many regions of India, sellers and vendors still use these artificial colours beyond the permitted limits in numerous commercial food products. Consequently, it is much required to monitor the levels of daily dye intake in foods,

underscoring the urgent need for a rapid and efficient method of detection across various samples. In this context, conventional approaches such as High-performance liquid chromatography (HPLC) [3], [4], spectrophotometry [5], and capillary electrophoresis [6] are available. While these methods are highly accurate, they are plagued by significant drawbacks including lengthy sample preparation times, the requirement for skilled operators, and complex instrumentation [7]. Naturally, these strategies are not easily adaptable for routine and extensive use in detecting artificial food colourants in foods. Efforts to develop more user-friendly and efficient detection methods are essential to ensure compliance with safety standards and safeguard public health.

The present thesis titled "Development of electrochemical sensors for the detection of different dyes used as artificial food colorants" describes the development of some electrodes, specific for an individual synthetic food colour. Among various artificial food colourants, three colours namely Malachite green (MG), Amaranth (AMR), and Indigo carmine (ICN) have been selected whose detection schemes are studied in this thesis.

2. Motivation and research objectives

The enhancement of carbon paste electrodes (CPEs) through nanoparticle modification is a vastly researched domain in electrochemical studies. It provides superior characteristics and heightened functionality for diverse sensing and analytical uses. Nanoparticles are ingrained into the carbon paste structure boosting its conductivity, expanding its surface area, as well as delivering a catalytic capability. The present work throws light on the usage of the nanoparticles modified CPE for the measurement of a few synthetic food colours viz., MG, Amaranth and ICN, separately. With the advancement of the sensors, different exploratory parameters like, effect of pH, effect of buffer, effect of scan rate, and effect of concentration variation have been examined in thoroughly. The goals of this thesis work can be outlined as follows:

- Selection and synthesis of nanoparticles
- Characterization of the nanomaterials in terms of their dimensions, structural and morphological variations.
- Investigating different electrocatalytic properties of the electrodes (high conductivity, wide potential range, renewable surface, etc.) as well as optimizing the experimental conditions like buffer, pH, scan rate, concentration, etc.

- > Studying various electro-analytical characteristics (selectivity, sensitivity, repeatability, reproducibility, etc.) of the developed electrodes.
- Application of the developed electrodes to the real samples.

Considering the stated objectives, the entire study has been segmented into five chapters. A succinct breakdown of the thesis organization by chapter is provided below.

3. Organization of the thesis

Considering the stated objectives, the entire study has been segmented into five chapters. A succinct breakdown of the thesis organization by chapter is provided below.

Chapter 1 explains the basis of the issue and illustrates the objectives of this thesis work. The chapter then portrays the distinctive transduction systems. Further, it concentrates on the various electrochemical procedures utilized as of recently for determination of artificial food colourants alongside their advantages and disadvantages. Followed by it, the nanoparticles based modified carbon paste electrode (CPE) systems have been described as a way to alleviate the impediments brought about by ordinary electrochemical identification procedures. A presentation of this modification is followed by a short literature review on nanoparticles modified CPE based sensing. The chapter ends with the summarized objectives and scope of the work.

Chapter 2 discusses the basic CPE and then the nanoparticles embedded graphite paste electrode (GPE) synthesized for the determination of green coloured dye named Malachite green (MG) in pond water and fish fillets. Also, the comparative study of MG determination with other research reports is presented in this chapter. The electrochemical characteristics of the developed electrode and the experimental parameters for the detection of MG are discussed here in detail followed by analysis of real samples.

Chapter 3 discusses the CPE and then the nanoparticles ingrained GPE for the determination of red coloured Amaranth (AMR) dye in different children's consumable candies. Also, the comparative study of AMR determination with other research reports is presented in this chapter. The electrochemical characteristics of the developed electrode and the experimental parameters for the detection of AMR are discussed here in detail followed by analysis of real samples.

Chapter 4 discusses the CPE and then the modified GPE to determine blue coloured Indigo carmine (ICN) in different candies. A comparative study of ICN determination with earlier research reports is presented. The electrochemical characteristics of the developed electrode and the experimental parameters for the detection of ICN are discussed here in detail followed by analysis of real samples.

Chapter 5 shows a general overview of the work done and highlights the concluding comments. The strengths as well as weaknesses of the proposed framework have been investigated here with certain suggestions and a few proposals are presented as future scopes of work.

4. Contribution of the thesis

The research objectives were formulated following a thorough literature review by former researchers who had worked with modified CPEs. The contribution of this thesis is outlined chapter by chapter in alignment with these research objectives.

