IMPROVEMENT OF PERFORMANCE OF A COHESIVE SUBGRADE MODIFIED WITH TYRE SCRAP FOR FLEXIBLE PAVEMENT

Thesis submitted by

SUJOY SARKAR

DOCTOR OF PHILOSOPHY IN ENGINEERING

CIVIL ENGINEERING DEPARTMENT FACULTY COUNCIL OF ENGINEERING & TECHNOLOGY JADAVPUR UNIVERSITY

KOLKATA-700032, INDIA

2024

INDEX NO.: 150/17/E

1. Title of the Thesis:

IMPROVEMENT OF PERFORMANCE OF A COHESIVE SUBGRADE MODIFIED WITH TYRE SCRAP FOR FLEXIBLE PAVEMENT

2. Name, Designation and Institution of the Supervisors:

(1) Prof. (Dr.) Sumit Kumar Biswas, Associate Professor,

Department of Civil Engineering,

Jadavpur University,

Kolkata-700032, India.

(2) Prof. (Dr.) Saibal Chakraborty,

Head of the Department,

Civil Engineering Dept.

Jnan Chandra Ghosh Polytechnic

Govt. of West Bengal

Kolkata-700023, India.

3. List of Journal Publications:

- (i) Sujoy Sarkar, Sumit Kumar Biswas and Saibal Chakraborty (2024) "Assessment of Deflection and In-Situ California Bearing Ratio (CBR) of Clayey Subgrade of Flexible Pavement Reinforced with Waste Tyre Scrap Material". SSRG International Journal of Civil Engineering, Vol-11, Issue 1,18-31 (ISSN: 2348-8352).
- (ii) Sujoy Sarkar, Sumit Kumar Biswas and Saibal Chakraborty (2024) "Deflection and Elastic Modulus Assessment of Subgrade in Flexible Pavement Mixed with Waste Tire Scrap Material". Engineering, Technology & Applied Science Research, Vol-14, No 2,13208-13215 (E ISSN: 1792-8036).

4. List of Presentations in National/International Conferences/Workshops:

(i) Sujoy Sarkar, Saibal Chakraborty and Sumit Kumar Biswas (2023) "Improvement of CBR of Cohesive Soil Subgrade with Shredded Tyre Scrap". National Seminar on Geotechnics-Recent Advancement in Research and Practice (GEO RARP), 4th -5th August 2023, Organised by Kolkata Chapter of Indian Geotechnical Society.

STATEMENT OF ORIGINALITY

I, Sujoy Sarkar, registered on 24.04.2017 do hereby declare that this thesis entitled "Improvement of Performance of a Cohesive Subgrade Modified with Tyre Scrap for Flexible Pavement" contains literature survey and original research work done by the undersigned candidate as part of Doctoral studies.

All information in this thesis have been obtained and presented in accordance with existing academic rules and ethical conduct. I declare that, as required by these rules and conduct, I have fully cited and referred all materials and results that are not original to this work.

I also declare that I have checked this thesis as per the "Policy on Anti Plagiarism, Jadavpur University, 2019", and the level of similarity as checked by iThenticate software is 7%.

Signature of candidate:

18/04/2024

Certified by Supervisor(s):

(Signature with date, seal)

Associate Professor Department of Civil Engineers Jadavpur University

Qlkata-700 032

1.

Head, Civil Engineering Department Jnan Chandra Ghosh Polytechnic Department of Technical Education, Training & Skill development Govt. of West Bengal

CERTIFICATE FROM THE SUPERVISOR(S)

This is to certify that the thesis entitled "Improvement of Performance of a Cohesive Subgrade Modified with Tyre Scrap for Flexible Pavement" submitted by Shri Sujoy Sarkar, who got his name registered on 24.04.2017 for the award of Ph.D. (Engineering) degree of Jadavpur University is absolutely based upon his own work under the supervision of Prof. (Dr.) Sumit Kumar Biswas, Associate Professor, Department of Civil Engineering, Jadavpur University & Prof. (Dr.) Saibal Chakraborty, Head of the Department, Civil Engineering Dept. Jnan Chandra Ghosh Polytechnic, Govt. of West Bengal, and that neither his thesis nor any part of the thesis has been submitted for any degree/diploma or any other academic award anywhere before.

Suit Kr. Binum 18 24

Signature of the Supervisor and date with Office Seal

Associate Professor
Department of Civil Engineering
Jadavpur University
Kolkata-700 032

Signature of the Supervisor and date with Office Seal

;-04-2024

Dr. Saibal Chakraborty
Head, Civil Engineering Department
Jnan Chandra Ghosh Polytechnic
Department of Technical Education,
Training & Skill development
Govt. of West Bengal

ACKNOWLEDGEMENT

It is with great pleasure and a profound sense of privilege that I express my heartfelt gratitude to my research supervisors, Prof. Sumit Kumar Biswas and Prof. Saibal Chakraborty. Their unwavering inspiration and support were pivotal to the completion of this thesis. I am deeply grateful for their patience, detailed and constructive feedback, continuous encouragement, and invaluable guidance throughout my research journey.

I would like to offer thanks to Prof. Partha Bhattacharya (Present HOD, Civil Engineering Department) of Civil Engineering Department, Jadavpur University for his valuable support and cooperation in my research work.

I would like to express my gratitude to Prof. Sankar Chakraborty, Prof. Ramendu Bikas Sahu, Prof. Santosh Kumar Das, and Prof. Narayan Roy of Civil Engineering Department, Jadavpur University for their insightful suggestions and valuable advice. I am thankful to Prof. Gokul Chandra Mondal, Prof. Partha Pratim Biswas, and Prof. Manoj Kumar Sahis of Construction Engineering Department, Jadavpur University for their invaluable support and cooperation in my research endeavors.

I also wish to express my immense gratitude to all my professors, laboratory staff, and research colleagues of Civil Engineering Department, Jadavpur University for their constant encouragement and cooperation.

I would like to convey my immense gratitude to Mr. Arun Nath, the former Executive Engineer of South 24 Parganas, PWD, Government of West Bengal, for giving me permission to conduct fieldwork on a PWD road under his jurisdiction

I am very much grateful to Mr. Arijit Ghosh of Alfresco Construction Services, Kolkata, for his immense support for providing field test equipment and proper guidance to perform each step methodically. I would like to extend my sincere thanks to Mr. Rupesh Thakur and Sahil Thakur of Dhela Baba

Enterprise, Naihati for their diligent efforts in support of fieldwork.

I would like to thank my colleagues of Sircon Engineering Services Pvt. Ltd. Kolkata, Nilkamal

Santra, Susovan Tunga, Gopal Pradhan, Swapnasish Das, Sanjay Sarkar, Bubai Karmakar,

Balaram Das, Subol das for their unwavering assistance, support, and encouragement

throughout the duration of my work.

I would like to express my gratitude to my niece, Srijita Saha, for her continuous encouragement

and support throughout my entire thesis work

Furthermore, I am immensely grateful to Mr. Rajesh Nandi, Faculty of the Civil Engineering

Department, Narula Institute of Technology, Kolkata, for his unwavering encouragement and

support during times of need.

I am deeply grateful to my parents for their unwavering love and support throughout my life.

They have stood by me through every high and low, sharing in my joys and comforting me in

moments of frustration. Their boundless love and understanding have been instrumental in my

success.

Place: Jadavpur University

Sujoy Sarkar

vi

DEDICATED TO MY BELOVED PARENTS

The present investigation has been done to examine the performance of a cohesive subgrade mixed with shredded tyre scrap. A road named Jibantala-Taldi Road in South 24 Parganas District, West Bengal, measuring 12.45 km in length and 5.50 m in width, has been selected for this study. This road falls under the jurisdiction of the Public Works Department (PWD), Government of West Bengal.

Soil samples have been collected from the road site to determine the fundamental soil properties, while scrap tyres have been obtained from a local car garage in Jadavpur, Kolkata, West Bengal. The study involves conducting appropriate tests to observe changes in soil strength after mixing different sizes of scrap tyre (10mmX10mm, 15mmX15mm, 20mmX20mm, 25mmX25mm, 30mmX30mm) with soil at varying percentages ranging from 5% to 30% to identify the maximum improvement achievable. Various laboratory tests have been performed to assess critical soil properties, including: a) Grain size distribution b) Atterberg Limits c) Modified Proctor compaction test d) California Bearing Ratio (CBR) test. Soil-tyre mixtures have been prepared by combining road subgrade soil with shredded tyre scrap based on dry weight proportions. The soil-to-tyre ratios explored were 100:0, 95:5, 90:10, 85:15, 80:20, 75:25, and 70:30. To fulfill the objective of the study, two standard test methods have been conducted for soil-tyre mixtures: a) Modified Proctor test b) CBR test. Optimal results have been achieved with a 10% inclusion of 15mm x 15mm tyre scrap, enhancing the soaked CBR value by 164%, from an initial 3.36 to 8.90. In addition, a comprehensive traffic study, including an axle load test, have been carried out on the road to collect necessary data. The analysis of flexible pavement design considered two types of subgrade soil: normal soil and soil mixed with tyre scrap. This analysis followed the guidelines specified in IRC:37-2018 and considered two CBR values: one for normal soil and another for soil with tyre scrap. These findings guided the redesign of the pavement structure using IIT PAVE software, ultimately reducing the pavement thickness by 90mm and suggesting a more sustainable approach with scrap tyre materials.

Moreover, the construction of a new 30.0m road section incorporating these modifications allowed for in-field testing with Dynamic Cone Penetrometer (DCP) and Falling Weight Deflectometer (FWD). A FWD study has been conducted on a selected segment of the Jibantala-Taldi Road, including the newly constructed pavement with a subgrade modified using scrap tyres. Deflection measurements have been taken at various

intervals from the load cell, including 0 mm, 300 mm, 600 mm, 900 mm, 1200 mm, 1500 mm, and 1800 mm. These measurements have been used to calculate deflection bowl parameters, such as the Lower Layer Index (LLI), to assess subgrade deflection. The enhanced subgrade displayed a notable increase in stiffness and load-bearing capacity, evidenced by a 141% increase in the in-situ CBR value and a significant reduction in vertical deflections. The tests revealed a notable increase in subgrade stiffness and load-bearing capacity. These indices are instrumental in predicting the structural performance of in-service pavement layers and identifying homogeneous sections for condition assessment. Elastic modulus values have been determined and compared for both pavement types, following the guidelines outlined in IRC:115-2014. PLAXIS 3D Dynamic Finite Element (FE) modelling of the FWD test has been conducted to create an approximate simplified numerical model and use experimental data to validate the findings. A regression analysis, supported by MINITAB statistical software, demonstrated strong correlations (R² = 0.84, Adjusted R² = 0.8163) between the modified CBR and variables such as scrap tyre size, percentage, and existing pavement thickness.

This analysis confirms the effectiveness of the scrap tyre admixture in enhancing subgrade strength, offering a sustainable solution to improve road durability and performance. This approach provides valuable insights into the effective reuse of scrap tyre in civil engineering, highlighting its benefits for enhancing road durability and performance while advocating for environmentally friendly construction practices.

Keywords: California Bearing Ratio (CBR); subgrade; Tyre Scrap; Falling Weight Deflectometer (FWD); Deflection; Elastic modulus

INDEX

ACKNOWLEDGEMENT	V
ABSTRACT	VIII
INDEX	X
LIST OF TABLES	XIV
LIST OF FIGURES	XVII
LIST OF ABBREVIATIONS	XXIII
LIST OF SYMBOLS	XXV
CHAPTER 1 INTRODUCTION	1
1.1 BACKGROUND	1
1.2 THE PRESENT STUDY	4
1.3 ORGANIZATION OF THE THESIS	5
CHAPTER 2 LITERATURE REVIEW	6
2.1 OVERVIEW	6
2.2 REVIEW OF PAST WORKS	6
 2.2.1 Soil Property Improvement by Scrap Tyre Incorporation 2.2.2 Pavement Design and Traffic Studies 2.2.3 Falling Weight Deflectometer (FWD) Test 2.2.4 Simulation of FWD Test by Finite Element Method (FEM) 2.3 SUMMARY 	6 27 32 45 49
2.4 MOTIVATION	50
CHAPTER 3	52
OBJECTIVE AND SCOPE	52
3.1 OVERVIEW	52
3.2 OBJECTIVE	52
3.3 SCOPE OF WORK	52
3.3.1 Laboratory Tests 3.3.2 Field Study 3.3.3 Numerical Work 3.3.4 Regression Analysis CHAPTER 4 METHODOLOGY	54 55 55 56 57
4.1 OVERVIEW	57
4.2 LABORATORY TESTING AND MECHANISM	57
4.2.1 Grain Size Analysis 4.2.2 Atterberg Limits 4.2.2.1 Liquid Limit 4.2.2.2 Plastic Limit 4.2.3 Water Content 4.2.4 Specific Gravity	58 58 58 58 59 59

4.2.5 Unconsolidated Undrained (UU) test	59
4.2.6 Modified Proctor Compaction Test	59 50
4.2.7 California Bearing Ratio (CBR) 4.3 FIELD STUDIES	59 60
4.3.1 Traffic Study 4.3.1.1 Traffic Census	60 60
4.3.1.2 Axle Load Survey	63
4.3.2 Dynamic Cone Penetration Test (DCPT)	65
4.3.2.1 Setup of Dynamic Cone Penetrometer (DCP)	65
4.3.2.2 DCPT mechanism	66
4.3.2.3 Preparation of DCPT outcome data	67
4.3.2.4 Relationship between Penetration Index (PI) and CBR Values	68
4.3.3 Falling Weight Deflectometer (FWD) Test 4.3.3.1 FWD deflection testing points & measurement:	70
4.3.3.2 Analysis of data	72 73
4.4 NUMERICAL WORK	77
4.4.1 Pavement Design and Analysis by IIT PAVE Software	78
4.4.2 Finite Element Analysis by PLAXIS 3D	79
4.4.2.1 Model Setup in PLAXIS 3D:	79
4.4.2.2 Loading Conditions:	80
4.4.2.3 Analysis and Calculation:	80
4.4.2.4 Correlation with FWD Data:	80
4.4.2.5 Interpretation and Validation:	80
4.4.2.6 Adjustments and Iterations: 4.5 FLOWCHART OF THE STEPS:	81 81
4.6 SUMMARY:	82
CHAPTER 5 LABORATORY TESTS	83
5.1 OVERVIEW	83
5.2 TEST PROGRAM FOR SOIL	84
5.3 TEST PROGRAMME FOR SCRAP TYRE MIX SOIL	85
5.4 LABORATORY TEST RESULTS	86
5.4.1 Test Results for Original Soil	86
5.4.2 Evaluation of Design CBR And Soil Sample Collection for Tests on Soil Tyre	
5.4.3 Property Of Scrap Tyre Material Used in This Study	92
5.4.4 Test Results for Shredded Tyre Scrap Mixed Soil 5.4.4.1 Collection and preparation of soil samples for tyre scrap mixing	93 93
5.5 SUMMARY	105
CHAPTER 6 FIELD TESTS AND ASSOCATED STUDY	106
6.1 OVERVIEW	106
6.2 TRAFFIC STUDY AND PAVEMENT DESIGN	106
6.2.1 Traffic Census	106
6.2.2 Axle Load Survey	110
6.2.3 Pavement Design	111
6.2.3.1 Determination of pavement thickness by IITPAVE using original soil as subgrade	112

6.2.3.2 Determination of pavement thickness by HTPAVE using shredded tyre so	-
mixed soil as subgrade 6.3 STRUCTURAL PERFORMANCE ASSESSMENT STUDY OF SUBGRADE	119 122
6.3.1 Pavement Preparation for Scrap Tyre-Modified Subgrade	123
6.3.1.1 Preparation of subgrade	124
6.3.1.2 Preparation of Base and Subbase	127
6.3.2 FWD Study on Pavement	131
6.3.2.1 Locations of FWD Test	131
6.3.2.2 Details of FWD equipment 6.3.2.3 Testing procedure & frequency	132 133
6.3.2.4 Testing Equipment:	134
6.3.2.5 Pavement composition details:	134
6.3.2.6 CBR determination for FWD	135
6.3.2.7 FWD test on existing pavement and tyre scrap modified pavement 6.3.2.8 Back Calculation of Layer Modulus (KGPBACK) for both type of paver	143 2001 146
6.3.2.9 Determination of corrected back calculated moduli (MPa)	151
6.3.2.10 Deflection and Elastic Modulus of Subgrade	153
6.4 SUMMARY	154
CHAPTER 7 PLAXIS MODELLING	156
7.1 OVERVIEW	156
7.2 PLAXIS 3D ANALYSIS ON MODEL PAVEMENT:	156
7.2.1 Input Parameters for PLAXIS Modelling	159
7.2.2 Output from PLAXIS 3D Analysis	159
7.2.2.1 Vertical Deflections from PLAXIS:7.3 RESULTS OF FWD SIMULATION FROM PLAXIS ANALYSIS.	160 161
7.4 COMPARISON OF THE RESULTS OBTAINED FROM FWD TEST AND FW	D
SIMULATION IN PLAXIS 3D:	162
7.5 SUMMARY	164
CHAPTER 8 REGRESSION ANALYSIS	165
8.1 OVERVIEW	165
8.2 GENERAL:	165
8.3 TERMINOLOGY USED:	166
8.3.1 R ² , Adjusted R ² and Mean Squared Error (MSE), F Value and t-Value: 8.4 REGRESSION MODEL:	166 167
8.4.1 Results Obtained from Regression Model:8.5 SUMMARY	167 170
CHAPTER 9 DISCUSSION	172
9.1 OVERVIEW	172
9.2 LABORATORY TEST RESULTS	172
9.2.1 Modified Proctor and CBR Test Results 9.3 FIELD TEST RESULTS	172 175
9.3.1 Traffic Study	175

9.3.2 Dynamic Cone Penetration Test (DCPT) Result 9.3.3 FWD Oriented Result 9.3.3.1 Subgrade deflection 9.3.4 Elastic Modulus (Es) of Subgrade	176 177 177 179
9.4 NUMERICAL RESULTS 9.5 EFFECT OF SCRAP TYRE ON SUBGRADE	180 182
 9.5.1 Discussion on Impact of Thickness of Pavement 9.5.2 Discussion on Impact of Subgrade Strain (ε_ν) 9.6 IMPACT OF COSTS ON MODIFIED PAVEMENT CONSTRUCTION 	182 182 182 184
9.7 SUMMARY	186
CHAPTER 10 SUMMARY AND CONCLUSIONS	187
10.1 SUMMARY	187
10.2 CONCLUSIONS	188
10.3 CONTRIBUTION OF PRESENT INVESTIGATION TO THE EXISTING	
KNOWHOW IN LITERATURE	189
10.4 LIMITATION AND SCOPE OF THE FURTHER RESEARCH	191
10.4.1 Limitations of the Study 10.4.2 Scope of Future Research REFERENCES:	191 191 193
ANNEXURE- I	200
ANNEXURE- II	202
ANNEXURE- III	204
ANNEXURE- IV	207
ANNEXURE- V	215
ANNEXURE- VI	225

LIST OF TABLES

Table 2.1: Variation in CBR Test Results of BC Soil with Varying Proportions of Shredded	f
Tyre. (After Tabasum et al. 2023)	7
Table 2.2: Characteristics of materials (After Amin et al.2023)	7
Table 2.3: Analysis of Normal Stress and shear stress (After Amin et al.2023)	8
Table 2.4: CBR values for different samples (After Juliana et al. 2020)	. 10
Table 2.5: Shear Strength Characteristics of soil mixed with rubber particles. (After Bai et	al.
2020)	. 11
Table 2.6: Outcomes from the conducted soaked CBR test. (Munnoli et al.2014)	. 24
Table 2.7: Horizontal tensile strains (After Kumar and Kumar 2020)	. 29
Table 2.8: Vertical compressive strains (After Kumar and Kumar 2020)	. 29
Table 2.9: Summary of Average Deflection (After Alam 2020)	. 34
Table 2.10: DCP measurement for sample 1 within the research zone	. 38
Table 2.11: Cement (2–4% CEM I) stabilized RAP testing results (After Skels et al.2017).	. 40
Table 2.12: Assumed input values for generating the dataset in the pavement system mode	:1
using KENLAYER. (After Adigopula 2021)	. 47
Table 4.1: Test programme for soil and soil tyre scrap mix	. 58
Table 4.2: Correlations between CBR and PI (After Harison 1987 and Gabr et al. 2000)	. 69
Table 4.3: Correlations between CBR and PI	. 70
Table 5.1: Test program for soil	. 85
Table 5.2: Test program for tyre scrap mix soil	. 85
Table 5.3: Laboratory test results on road soil with respect to chainage	. 88
Table 5.4: Properties of scrap tyre	. 92

Table 5.5: Property of mixed soil formed by collecting soil from different chainages of
3.00Km, 6.00Km, 7.00Km, 11.00Km, 12.00Km, and 12.45Km. (Atterberg Limits, Bulk
Density, Moisture Content and Grain Size Analysis)
Table 5.6: Property of mixed soil formed by collecting soil from different chainages of
3.00Km, 6.00Km, 7.00Km, 11.00Km, 12.00Km, and 12.45Km. (Modified Proctor,
Unconsolidated Undrained (UU) and Laboratory CBR (%))
Table 5.7: Laboratory test results for soil- shredded tyre scrap mix
Table 5.8: UU and Bulk Density of soil mixed with tyre scrap of size 15mm x 15mm at a
percentage of 10%
Table 6.1: Summary of Traffic census
Table 6.2: Summary of Axle load test results
Table 6.3: Input Parameters for design traffic calculation of Jibantala-Taldi Road
Table 6.4:Input parameters for the analysis of pavement performance criteria for normal soil
and scrap tyre modified soil
Table 6.5: Trial pavement thickness analysis for normal soil subgrade by IITPAVE 118
Table 6.6: Trial pavement thickness analysis for tyre scrap modified soil subgrade by
IITPAVE 121
Table 6.7: Soil and scrap tyre requirements for each layer
Table 6.8: Test points and Chainages
Table 6.9: Crust thickness for both the pavements
Table 6.10: CBR Test points and chainage
Table 6.11: Summary of DCPT test results
Table 6.12: Modified Proctor and CBR test results for existing and modified subgrade soil
Table 6.13: Comparison table between field and laboratory CBR
Table 6.14: FWD test points and chainage