- ➤ In **chapter 2**, CPE is modified with copper oxide (CuO) nanoparticles for the detection of MG molecule. Sol-gel method is applied for this synthesis of nanoparticles. The electrochemical characteristics of this electrode with the results in real samples have been presented here. A LOD of 0.18 μM and a wide linear range of 1-1000 μM are obtained.
- ➤ In **chapter 3**, the sensitive and selective determination of AMR in children's consumable candies has been performed using yttrium oxide (Y₂O₃₎ nanoparticles ingrained CPE. Y₂O₃ nanoparticles also have been synthesised in-house using sol-gel method. Overall analytical performance of this electrode has been presented with a LOD of 3.6nM and a wide linear range of 0.05-100μM.
- In **chapter 4**, ICN detection has been narrated using a Y₂O₃ embedded graphite paste electrode. The materials synthesis, characterization and electrochemical responses are discussed. Besides, the reasons behind the individual detection of AMR and ICN using the same nanoparticles modified graphite paste electrode (Y₂O₃@GPE) are also discussed. A linear range of 5-300μM and a LOD of 0.11 μM is achieved here.

References:

- [1] X. Chen, K. Wu, Y. Sun, and X. Song, "Highly sensitive electrochemical sensor for sunset yellow based on the enhancement effect of alumina microfibers," *Sensors and Actuators B: Chemical*, vol. 185, pp. 582–586, 2013, doi: 10.1016/j.snb.2013.05.032.
- [2] T. Gan, J. Sun, W. Meng, L. Song, and Y. Zhang, "Electrochemical sensor based on graphene and mesoporous TiO₂ for the simultaneous determination of trace colourants in food," *Food Chemistry*, vol. 141, no. 4, pp. 3731–3737, 2013, doi: 10.1016/j.foodchem.2013.06.084.
- [3] K. S. Minioti, C. F. Sakellariou, and N. S. Thomaidis, "Determination of 13 synthetic food colourants in water-soluble foods by reversed-phase high-performance liquid chromatography coupled with diode-array detector," *Analytica Chimica Acta*, vol. 583, no. 1, pp. 103–110, 2007, doi: 10.1016/j.aca.2006.10.002.
- [4] M. Iammarino, A. Mentana, D. Centonze, C. Palermo, M. Mangiacotti, and A. E. Chiaravalle, "Simultaneous determination of twelve dyes in meat products: Development and validation of an analytical method based on HPLC-UV-diode array detection," *Food Chemistry*, vol. 285, no. March 2018, pp. 1–9, 2019, doi: 10.1016/j.foodchem.2019.01.133.
- [5] J. J. Berzas, J. Rodríguez Flores, M. J. Villaseñor Llerena, and N. Rodríguez Fariñas, "Spectrophotometric resolution of ternary mixtures of Tartrazine, Patent Blue V and Indigo Carmine in commercial products," *Analytica Chimica Acta*, vol. 391, no. 3, pp. 353–364, 1999, doi: 10.1016/S0003-2670(99)00215-9.
- [6] M. Ryvolová, P. Táborský, P. Vrábel, P. Krásenský, and J. Preisler, "Sensitive determination of erythrosine and other red food colourants using capillary electrophoresis with laser-induced fluorescence detection," *Journal of Chromatography A*, vol. 1141, no. 2, pp. 206–211, 2007, doi: 10.1016/j.chroma.2006.12.018.
- [7] S. Dasgupta *et al.*, "Electrochemical sensor based on CuO nanoparticles-modified graphite electrode for the detection of malachite green," *Nano Life*, vol. 14, no. 1, pp. 1–12, 2024, doi: 10.1142/S1793984423500150.