Table 6.15: Summary of average deflection (For Existing pavement)
Table 6.16: Summary of average deflection (for modified subgrade)
Table 6.17: Input parameters for KGPBACK software analysis
Table 6.18: Back calculated moduli for pavement layers
Table 6.19: Corrected Back Calculated moduli for bituminous layer of pavements 151
$Table~6.20: Corrected~Back~Calculated~moduli~for~granular~(E_{gran_win})~and~subgrade~(E_{sub_win})$
layers of pavement
Table 6.21: LLI for Subgrade Layer in both pavement types
Table 6.22: Average Elastic Moduli (E _s) for Subgrade Layer in both pavement types 154
Table 7.1: Parameters used for finite element analyses of normal soil subgrade pavement 159
Table 7.2: Parameters used for finite element analyses of scrap tyre modified subgrade
pavement
Table 7.3: vertical deflection data, obtained from FE analysis
Table 7.4: Vertical deflection data, obtained from FWD test and FE analysis for normal soil
subgrade pavement
Table 7.5: Vertical deflection data, obtained from FWD test and FE analysis for tyre
modified soil subgrade pavement
Table 8.1: Regression model summary (Analysis of variance)
Table 8.2: Regression model summary (Coefficients)
Table 8.3: Model summary
Table 9.1: Different layer pavement thickness for normal and tyre scrap mixed soil 182
Table 9.2: Quantity and cost analysis of flexible pavement for normal and tyre scrap
modified subgrade
Table 9.3: Thickness and costs analysis of flexible pavement for normal and tyre scrap
modified subgrade

LIST OF FIGURES

Fig. 2.1: Approach utilized for formulating empirical equations. (After Adigopula 2021)9
Fig. 2.2: p ε c - curves (η is proportion). (After Bai et al. 2020)
Fig. 2.3: Field CBR setup (After Dhorajiya et al 2019)
Fig. 2.4: Angle of internal friction with the rubber waste content
Fig. 2.5: Cohesion with the rubber waste content
Fig. 2.6: Cohesion with waste tyre rubber. (After Akshatha et al 2018)
Fig. 2.7: Soaked CBR with different-sized tyre rubber. (After Akshatha et al 2018)
Fig. 2.8: Effect of tyre chips on CBR improvement of sand mixtures (After Al-Nemi 2018)
Fig. 2.9: CBR Value of Soil-Tyre Mixture (10mm×20mm) (After Singh and Sonthwal 2016)
21
Fig. 2.10: Alteration in the effect of admixture influence factor (AIF) on CBR values due to
the inclusion of Crumb Rubber Powder (CRP)
Fig. 2.11: Comparative analysis of CBR values (After Teja and Siddhartha 2015)
Fig. 2.12: Soil Profile for Sample 1
Fig. 2.13: Location of research sections along the road A7 Riga—Bauska—Lithuanian
border and designed pavement structure. (After Skels et al.2017)
Fig.2.14: FWD measurement and t distribution for the studied four road A7 sections (After
Skels et al.2017)
Fig. 2.15: Configuration design of a standard FWD, placement of the loading plate,
geophones, and the recorded deflection basin. (After Nega et al. 2016)41
Fig. 2.16: The nonlinear analysis identified dynamic deflection basins at various locations
for Project 5 (After Nega et al. 2016)
Fig. 2.17: Field DCP-CBR relationship (merged data) (After Sahoo and Reddy,2009) 44

Fig. 2.18: Dynatest 3031 assessment involving (a) a 20 kg drop weight and (b) a 15 kg drop
weight. (After Adigopula 2021)46
Fig.2.19: Approach employed in formulating empirical equations. (After Adigopula 2021) 47
Fig. 3.1: Sample stretch of Jibantala-Taldi Road
Fig. 4.1: Schematic diagram of the DCPT instrument
Fig. 4.2: DCP test before and after hammer drooping effect
Fig. 4.3: Typical DCP test result
Fig. 4.4: Typical representation of FWD operation
Fig. 4.5: Curvature zones of a deflection bowl (After Horak, 2008)
Fig. 4.6: Back calculation process (After Singh et al.,2019)
Fig. 4.7 : Flowchart of steps
Fig. 5.1: Sample collection chainages on the road
Fig. 5.2: Soil sample collection from Jibantala-Taldi Road
Fig. 5.3: Sample tyre scrap of size 15mm X 15mm
Fig. 5.4(A) and (B): Laboratory sample preparation and data collection
Fig. 5.5: Particle size distribution curve
Fig. 5.6: Modified Proctor Compaction Curve for existing road subgrade between chainages
0.100 Km and 12.450 Km
Fig. 5.7: Load vs. Penetration curve for existing road subgrade between 0.100 km and 6.000
km in unsoaked condition
Fig. 5.8: Load vs. Penetration curve for existing road subgrade between 0.100 km and 6.000
km in soaked condition
Fig. 5.9: Load vs. Penetration curve for existing road subgrade between 7.000 km and
12.450 km in unsoaked condition
Fig. 5.10: Load vs. Penetration curve for existing road subgrade between 7.000 km and
12.450 km in soaked condition

Fig. 5.11: Design CBR curve 92
Fig. 5.12: Particle size distribution curve for mix soil
Fig. 5.13: Modified Proctor Compaction Curve for mix soil
Fig. 5.14: Load vs. Penetration Curve for mix soil
Fig. 5.15: Modified Proctor Compaction Curve for Original Soil mixed with Various
Percentages of 10 mm x 10 mm tyre Scrap
Fig. 5.16: Modified Proctor Compaction Curve for original soil mixed with Various
Percentages of 15 mm x 15 mm tyre Scrap
Fig. 5.17: Modified Proctor Compaction curve for original soil mixed with various
Percentages of 20 mm x 20 mm tyre Scrap
Fig. 5.18: Modified Proctor Compaction curve for original Soil mixed with various
Percentages of 25 mm x 25 mm tyre Scrap
Fig. 5.19: Modified Proctor Compaction curve for original Soil mixed with various
Percentages of 30 mm x 30 mm tyre Scrap
Fig. 5.20: Load vs. Penetration Curve for Original Soil Mixed with Different Percentages of
10 mm x 10 mm tyre scrap, in unsoaked condition
Fig. 5.21: Load vs. Penetration Curve for Original Soil Mixed with Different Percentages of
10 mm x 10 mm tyre scrap, in soaked condition
Fig. 5.22: Load vs. Penetration Curve for Original Soil Mixed with Different Percentages of
15 mm x 15mm tyre scrap, in unsoaked condition
Fig. 5.23: Load vs. Penetration Curve for Original Soil Mixed with Different Percentages of
15 mm x 15mm tyre scrap, in soaked condition
Fig. 5.24: Load vs. Penetration Curve for Original Soil Mixed with Different Percentages of
20 mm x 20mm tyre scrap, in unsoaked condition
Fig. 5.25: Load vs. Penetration Curve for Original Soil Mixed with Different Percentages of
20 mm x 20mm tyre scrap, in soaked condition

Fig. 5.26: Load vs. Penetration Curve for Original Soil Mixed with Different Percentages of
25 mm x 25mm tyre scrap, in unsoaked condition
Fig. 5.27: Load vs. Penetration Curve for Original Soil Mixed with Different Percentages of
25 mm x 25mm tyre scrap, in soaked condition
Fig. 5.28: Load vs. Penetration Curve for Original Soil Mixed with Different Percentages of
30 mm x 30mm tyre scrap, in unsoaked condition
Fig. 5.29: Load vs. Penetration Curve for Original Soil Mixed with Different Percentages of
30 mm x 30mm tyre scrap, in soaked condition
Fig. 6.1: Vehicle distribution chart as per PCU
Fig. 6.2: Vehicle distribution chart as per ADT
Fig. 6.3: Axle load test
Fig. 6.4: Axle load test data collection
Fig. 6.5: Trial pavement thickness for 5% CBR. (After IRC 37:2018)
Fig. 6.6: Typical input window of IITPAVE analysis for normal soil subgrade
Fig. 6.7: Typical output window of IITPAVE analysis for normal soil subgrade
Fig. 6.8: Typical Cross Section of pavement for original Soil Subgrade of CBR 3.36 119
Fig. 6.9: Trial pavement thickness for 9% CBR. (After IRC 37:2018)
Fig. 6.10: Typical input window of IITPAVE analysis for tyre scrap modified soil subgrade.
Fig. 6.11: Typical output window of IITPAVE analysis for tyre scrap modified soil subgrade
Fig. 6.12: Typical Cross Section of pavement for scrap tyre modified subgrade of CBR 8.90
Fig. 6.13: Site before model pavement preparation
Fig. 6.14: Scrap tyre mixing with subgrade soil
Fig. 6.15: Preparation of subgrade

Fig. 6.16: Preparation of subbase layer	128
Fig. 6.17: Preparation of surface layer	129
Fig. 6.18: Finished pavement under FWD study	130
Fig. 6.19: GEOTRAN FWD operation under process	131
Fig. 6.20: DCPT operation on subgrade	138
Fig. 6.21: DCPT Test Result Graph for existing subgrade at Chainage $3.0 \times 10^3 \text{m}$	139
Fig. 6.22: DCPT Test Result Graph for modified subgrade at Chainage 0.00m	139
Fig. 6.23: Variation in modified proctor for different pavements	141
Fig. 6.24: Variation in CBR for different pavements	141
Fig. 6.25: FWD deflection recording on Jibantala -Taldi Road	144
Fig. 6.26: FWD deflection recording on scrap tyre modified subgrade pavement	145
Fig. 6.27: Deflection data collected for the subgrades	146
Fig. 6.28: Sample Input window of KGPBACK for existing pavement	148
Fig. 6.29: Sample output window of KGPBACK for existing pavement	148
Fig. 6.30: Sample Input window of KGPBACK for modified pavement	149
Fig. 6.31: Sample Output window of KGPBACK for modified pavement	149
Fig. 6.32:Back calculated moduli chart for both the pavements	150
Fig. 6.33: Corrected back calculated Moduli chart for both the pavements	152
Fig. 7.1: The model of FWD test pulse load	157
Fig. 7.2: FE model of flexible pavement with meshing	158
Fig. 7.3: Vertical deformation on the pavement surface and at layer boundaries as a funct	ion
of dynamic time for normal soil	160
Fig. 7.4: Vertical deformation on the pavement surface and at layer boundaries as a funct	ion
of dynamic time for scrap tyre modified soil	161
Fig. 7.5: Comparison of vertical deflection bowl for normal soil subgrade pavement and	
scrap tyre modified soil subgrade pavement	162

Fig. 7.6: Deflection bowl comparison, obtained from FWD test and FE analysis for existing
pavement
Fig. 7.7: Deflection bowl comparison, obtained from FWD test and FE analysis for modified
pavement
Fig. 8.1: Residual analysis of prediction of stabilized CBR
Fig. 8.2: Validation plot of stabilized CBR
Fig. 9.1:Variations in Optimum moisture content (OMC) test results with respect to road
chainage
Fig. 9.2: Variations in Maximum dry density (MDD) test results, with respect to road
chainage
Fig. 9.3: Variations in CBR test results, with respect to existing road chainage
Fig. 9.4: Variation in Optimum moisture content (OMC) test results for soil mixed with
different sizes of shredded tyre scrap of different percentages
Fig. 9.5: Variation in Maximum dry density (MDD) test results for soil mixed with different
sizes of shredded tyre scrap of different percentages
Fig. 9.6: Variation in soaked CBR test results for soil mixed with different sizes of shredded
tyre scrap of different percentages
Fig. 9.7: Comparison bar chart between Laboratory CBR and In-situ CBR
Fig. 9.8: Deflection variation in subgrade for both the pavements
Fig. 9.9: Corrected back calculated Moduli chart for both the pavements
Fig. 9.10: Vertical deformation for both pavements as a function of dynamic time at the layer
borders and on the pavement surface
Fig. 9.11: Comparison of vertical deflection bowl for both the pavements
Fig. 9.12: Pavement Section Showing the Locations of Critical Strains. (IRC 37:2018) 183
Fig. 9.13: Comparison chart between svs s

LIST OF ABBREVIATIONS

AADT Annual Average Daily Traffic

AIF Admixture Influence Factor

ADT Average Daily Traffic

ATCC Auto Traffic Counter and Classifier

ANOVA Analysis of Variance

BC Bituminous Concrete

BCI Base Curvature Index

BD Base Damage Index

Ch. Chainage

CBR California Bearing Ratio

CSTC Contents of Scrap Tyre Crumbs

CR Crumb Rubber

CRP Crumb Rubber Powder

CTSB Cement Treated Sub-base

CVPD Commercial Vehicle Per Day

DBM Dense Bituminous Macadam

DBP Deflection Basin Parameter

DCPT Dynamic Cone Penetration Test

DCP Dynamic Cone Penetrometer

DF Design Factor

EGL Existing Ground Level

EIRR Economic Internal Rate of Return

ENPV Economic Net Present Value

ESAL Equivalent Standard Axle Load

FE Finite Element

FEM Finite Element Method

FWD Falling Weight Deflectometer

GGBS Ground Granulated Blast Furnace Slag

GSB Granular Sub Base

GS Government Standard

HMA Hot Mix Asphalt

IRC Indian Road Congress

IRI International Roughness Index

LCV Light Commercial Vehicle

LL Liquid Limit

LLI Lower Layer Index

MAV Multi Axle Vehicle

MDD Maximum Dry Density

MSA Million Standard Axle

MSE Mean Squared Error

MLI Middle Layer Index

NH National Highway

NGT National Green Tribunal

NDT Non-Destructive Testing

NL Non lateritic

ODD Optimal Dry Density

OMC Optimum Moisture Content

PCU Passenger Car Unit

PI Plasticity Index

PL Plastic Limit

PMS Pavement Management Systems

PWD Public Works Department

RAP Reclaimed Asphalt Pavement

RC Reference Chainage

SCI Surface Curvature Index

SH State Highway

STCR Scrap Tyre Crumb Rubber

UU Unconsolidated Undrained

UCS Unconfined Compression Strength

VDF Vehicle Damage Factor

WMM Wet Mix Macadam

WPSA Waste Paper Sludge Ash

WTR Waste Tyre Rubber

LIST OF SYMBOLS

3D Three Dimensional

A Initial traffic (CPVD) in the year of completion of construction

C Adjustment Factor

c Cohesion

D Lane distribution factor

E_{eps} Elastic Modulus of existing subgrade

E_{eq} Equivalent Modulus of Elasticity

E_{gran_sum} Granular layer modulus in summer (MPa)

E_{gran win} Granular layer modulus in winter (MPa)

E_{mps} Elastic Modulus of modified subgrade

E_{sub mon} Subgrade modulus in monsoon (MPa)

E_{sub sum} Subgrade modulus in summer (MPa)

E_{sub win} Subgrade modulus in winter (MPa)

E_s Elastic Modulus of subgrade

E_{T1} Back-calculated modulus (MPa) at temperature T1 (°C)

E_{T2} Back-calculated modulus (MPa) at temperature T2 (°C)

e Residuals

F Vehicle damage factor (VDF)

LLI_{mps} Average LLI for modified subgrade

LLI_{eps} Average LLI for existing subgrade

M_{Rm} Resilient modulus (MPa) of the bituminous mix used in the bottom

Bituminous layer

n Design period (years)

N_f Fatigue life of bituminous layer

N_R Subgrade rutting life

P Count of commercial vehicles per day as per the previous record

r Annual inflation rate of commercial vehicles in decimal

R² coefficient of regression

V_a Percent volume of air void in the mix used in the bottom bituminous

layer

V_{be} Percent volume of effective bitumen in the mix used in the bottom

bituminous layer

V Volume

W_s Weight of solid

W_w Weight of water

w Moisture content (%)

x Difference in the number of years between the last record and the year of

termination of construction

Y Dependent variable

 \widehat{Y} Response of the fitted model

X_k kth independent variable,

b_k Estimate of kth population regression coefficient

Y_b Bulk Density

LATIN

 β_k Regression coefficient of kth population

 Δ BC Blow counts corresponding to penetration depth.

 ΔD_p penetration depth

 ϵ_{cvc} Calculated vertical compressive strain at the top of the subgrade

 ϵ_{mvc} Maximum vertical compressive strain at the top of the subgrade.

 ε_t Horizontal tensile strain at the bottom of the bituminous layer,

 ε_{v} Vertical compressive strain at the top of the subgrade.

λ Temperature Correction Factor

Ø Angle of Internal Friction

UNIT

Km Kilo meter

kN Kilo Newton

KPa Kilo Pascal

MPa Mega Pascal

m Meter

CHAPTER 1 INTRODUCTION

1.1 BACKGROUND

In the recent trend related to environmental impact, disposal of vehicle-generated scrap tyres has become a major landmark. From the manufacturing point of view, those tyres are generated from petroleum products and which can't be recycled or dissolved into nature. With the consequence of population growth and simultaneous increase in vehicle numbers, the accumulation of solid waste material in the form of scrap tyres needs a healthy assessment of reuse. In the Union Budget 2021, Indian government announced the Vehicle Scrappage Policy 2021. On March 18, 2021, the Honourable Minister for Road Transport and Highways, India, Nitin Gadkari, provided extensive insights about the scheme. This policy is designed to identify vehicles, that are unfit for the roads and will lead to the scrapping of old and unfit vehicles, which are causing pollution and harming the environment. The policy varies for different types of vehicles on Indian roads. It mandates a fitness test for commercial vehicles after 15 years, and if found unfit, they are proposed to be scrapped. Government vehicles over 15 years old will be scrapped starting from April 2022, with more than nine lakhs targeted for scrapping by January 2023. Private vehicles will be de-registered after 20 years if they are unfit or if their registration is not renewed, and higher re-registration fees will apply after 15 years. All vehicles must undergo regular fitness tests, as vehicles over 15 years old tend to pollute more. This policy not only reduces pollution but also provides other benefits, such as enabling the recycling of materials like steel, plastic, tyres, and other metals. Therefore, it is clear that the significant volume of scrap tyres generated from vehicles poses a considerable environmental challenge to the nation.

On September 19, 2019, the National Green Tribunal (NGT), in a case concerning the inadequate management of End-of-Life Tyres/Waste Tyres (ELTs), instructed the Central Pollution Control Board (CPCB) to develop a comprehensive waste management plan specifically for waste tyres and their recycling. This directive came in light of the significant challenges posed by tyre waste in India. India faces a critical issue with tyre waste management, as highlighted by data presented in the NGT case. Every day, the country discards approximately 275,000 tyres, yet lacks a comprehensive plan to effectively handle this waste. Compounding the problem, India also imports about 3 million waste tyres annually for recycling purposes. This situation, underscored by the NGT's directive, highlights the urgent need for a structured and effective approach to tyre waste management. The quantity of automobiles globally has markedly risen over recent years, leading to a significant uptick in the buildup of disposed tyres and inner tubes. Multiple studies predict that the worldwide volume of scrap vehicles is poised to reach up to 2 billion by 2030, consequently generating a significant volume of waste tyres (Dargay et al., 2007). Due to their non-degradable nature and unfavourable size for storage, these waste tyres have contributed significantly to the diminishing available disposal space for solid waste, making them a substantial contributor to the solid waste crisis. According to Tahami et al. (2019), annually, one billion tyres reach the end of their lifespan, with only about half undergoing recycling while the remainder ends up in landfills. F.D.B. de Sousa (2017) noted that the accumulation of large volumes of scrap tyres, emphasises the environmental risks if not managed properly. Often, these tyres are disposed of uncontrolledly, exacerbating the rapid depletion of waste disposal sites and leading to severe environmental issues. However, emerging research in geotechnical engineering offers many potential benefits of recycling waste tyres. In light of escalating environmental concerns, the proper management of scrap tyres generated by vehicles has emerged as a critical issue. When these tyres are disposed of in landfills, they exhibit limited decomposition and tend to linger near the surface, posing risks such as fire hazards, air

pollution, particulate matter, unpleasant odours, visual eyesores, and the release of harmful contaminants like fumes, aromatic polycyclic hydrocarbons, dioxins, furans and nitrogen oxides (Rokade, 2012). Alternatively, incinerating these tyres results in the production of toxic gases. In terms of production, these tyres are made from materials derived from petroleum and cannot be recycled or undergo natural biodegradation. As the population grows and the quantity of vehicles grows simultaneously, solid waste, including tyres that are thrown away, accumulates and it becomes necessary to figure out whether or not they may be repurposed. Studies have shown that using waste tyres in geotechnical engineering applications is beneficial because of their robust resistance to ageing, high tensile strength, durability, and toughness (Mashiri et al., 2018). Consequently, geotechnical engineers have been actively exploring ways to reuse discarded tyres. Several investigations conducted over the past three decades have examined the use of waste tyre material as an additional reinforcing agent. These investigations have consistently shown that the incorporation of scrap tyre material can significantly enhance the performance and cost-effectiveness of various construction projects, including road subgrades, highway embankments, and retaining wall backfills. Nonbiodegradable waste materials such as tyres and plastics present substantial challenges to both human life and the environment. The exploration of alternative applications, particularly in the field of construction, offers a promising avenue for addressing these issues.

Pavements are vital for the efficient transportation of passengers, freight, and other community services. A flexible pavement, as a load-bearing structure, comprises layers of various granular materials over a soil subgrade. The durability of pavement hinges on multiple factors, such as the strength of the subgrade soil, material quality, layer thickness, environmental conditions, and traffic characterization. To ensure the structural integrity and load-bearing capacity or the overall pavement performance, subgrade plays an important role in distributing loads effectively onto the subsoil, reducing the strain on the layers of pavement and possibly increasing pavement life. Waste tyres, possessing unique attributes like

lightweight, insulation properties, water resistance, durability, and compressibility, can be effectively employed in improving the performance of road subgrades. Taking those factors into account, waste tyres have been successfully employed to reinforce soft soil subgrade in road construction. India boasts one of the world's most extensive road networks, but the rapid escalation in traffic has rendered existing roads structurally inadequate. Conventional design and construction practices have proven insufficient in meeting construction standards. In response, researchers have sought alternatives, including unconventional materials and innovative design methodologies. Waste tyre products have played a pivotal role in aiding designers in resolving various engineering challenges. The present study has been taken up considering those aspects and it is detailed hereunder.