5. List of publications

Paper published in International Journals

- Samhita Dasgupta, Shreya Nag, Runu Banerjee Roy, Rajib Bandyopadhyay, Panchanan Pramanik, Deepak Kumar Das, Bipan Tudu, "Development and detailed performance study of a carbon paste electrode for the electrochemical detection of malachite green," *Nano LIFE*, vol. 13, no.2, 2350006, pp. 1-9 , 2023. [DOI: 10.1142/S179398442350006X].
- Samhita Dasgupta, Shreya Nag, Debangana Das, Runu Banerjee Roy, Deepak kumar Das, Panchanan Pramanik, Rajib Bandyopadhyay, Bipan Tudu, "Electrochemical sensor based on CuO nanoparticles modified graphite electrode for the detection of malachite green," *Nano LIFE*, vol. 14, no.1, 2350015, pp. 1-12, 2024. [DOI: https://doi.org/10.1142/S1793984423500150].
- 3. Samhita Dasgupta, A.H.M. Toufique Ahmed, Ipshita Bhattacharjee, Shreya Firdoushi, Don Biswas, Sumani Mukherjee, Rajib Bandyopadhyay, Bipan Tudu, "Crafting a graphite electrode with embedded Y₂O₃ nanoparticles for the electrochemical detection of amaranth in candies," *IEEE Sensors Journal*, vol. xx, no.xx, pp.xx-xx, September xx, 20xx. [DOI: 10.1109/JSEN.2024.3400317]. [Article in Press].
- 4. Samhita Dasgupta, A.H.M. Toufique Ahmed, Ipshita Bhattacharjee, Shreya Firdoushi, Don Biswas, Sumani Mukherjee, Rajib Bandyopadhyay, Bipan Tudu, "Electrochemical detection of indigo carmine adulteration in candies using Y₂O₃ nanoparticles infused graphite electrode," (Communicated to *Food Additives and Contaminants: Part A*, ID TFAC-2024-169)

Paper published in International Conferences

- Samhita Dasgupta, Shreya Nag, Runu Banerjee Roy, Rajib Bandyopadhyay, Bipan Tudu, "Malachite green detection using carbon paste electrode based on voltammetry," 2nd IEEE International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET 2022), NIT Patna, 24-25 June, 2022.
- 2. Samhita Dasgupta, Shreya Nag, Runu Banerjee Roy, Rajib Bandyopadhyay, Panchanan Pramanik, Deepak Kumar Das, Bipan Tudu, "Development and detailed performance study of a carbon paste electrode for the electrochemical detection of malachite

- green,"2nd International conference on Nano-architectures for Chemical, Biological and Therapeutic Applications (NCBTA-2022), GLA University, Mathura, UP, 25-27 November, 2022.
- 3. Samhita Dasgupta, Ipshita Bhattacharjee, Rajib Bandyopadhyay, Bipan Tudu, "A voltammetric study for amaranth detection using carbon paste electrode," 2024 IEEE 3rd International Conference on Control, Instrumentation, Energy & Communication (CIEC), Department of Applied Physics, University of Calcutta, India, January 25-27, 2024.

Journal Publications other than thesis

- 1. Swatilekha Roy, Shreya Nag, Mahuya Bhattacharyya Banerjee, Samhita Dasgupta, Panchanan Pramanik, and Rajib Bandyopadhyay. "Detection of geraniol in palmarosa essential oil using silicone sealant as molecularly imprinted polymer in a QCM sensor." *Journal of Materials Nano Science*, vol. 9, no. 2, pp. 120-124, 2022
- Deepam Gangopadhyay, Shreya Nag, Samhita Dasgupta, Mahuya Bhattacharyya Banerjee, Bipan Tudu, Dipak Das, Panchanan Pramanik, Rajib Bandyopadhyay, Runu Banerjee Roy, "A simple and efficient formaldehyde detection technique using poly ethylene glycol modified quartz crystal microbalance sensor," *Nano LIFE*, vol. 13, no.2,2350005,pp. 1-9 , 2023. [DOI: 10.1142/S1793984423500058].
- 3. Ipshita Bhattacharjee, Samhita Dasgupta, Shreya Firdoushi, Rajib Bandyopadhyay, Deepak Kumar Das, Bipan Tudu, "Electrochemical detection of nicotine in green tea using carbon paste electrode," *Innovation and Emerging Technologies*, vol. 11, 2450004, pp. 1-6, 2024. [https://doi.org/10.1142/S273759942450004X].
- Sumani Mukherjee, Samhita Dasgupta, Hemanta Naskar, Shreya Firdoushi, Ipshita Bhattacharya, A.H.M. Toufique Ahmed, Deepak Kumar Das, Rajib Bandyopadhyay, Bipan Tudu, "Development of an easy and economical carbon paste electrode for fisetin detection," *Innovation and Emerging Technologies*, vol. 11, 2450005, pp. 1-7, 2024. [https://doi.org/10.1142/S2737599424500051].
- 5. Ipshita Bhattacharjee, Samhita Dasgupta, Shreya Firdoushi, Don Biswas, AHM Toufique Ahmed, Sumani Mukherjee, Rajib Bandyopadhyay, Bipan Tudu. "A Simple Nano NiMn₂ O₄ Functionalized Graphite Electrode for Electrochemical Detection of Cinnamic Acid in Cinnamon Bark." *IEEE Sensors Journal*, vol. xx, no. xx, pp. xx-xx, Month xx, 20xx. [DOI: 10.1109/JSEN.2024.3477255]. [Article in Press].

Sanhita Dasgupta. 22/05/2024