1.2 THE PRESENT STUDY

Based on these considerations, the study aims to investigate the potential for reusing tyre scraps in the subgrade layer of pavements. The foundation layer under the pavement is known as the subgrade, and using scrap tyres in this context could be a form of recycling that contributes to both waste management and potentially improved engineering properties of the road. To establish the guidelines and scope, and to investigate the findings, an adequate literature review has been conducted. Based on this literature, the scope and target of the current research work have been obtained.

1.3 ORGANIZATION OF THE THESIS

The thesis has been organized into ten (10) different chapters in the following order: -

Chapter 1: Introduction presents the background and brief description of the present study.

Chapter 2: Literature Review describes in brief the works of the past research in chronological order. The works have been divided into four different types in different subsections of the chapter namely- soil property improvement through the incorporation of scrap tyres, pavement design and traffic studies, Falling weight Deflectometer (FWD) test,

Simulation of FWD test by Finite element method (FEM)

Chapter 3: Objective and scope of work covers the objectives and scope of the present research.

Chapter 4: Methodology describes the methodology used for the study, including existing subgrade clayey soil and tyre scrap, along with their properties.

Chapter 5: Laboratory study depicts the experimental results and provides interpretations of the test results.

Chapter 6: Field Tests and Associated Study focuses on traffic studies and pavement design.

The chapter introduces a field study that includes pavement preparation, Dynamic Cone

Penetration Test (DCPT), and FWD Test.

Chapter 7: PLAXIS Modelling aims to simulate the FWD test and obtain deflection bowls.

Chapter 8: Regression Analysis establishes correlations between laboratory tests and field test results.

Chapter 9: Discussion presents observations and analyses of the results of all field tests and laboratory tests.

Chapter 10: Conclusions summarizes the present study and draws conclusions from it, while also suggesting some guidelines for further research.

CHAPTER 2 LITERATURE REVIEW

2.1 OVERVIEW

The behaviour of soil has been researched in detail during the previous few decades, with various researchers focusing on improvements achieved through the incorporation of different-sized scrap tyre materials in different proportions. These investigations have encompassed experimental studies as well as numerical and analytical approaches. However, most of these studies have concentrated on soil improvement through the addition of various sizes and quantities of tyres. This chapter aims to provide a comprehensive analysis of the existing literature about these research topics. Subsequent sections will offer a sequential summary of research concerning the use of shredded tyre scraps for soil stabilization, highlighting key developments in recent years. Furthermore, this chapter will address the rationale behind the current investigation, as derived from the insights gathered from the literature review

2.2 REVIEW OF PAST WORKS

The past works have been divided into four different parts

2.2.1 Soil Property Improvement by Scrap Tyre Incorporation

Tabasum et al. (2023) studied the use of tyre shreds to improve the bearing capacity of black cotton (BC) soil, a cost-effective approach gaining attention in geotechnical engineering. BC soil, common in tropical regions like India, has properties such as a 34% liquid limit (LL) and a 50% free swell index. The study used shredded rubber tyres from a factory near Ayyappa Gudi Centre in Nellore, mixed with BC soil in varying proportions. The mixture was then tested, with Table 2.1 presenting the California Bearing Ratio (CBR) results for the different tyre scrap blends.

Table 2.1: Variation in CBR Test Results of BC Soil with Varying Proportions of Shredded Tyre. (After Tabasum et al. 2023)

SI. No.	Mix proportions	CBR Values(2.5mm penetration(%))	CBR Values(5.0mm penetration(%))
1.0	BC soil	3.57	2.91
2.0	BC soil +4% shredded	5.17	4.77
3.0	BC soil +6% shredded	7.96	8.49
4.0	BC soil +8% shredded	9.55	8.89
5.0	BC soil +10% shredded	8.95	7.83

Key findings of the study were:

- Adding shredded rubber to BC soil increased the CBR value up to 8%; beyond this, the benefits decreased.
- The reduction in benefits at higher percentages may be due to the lightweight nature of the tyre waste.
- As the rubber content increased, both moisture content and dry density of the soil decreased.

Amin et al. (2023) explored the application of tyre chips and sand as a substitute geo-material in civil engineering, focusing on shear strength through direct shear and triaxial tests. A sustainable method of material reuse was demonstrated by the creative use of scrap tyre rubber in civil engineering practices, making the mixture suitable for construction. Tables 2.2 and 2.3 in the document detailed the analysis of material properties and Characteristics of shear stress and normal stress, in that order.

Table 2.2: Characteristics of materials (After Amin et al.2023)

Cc (curvature coefficient)	.045	
Cu (Uniformity coefficient)	1.388	
D60, D30, D10	0.25, 0.24, and 0.18 mm	
Unified Soil Classification System (USCS)	Poorly Graded (SP)	
Specific Gravity of sand	2.65	
Specific Gravity of tire chips	1.02	

These tables were instrumental in understanding the fundamental properties of the tyre chipsand mixtures and their implications in civil construction.

Table 2.3: Analysis of Normal Stress and shear stress (After Amin et al.2023)

0% TC	Normal stress (kPa)	Shear stress (kPa)
	50	38
	100	70
	150	100
20% TC	50	45
	100	78
	150	110
30% TC	50	51
	100	84
	150	118
40% TC	50	47.5
	100	80
	150	112

Ibrahim et al. (2022) investigated improving non-lateritic (NL) soils, which often fail to meet construction standards due to their variability. They collected NL soil samples from Dungulbi, Bauchi State, and stabilized them using scrap tyre crumb rubber (STCR) at concentrations of 1% to 5%, with STCR particle sizes ranging from 0.212 mm to 4.75 mm. The study involved compaction tests at three energy levels and CBR assessments. Results showed a reduction in Optimum Moisture Content (OMC) and Maximum Dry Density (MDD) with increasing STCR content. CBR values improved up to 3% STCR replacement, then declined. ANOVA and multiple linear regression were used to compare predicted and experimental values, revealing that 3% STCR content provided adequate strength for embankments and road layers. The soil was classified as A-2-7(0) and GW, with low plasticity. The study concluded that STCR can enhance non-lateritic soil stability, offering valuable insights for future stabilization projects.

Johns et al. (2022) investigated the utilization of tyre crumb waste as a material for the subgrade in flexible pavement construction, highlighting environmental and engineering benefits. The study used soil mixed with crumb tyres from light motor vehicles, passed through a 2.36mm sieve, and evaluated for CBR and compressive strength. Results showed

that adding crumb tyres to soil could enhance the CBR value, indicating improved subgrade strength and potential for reduced pavement thickness. The optimal moisture content for compaction was determined to be 16%, with the highest CBR value observed at 9.49% for a 5mm penetration. This study addressed waste tyre management challenges and provided support for the innovative application of recycled tyre materials in pavement subgrades, providing a sustainable substitute for conventional building techniques.

Mangi and Sarki (2021) aimed to enhance subgrade soil's load-bearing capacity using discarded tyre aggregates. CBR tests were conducted on the original subgrade soil and blends containing 5%, 15%, and 30% tyre aggregates. The subgrade soil MDD was 1636 kg/m³ at 21.26% moisture content. The initial soil exhibited a CBR value of 3.90%. The study showcased tyre-derived aggregate's positive impact, enhancing CBR values. As seen in Fig. 2.1, CBR improvements of 5.1%, 10%, and 28.7% were obtained by replacing subgrade soil with different percentages of tyre aggregates.

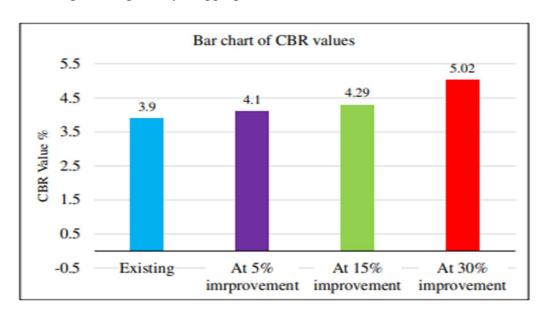


Fig. 2.1: Approach utilized for formulating empirical equations. (After Adigopula 2021)

Key conclusions from the investigation:

• Standard proctor tests showed peak dry density of clayey soil at 1636 kg/m³ with 21.26% optimum moisture, compared to the original 26.5%.

• Initial soil's subgrade bearing pressure of 3.90% under 5 mm penetration gained stiffness and lessened penetration with tyre aggregates. At 5 mm penetration, the CBR value increased to 4.1% with a 5% replacement of the tyre aggregate.

- Adding 15% tyre aggregates enhanced the CBR value of the upgraded subgrade to 4.29% at 5 mm penetration. And the addition of 30% tyre aggregates resulted in a significant rise in the CBR value to 5.02% at a penetration depth of 5 mm.
- The study highlighted that incorporating tyre aggregates into subgrade soil significantly improved pavement performance and load-bearing capacity.

Juliana et al. (2020) investigated soil stabilization using crumb rubber, a lightweight material with high shear strength, to modify subgrade soil properties. This method offered benefits like addressing improper tyre disposal and reducing pollution. In Seberang Perai Tengah, Penang, soil from a landslide site nearer Mengkuang Dam was used to evaluate the efficacy of soil stabilized with different percentages of crumb rubber (CR) (2%, 4%, 6%, and 8%). Laboratory tests were conducted to identify the optimal CR percentage meeting Public Works Department Malaysia (JKR) standards of subgrade. The findings showed that every combination (M2 through M5) complied with JKR's subgrade (CBR > 5%) criterion. The 4% CR combination (M3) produced the highest CBR values, thus recommending it for subgrade stabilization as shown in Table 2.4. The influence of CR on subgrade soil's geotechnical properties was scrutinized. The presence of CR led to increased CBR values, with 4% CR showing the most significant improvement for both conditions. This concentration fulfilled JKR's minimum CBR requirement.

Table 2.4: CBR values for different samples (After Juliana et al. 2020)

_	Percentage Mixture (%)		Average CBR Value (%)	
Mixture	Soil	Crumb Rubber (CR)	Unsoaked	Soaked (4 days)
M1 (control sample)	100	0	5.62	3.40
M2	98	2	17.12	14.07
M3	96	4	36.09	30.14
M4	94	6	29.70	24.51
M5	92	8	21.90	18.98

The study concluded that 4% crumb rubber effectively enhanced subgrade soil strength. Furthermore, its use as a soil stabilizer could decrease road construction costs, and address waste tyre disposal and pollution issues. However, further investigations were advised:

- 1. For reliable determination of the ideal CR content, experiment with smaller increments of CR percentages.
- 2. Examine shredded, chips and powdered rubber to assess their impact on soil properties.
- 3. Explore combining CR with other additives, such as Portland Cement, to bolster soil strength, particularly under soaked conditions.

Bai et al. (2020) explored the results of combining rubber particles made from used tyres with various soil types, including fly ash, sand, clay, loess, and expansive soil. Recent advancements in soil modification techniques had led to the innovative use of scrap tyre rubber particles. This review, explored the multifaceted impact of rubber particles on various soil types, highlighting significant improvements in soil mechanics and sustainability. In sandy soils, rubber particles enhanced cohesion and internal friction angle, with optimal effects observed at specific rubber content levels as shown in Table 2.5.

Table 2.5: Shear Strength Characteristics of soil mixed with rubber particles. (After Bai et al. 2020)

Proportion/%	Cohesion/kPa	Internal friction angle/(°)		
0	7.5	36.02		
10	14.7	42.27		
20	18.9	38.34		
30	18.2	34.42		
40	15	31.95		
50	12.4	27.4		

Moreover, Fig.2.2 illustrated the stress-strain relationships in these mixtures, underlining the rubber content's influence on soil behaviour.

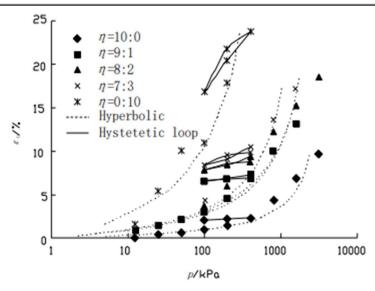


Fig. 2.2: p ε c - curves (η is proportion). (After Bai et al. 2020)

Incorporating rubber particles into clayey soils increased shear strength and reduced compressibility, mitigating expansiveness. Similar effects were observed in loess, expansive soils, and fly ash, improving dynamic characteristics and shear strength. The study highlights the potential of scrap tyre rubber for sustainable soil enhancement. This review emphasized its importance for environmental sustainability and soil mechanics.

Wangmo et al. (2020) addressed the environmental challenges of discarded tyres, proposing the use of waste tyre crumbs (2%-8% by volume) as subgrade soil stabilizers. The study collected tyre crumbs, ranging from fibrous filaments to fine powder, from Jaigaon, Bhutan, and mixed them with soil samples for analysis. Key tests, including CBR and Modified Proctor Tests, revealed a notable increase in strength with tyre additions, peaking at a 6% tyre mixture, achieving a maximum CBR of 9.48%. Beyond this point, CBR values declined. The study also examined road design parameters for Primary National Highway (Asian Highway No. 48), estimating 3.2 million standard axles (msa) over a 15-year design life, with a traffic volume of 200 Commercial Vehicles Per Day (CVPD), a 7.5% annual growth rate, a Vehicle Damage Factor (VDF) of 1.5, and a Design Factor (DF) of 0.75. Pavement thickness for unreinforced soil was calculated at 496 mm, while tyre-reinforced soil required only 404 mm, marking a 54.65% strength improvement. Cost analysis showed an 8.39% savings, with tyre-

reinforced soil costing Nu.11,969,183.93 per km, compared to Nu.13,065,922.8 for natural soil. The study demonstrated both environmental and economic benefits of tyre crumb stabilization in infrastructure development.

Yang et al. (2020) addressed the global issue of waste tyre accumulation and its environmental impacts. Traditional disposal methods like landfilling and incineration release toxic chemicals, posing ecological risks. However, research has shown that waste tyres can be repurposed in geotechnical engineering, offering a sustainable recycling solution. Experimental studies, including triaxial, CBR, UCS, direct shear, and consolidation tests, revealed that adding 20% rubber particles to expansive soil improved its strength and stability. A 30% rubber-sand mix has been used as an isolation layer for buildings. Despite these positive results, the long-term sustainability and chemical effects of tyre rubber in soil remain uncertain, warranting further research. The review highlighted practical applications of rubber-reinforced soils in retaining walls, road fillings, and shock absorption, noting improvements in shear strength, bearing capacity, and soil deformation. Overall, the study emphasized the potential of rubber reinforcement in sustainable waste tyre management and geotechnical engineering.

Dhorajiya et al. (2019) carried out a study using old rubber tyres as reinforcement in soft cohesive soil subgrades. CBR tests were conducted in both field and lab settings, comparing reinforced and unreinforced soil. Field tests involved soil fills in pits reinforced with tyre geogrids at depths of 8 cm, 5 cm, and 2 cm. Results showed significant improvements in CBR values, with a 208% increase in laboratory tests and a 225% increase in field tests for reinforced soils. These findings suggest a potential reduction in pavement thickness following IRC guidelines.

Fig. 2.3: Field CBR setup (After Dhorajiya et al 2019)

The research explored the influence of rubber tyre placement at various depths within the subgrade layer on the soil's engineering properties. The findings indicated a substantial enhancement in soak CBR values, particularly with a 208% increase at a depth of 2 cm in laboratory conditions, and a corresponding 225% increase in field tests at the same depth. This elevation in CBR values corresponded to the potential reduction in overall pavement thickness.

Jastrzębska (2019) explored how the shear strength of red clay was affected by the addition of tyre rubber waste, utilizing unconsolidated, undrained triaxial tests for the investigation. Rubber waste added in mass proportions of 5%, 10%, and 25%, in the forms of powder and granulate, resulted in a remarkable decrease in cohesiveness and a variable impact on the angle of internal friction. Specifically, the addition of granulate markedly enhanced the angle of friction more than powder did, with increments of up to 31% for granulate at 25% by mass as shown in Fig. 2.4.

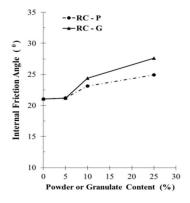


Fig. 2.4: Angle of internal friction with the rubber waste content

Conversely, cohesion significantly reduced with increasing rubber content and grain size, exhibiting reductions of up to 87% for granulate at 25% by mass as shown in Fig. 2.5.

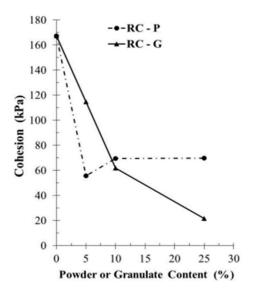


Fig. 2.5: Cohesion with the rubber waste content

These findings underscored the dual effects of rubber waste incorporation: reduced cohesion and enhanced friction angle, highlighting the potential for improving soil mixtures' strength and stability by optimizing rubber waste content and grain size.

Akshatha et al. (2018) studied the environmental concern of solid waste management, with a focus on the accumulation and recycling of waste tyres. The study investigated the use of scrap tyre rubber as an additive material for rural road building, especially when coupled with lateritic soil, which was common in coastal India. The purpose of the research was to find out how this combination affected the density, shear characteristics, and CBR of the soil. The

experimental program utilized two sizes of waste tyre rubber (WTR) materials: granulated rubber of sizes 2.36-4.75 mm and <2.36 mm. The impact of adding different proportions of WTR (5%, 10%, 15%, and 20%) to lateritic soil was examined, and the effects of rubber size were also considered.

Key findings include:

- 1. Incorporating WTR to lateritic soil reduced both its Liquid Limit (LL) and Plasticity Index (PI). For example, 5% WTR (2.36-4.75 mm) lowered the OMC from 20% to 18.90%, increasing the ODD from 1.73 to 1.80 g/cc.
- 2. WTR improved shear strength. With 15% WTR (<2.36 mm), the internal friction angle increased from 10° to 24°, and cohesiveness from 26 to 39 kN/m², as illustrated in Fig 2.6.

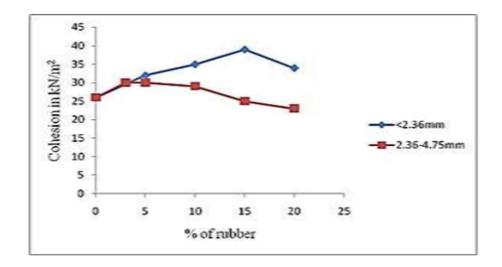


Fig. 2.6: Cohesion with waste tyre rubber. (After Akshatha et al 2018)

3. Incorporating WTR to lateritic soil improved CBR values. With 15% WTR (<2.36 mm), soaked CBR increased from 4.80% to 7.10% and unsoaked CBR from 7.40% to 11.47%. For 5% WTR (2.36-4.75 mm), soaked CBR rose to 9.44% and unsoaked CBR to 14.28%, as depicted in Figure 2.7.

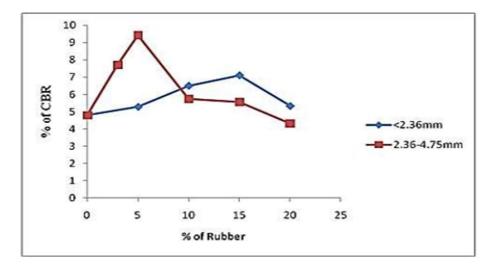


Fig. 2.7: Soaked CBR with different-sized tyre rubber. (After Akshatha et al 2018)

These findings indicated that integrating waste tyre rubber into lateritic soil could significantly enhance its mechanical qualities, making it a viable material for rural road building while also contributing to sustainable waste management methods.

Li and Li (2018) investigated the mechanical characteristics of scrap tyre crumbs mixed with clayey soil. This research was significant for its potential applications in civil engineering, particularly in ground improvement and landfill barrier materials. The research examined the effects of varying contents of scrap tyre crumbs (CSTC). The key findings of the research were-

- 1. With an increase in CSTC, a notable decline in both MDD and OMC was observed, making the mixture more appropriate for use as a lightweight fill material.
- 2. The mixture's shear strength observed an approximate increase of 20% when the CSTC reached up to 30%, although there was a decline in residual strength.
- 3. Compressive strength and consolidation settlement of the mixtures decreased as CSTC increased.

These findings indicated that scrap tyre crumbs could enhance the mechanical characteristics of clayey soil, making it appropriate for a variety of geotechnical applications. They also provided useful insights into the possibilities of employing scrap tyre crumbs to enhance the

mechanical characteristics of clayey soil. The study found that such mixes could be useful in civil engineering field, offering increased shear strength while reducing density and settlement. This research contributed to sustainable engineering practices by proposing an effective use of scrap tyre materials.

Al-Neami (2018) studied to enhance sandy soil properties using an innovative approach: waste tyre chips. This alternative aimed to replace conventional soil stabilization additives. Varying weight percentages (2%, 4%, 6%, and 8%) of tyre chips were manually mixed with sand in a predetermined ratio to create sand-tire chip samples. To assess the geotechnical characteristics, examinations were conducted for compaction, specific gravity, CBR and direct shear. Results demonstrated waste tyre chips effectively improve sandy soil. Mixing in tyre chips led to an increase in shear strength, attributed to improved cohesion and friction angle. The specific gravity and MDD went to a significant decrease, whereas the OMC experienced a minor reduction of about 10%. These changes suggest that using tyre chips as fill material may lower the lateral earth pressure exerted on retaining walls. Shear strength improvement due to scrap tyre chip integration was evident. Reinforced physical bonds among soil particles led to heightened friction angle and cohesion. Soaked CBR values notably increased, up to 1.6 times that of unstabilized sand, particularly at 8% tyre chip content, as depicted in Fig. 2.8. This was attributed to elevated confining pressure and load-bearing capacity.

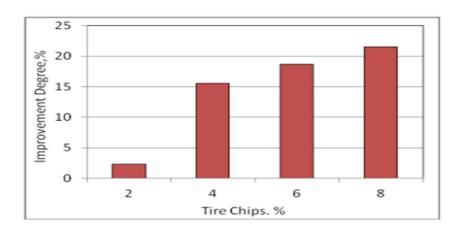


Fig. 2.8: Effect of tyre chips on CBR improvement of sand mixtures (After Al-Nemi 2018)

Incorporating waste tyre chips in construction not only enhanced soil properties but also offered economic benefits. It reduced costs and addresses disposal challenges. Embracing such eco-friendly practices contributed to sustainable development by curbing waste's environmental impact.

Peddaiah and Suresh (2017) conducted research on the enhancement of strength properties in expansive soils through the incorporation of lime and tyre chips. Targeting soils characterized by high compressibility, the investigation utilized Standard Proctor Tests and CBR tests on soil samples, both untreated and treated with varying amounts of tyre chips (4%, 8%, 12%, and 16%) alongside a fixed quantity of lime (10%). The findings revealed that the combination of tyre chips and lime markedly increased the MDD and CBR values, signifying a substantial enhancement in the strength. Specifically, the ideal combination of 12% tyre chips and 10% lime produced the highest MDD of 1.54 g/cc and CBR value of 10.3%, representing a 14.9% and 186.1% improvement over untreated soil, respectively. This study underscored the efficacy of using tyre chips and lime as cost-effective and environmentally sustainable stabilizers for enhancing the engineering characteristics of expansive soils, thereby offering a viable solution for enhancing soil stability and reducing construction costs for civil engineering applications.

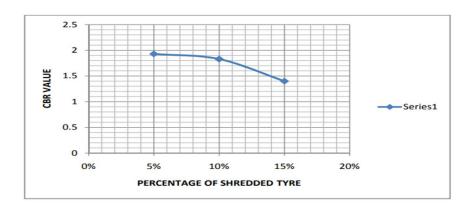
Pradeep et al. (2016) investigated enhancing soil strength by partially replacing it with scrap tyre rubber and waste paper sludge ash (WPSA). WPSA, a byproduct of paper sludge combustion, and scrap tyre rubber, known for civil engineering applications, aimed to synergistically improve soil strength. The study pursued several objectives. It examined how increasing WPSA and scrap tyre rubber replacements influenced OMC and MDD. Additionally, it sought to identify optimal concentrations through UCS and CBR ratio tests. Replacing soil with varying WPSA (3%, 6%, 9%, and 12%) and scrap rubber (4%, 8%, 12%, and 16%) percentages revealed that an 8% scrap tyre rubber and 6% WPSA combination yielded the greatest boost in UCS and CBR ratio. With curing time, UCS values shifted. A 6%

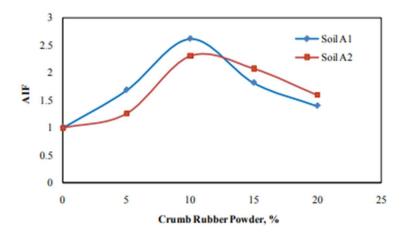
WPSA replacement increased from 67.457kPa to 97.007kPa after 7 days, and an 8% scrap tyre rubber replacement increased from 67.457kPa to 80.33kPa over the same period. The peak UCS value, 106.302kPa, emerged at the optimal mix of 8% scrap tyre rubber and 6% WPSA after 7 days. In terms of CBR ratio, 6% WPSA replacement achieved 26.9%, and 8% scrap tyre rubber replacement reached 9.09kPa. In contrast, raw soil had a 7.27kPa CBR ratio. Impressively, combining 6% WPSA and 8% scrap tyre rubber yielded a 27.99% CBR ratio. Ultimately, the study underscored the potential of WPSA and scrap tyre rubber as effective stabilizers, significantly enhancing soil properties like UCS and CBR ratio. This research offered valuable insights into sustainable engineering practices through the utilization of industrial waste and recycled materials. With increases of about 27% in CBR ratio and 74.03% in UCS, the findings supported the conclusion that WPSA and scrap tyre rubber could effectively improve soil strength properties.

Apriyono et al. (2016) focused on the use of woven scrap tyres as reinforcement for soft clay subgrades in order to reduce construction costs, avoid structural collapse of highways, and minimize environmental risks resulting from Indonesia's increasing waste tyre buildup. The study used experimental studies with different woven tyre stripe distances: 2, 2.5, 3, 3.5, and 4 cm soft clay samples were created, each reinforced with one of the tyre configurations. Every sample was subjected to CBR tests, which measured CBR values at 0.20 and 0.10 inches of displacement. The study established a correlation between stripe distances and CBR values, facilitating the identification of the optimal woven tyre stripe distance yielding the highest CBR value. Results indicated that a 3 cm stripe distance was optimal, resulting in a CBR value of approximately 20%. This marked a 115% increase compared to unreinforced soft clay. The study concluded that strengthening soil with woven scrap tyres significantly improves soil carrying capacity. The optimal spacing between stripes was determined to be 3.5 cm, which produced an impressive 115.29% increase in CBR in comparison to unreinforced soil. This

utilization of waste tyres for soil reinforcement offered dual benefits: enhancing road structure stability while addressing environmental pollution concerns.

Singh and Sonthwal (2016) employed soil stabilization methods to enhance soil properties, utilizing shredded rubber tyres. Various sizes of shredded rubber tyres (10mm, 20mm, 30mm in width and 20mm, 40mm, and 60mm in length) were employed for investigation purposes, with proportions of 5%, 10%, and 15% in the investigation mixtures. The use of shredded rubber tyres for soil improvement had gained significant attention in recent times. This study investigated the impact on pavement subgrade behaviour through the improvement of subgrade soil with shredded tyres. The research revealed that the optimal proportion for shredded rubber tyres is 5%, with a size of 10mm × 20mm. This proportion led to a 28.66% improvement in the CBR compared to the unmodified soil as shown in Fig. 2.9.




Fig. 2.9: CBR Value of Soil-Tyre Mixture (10mm×20mm) (After Singh and Sonthwal 2016)

Based on the research conducted, the following observations were drawn:

- 1. Increasing shredded tyre content raised OMC and lowered MDD due to tyre waste tyre lightweight and absorption properties.
- 2. Adding 5% shredded tyres (10mm × 20mm) boosted CBR by 28.66%.
- The 28.66% CBR increase in soaked conditions can reduce pavement thickness and costs.

Ravichandran et al. (2016) Examined the enhancement of weak soil stabilization by incorporating waste tyre crumb rubber (CR). Using different percentages of crumb rubber

(5%, 10%, 15%, and 20%), two types of problematic clay soils were stabilized. Two varieties of clay soils were stabilized by incorporating varying amounts of crumb rubber, including 5%, 10%, 15%, and 20%. The impacts on drainage properties and CBR values were then investigated. Subsequently, the effects on drainage characteristics and CBR values were explored. The incorporation of crumb rubber resulted in significant improvements in permeability and strength properties, Following the addition of 10% CR, as illustrated in Figure 2.10, there was a significant rise in CBR values, with an increase of 161% for soil type A1 and 130% for soil type A2, respectively.

Fig. 2.10: Alteration in the effect of admixture influence factor (AIF) on CBR values due to the inclusion of Crumb Rubber Powder (CRP).

This enhancement suggested that crumb rubber could be a viable material for soil stabilization, offering environmental benefits by repurposing waste tyres while improving soil properties for construction purposes, particularly in road construction where increased CBR values could lead to reduced pavement thickness and associated costs.

Teja and Siddhartha (2015) explored the utilization of waste tyres for subgrade stabilization, which represented a safe disposal method. The incorporation of waste tyres into road construction had facilitated the efficient management of used tyre waste, mitigating disposal challenges. The soil examined in this study was obtained from near Tangutur, Ongole, along NH5, Prakasam District, Andhra Pradesh, India. The soil samples were meticulously prepared,

incorporating waste tyre fragments in various proportions, ranging from 0% to 10%, featuring tyre dimensions that fluctuate, with diameters spanning 15 to 20 mm and lengths from 20 to 25 mm. The findings revealed an enhancement in CBR value by up to 5% with the incorporation of waste tyres, as depicted in Figure 2.11. This enhancement of 1.63% in the CBR value could significantly reduce pavement thickness and, consequently, the overall project cost.

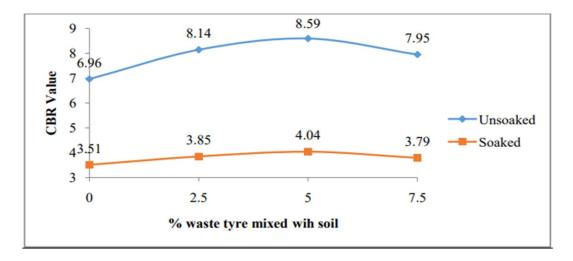


Fig. 2.11: Comparative analysis of CBR values (After Teja and Siddhartha 2015)

The present investigation examined the effects of partially replacing subbase layer aggregates with waste tyre pieces. The results indicated a significant rise in CBR value up to a 5% increase in tyre content, after which it dropped with subsequent increases in tyre content. Within the subbase layer of the pavement structure, aggregates that were partially replaced with discarded tyre pieces showed a significant reduction in their abrasion, crushing, and impact values, indicating that they were superior composite materials.

Munnoli et al. (2014) focused on addressing the growing issue of scrap tyre management. The researchers explored the application of crumb rubber (CR) derived from discarded tyres to strengthen subgrade soil, which was a significant environmental concern. They found that incorporating CR into the soil could effectively increase its strength, making it a viable solution for both waste management and construction purposes. They collected scrap tyres

from the surrounding area, which were then shredded to 4.75mm or less using a buffing machine at Karnataka Tyres, Dharwad. Meanwhile, BC soil was sourced from Krishi Nagar, Dharwad, Karnataka, and stored at the Soil Mechanics Laboratory of SDM College and Technology. The moisture content and dry density of the BC soil were found to be 18% and 2.43, respectively. As shown in Table 2.6, a CBR test with varying percentages of crumb rubber mixed into the soil revealed an increase in soil strength up to a 10% CR addition, beyond which the strength diminished, achieving a maximum CBR value of 1.54 at 10% CR content, nearly matching the control CBR value of 1.63 without CR.

Table 2.6: Outcomes from the conducted soaked CBR test. (Munnoli et al.2014)

	Pilot Reading	l st trail	2 nd Trail	3 rd Trail	4 th Trail	5 th Trail
CR	-	6%	8%	10%	12%	14%
Result	1.63	1.16	1.37	1.54	1.03	0.91

The study concluded that adding crumb rubber to the soil not only enhanced its strength but also offered a partial solution to the disposal problem of waste rubber tyres. This research presented an innovative approach to recycling and waste management, particularly in the context of civil engineering and environmental sustainability.

Promputthangkoon and Karnchanachetanee (2013) investigated the use of recycled tyre chips as a geomaterial for building roads and embankments, mixed with low-strength soil and stabilized with cement. This innovative approach aimed at addressing the environmental problem posed by discarded tyres while also offering an eco-friendly approach to the construction industry. The findings showed that the strength and longevity of the built roads could be greatly increased by using a mixture stabilized by cement and up to 15% recycled tyre chips. Incorporating cement led to a notable rise in CBR values, which indicated improved shear strength and penetration resistance. Specifically, for mixtures with 15% cement content, the CBR values in soaked conditions ranged from 570% for 2% tyre

chips to 42% for 25% tyre chips, and UCS values increased from 1213 kPa with 2% tyre chips to 287 kPa with 25% tyre chips, demonstrating the potential of this geomaterial to reduce construction costs and mitigate environmental impacts effectively.

Marefat and Jigheh (2011) explored the innovative utilization of tyre chips mixed with clay to enhance soil stabilization, focusing on laboratory evaluations of the mechanical behaviour of these mixtures. Integrating environmental sustainability with engineering, this research addressed the pressing issue of tyre waste by repurposing it for ground improvement. Preliminary results indicated a notable improvement in the strength and compressibility of clay when mixed with tyre chips, suggesting potential for practical applications in geotechnical engineering. The findings underscored the viability of clay-tyre mixtures for landfill liners and covers, embankments, and backfill material, offering a dual benefit of waste reduction and soil stabilization. This pioneering work paved the way for further exploration into eco-friendly materials for construction and civil engineering projects.

Walubita et al. (2011) delved into the comprehensive collection and analysis of materials and pavement performance data across various highway test sections in Texas. This ambitious five-year project aimed to gather data from at least 100 test sections to refine mechanistic-empirical (M-E) design models for flexible pavements and overlays, significantly impacting future roadway investments. The report meticulously outlined data analysis plans encompassing laboratory tests on asphalt binders, Hot-Mix Asphalt (HMA) compositions, and materials for base and subgrade soil, field tests assessing cracking, rutting, and other performance indicators, alongside traffic, environmental, and climatic data analyses. Key findings from initial analyses underscored the possibility of enhancing crumb rubber soil stabilization, with an emphasis on enhancing the CBR values by 161% and 130% for specific soil types, thereby suggesting cost-effective solutions for road construction while addressing waste tyre disposal issues. Additionally, the study explored the incorporation of new materials

like tyre shreds into construction materials, showcasing their utility in reducing compressibility and enhancing shear strength, aligning with sustainable development goals.

Zornberg et al. (2004) investigated the mechanical properties of mixtures of tyre shred and sand, concentrating on the ideal content of tyre shred and aspect ratio for increased shear strength in geotechnical applications. Through large-scale triaxial testing, the research identified a tyre shred content of approximately 35% as optimal for maximizing shear strength, with a notable impact of the aspect ratio of tyre shreds on strength outcomes. The study emphasized the material's dilatant behaviour and a distinctly identified peak shear strength, apart from specimens that showed contractive behaviour and less apparent peak strength and had a significant percentage of tyre shreds. By suggesting a sustainable way to utilize tyre shreds in construction materials, this research provided a substantial addition to the area of geotechnical engineering by validating tyre shred-sand mixes as a workable solution for low soil shear strength difficulties.

Garga and O'Shaughnessy (2000) investigated the innovative application of scrap tyres in building retaining walls and earth fills, addressing the environmental problem of tyre disposal. Approximately 10,000 complete and sidewall-removed tyres were used in the building of a test fill measuring 57m by 17m that integrated reinforced slope sections and retaining walls. With the use of a thorough testing regimen that encompassed plate loading tests, field pull-out experiments, evaluation of water quality, and additional laboratory examinations, the study highlighted the viability of employing scrap tyres for earth reinforcement. The results provided design guidelines for tyre-reinforced structures by highlighting the significance of the role of negative wall friction in amplifying active thrust as the wall became more compressible compared to the backfill. This method not only presented an eco-friendly answer to scrap tyres but also approached a cost-effective alternative in geotechnical engineering practices.

2.2.2 Pavement Design and Traffic Studies

Pandey et al. (2022) carried out an extensive investigation aimed at optimizing the design of flexible pavement using various methodologies. The core objectives of their investigation were to design a flexible pavement in accordance with the IRC 37-2018 standards, assess depths through IITPAVE software, analyse strains at critical points using the same software, and ultimately achieve an optimal pavement design. Additionally, Soil tests gave a CBR value of 5.3%, while traffic estimated at 4.3 MSA. The researchers followed the depth selection procedure outlined in IRC 37-2012. They calculated the Maximum Allowable Strain for Rutting (ε_v max = 809.2510^-6) and Fatigue (ε_t max = 53610^-6). Employing the IITPAVE software, they determined strains at specific depths and radial distances: ε_t @95mm = 410.0510^-6 < ε_t max, and ε_v @495mm = 157.7710^-6 < ε_v max, by comparing the tensile and compressive strains acquired from the manual method based on IRC 37-2018 with those obtained by inputting layer thickness values into the software, the researchers identified significant disparities. As a result, they decided to decrease the thickness of every pavement layer by a certain extent to minimize the divergence in strain values between the two methods.

The following strain values were obtained:

- 1. $\varepsilon_t \max = 536*10^{-6}$
- 2. $\varepsilon_v \max = 809.25*10^{-6}$
- 3. $\varepsilon_t @95mm = 410.05*10^{-6} < \varepsilon_t max.$
- 4. $\varepsilon_v @495 \text{mm} = 157.77*10^{-6} < \varepsilon_v \text{ max}.$

Their analysis concluded that a further reduction in layer thickness was feasible without exceeding safe strain limits.

Mehta et al. (2021) aimed to devise a flexible pavement design utilizing guidelines of IRC:37-2018 and the IIT-PAVE software Their approach involved evaluating stress and strain at a pivotal location across distinct pavement layers. The design hinged on sub-grade soil strength and traffic load. The process encompassed gathering data on traffic levels and sub-grade soil

CBR values. Traffic was assessed through Equivalent Standard Axle Load (ESAL) considering an 80 KN load on a solitary axle with dual wheels. Layer combinations were explored while maintaining a consistent top bituminous concrete surface across trials. Compositions for base and sub-base layers, as suggested by IRC:37-2018, underwent modifications. Adjustments included variations such as Granular Base, Granular Sub-base, cement-based Sub-base, and layers treated with bitumen emulsion Reclaimed Asphalt Pavement (RAP), each defined by design thickness and resilient modulus.

The pavement's resistance to rutting and fatigue life was evaluated using IIT-PAVE. Certain trials considered perpetual pavement designs. Results indicated that the common choice was Trial 1, involving bituminous concrete, Granular base, and sub-base layers for the design of the highway. In case of an unavailable granular sub-base, Cement Treated Sub Base (CTSB)could replace it. The use of the RAP layer was less common in India due to disposal practices. Perpetual pavements were ideal for vital roads but required substantial initial investment, limiting widespread adoption. Overall, the study recommended the Trial 1 combination for its practicality and performance.

Hussainbhi et al. (2021) employed IIT PAVE software and IRC: 37-2018 guidelines to design safe flexible pavements for a 200 km road in Andhra Pradesh, India. They analysed both flexible and rigid pavements, considering subgrade CBR values from 5% to 15% and an initial traffic load of 150 MSA. For flexible pavements, they followed IRC: 37-2012 and 2018, focusing on fatigue and rutting failure criteria. Rigid pavements were designed per IRC: 58-2015, with slab thicknesses of 330mm, 320mm, and 320mm for 5%, 8%, and 15% CBR subgrades, respectively.

Their findings indicated that flexible pavement designs, using bituminous layers with granular bases like Wet Mix Macadam (WMM) and foam bitumen stabilized RAP, were safe for high traffic conditions. Rigid pavements also met safety criteria for various CBR values. However, flexible pavement Case-1 was about twice as expensive as Case-2 for CBR values between

5% and 10%, and 1.5 times higher for CBR values from 12% to 15%. At high traffic levels of 6000 CVPD, rigid pavement costs were 1.28 to 1.39 times higher than flexible pavement Case-2. The study highlighted the effectiveness of using IIT PAVE software and IRC guidelines for cost-effective and reliable road infrastructure development.

Kumar and Kumar (2020) conducted a field investigation to assess traffic patterns and subgrade soil CBR values, following IRC: 37-2012 guidelines for flexible pavement design. They used IITPAVE Software to ensure compliance with specifications, focusing on durability and deformation resistance. Additionally, they employed HDM-4, a World Bank tool, to evaluate the economic and engineering aspects of the project using Economic Net Present Value (ENPV) and Economic Internal Rate of Return (EIRR).

Data collection included axle load studies, traffic volume counts, and geotechnical analyses. Manual vehicle surveys and portable weighing pads tracked axle weights over a day, while soil investigations involved Field Dry Density, Grain Size Analysis, Modified Proctor, and Soaked CBR tests conducted over four days. Traffic volume and axle figures were calculated, and the pavement design was evaluated using IITPAVE, confirming safety as per IRC: 37-2012 standards, as detailed in Tables 2.7 and 2.8.

Table 2.7: Horizontal tensile strains (After Kumar and Kumar 2020)

Section	Allowable Strains from IRC:37- 2012	Actual Strains from IIT PAVE	Remark	
Madhugiri - Gauribidanur	298.00 x 10 ⁻⁶ strains	266.40 x 10 ⁻⁶ strains	Safe	
Gauribidanur - Chikkaballapur	425.60 x 10 ⁻⁶ strains	351.40 x 10 ⁻⁶ strains	Safe	

Table 2.8: Vertical compressive strains (After Kumar and Kumar 2020)

Section	Allowable Strains from IRC:37-2012	Actual Strains from IIT PAVE	Remark
Madhugiri - Gauribidanur	577.73 x 10 ⁻⁶ strains	345.50 x 10 ⁻⁶ strains	Safe
Gauribidanur -	784.40 x 10 ⁻⁶ strains	500.20 x 10 ⁻⁶ strains	Safe
Chikkaballapur	704.40 X 10 Strains	500.20 x 10 Sudilis	Sale

Economic evaluation utilizing HDM-4 yielded economic indicators like ENPV and EIRR. For alternative 1, ENPV was Rs 1615.94 million with EIRR of 27.40% while alternative 2

had ENPV of Rs 1286.80 million and EIRR of 24.80% at a 12% discount rate. Given higher ENPV and EIRR, alternative 1 was chosen for the project.

Murana et al. (2019) assessed the detrimental impact of overloaded trucks along the Jebba-Mokwa-Bokani route in Niger State, Nigeria, with a focus on understanding axle load distribution and failure patterns. Their study aimed to address the deteriorating state of the highway due to excessive loading and propose effective solutions. The primary goal of their research was to evaluate distribution of axle loads and patterns of failure on the road between Jebba, Mokwa, and Bokani in Niger State, Nigeria, with a specific emphasis on the negative effects of overloaded trucks. To achieve this, they conducted a meticulous seven-day survey to classify traffic and measure axle loads. This survey allowed them to determine the Average Daily Traffic (ADT) and the proportion of large vehicles. The results highlighted a concerning reality: the examined highway experienced an alarming eightfold increase beyond Nigeria's standard axle load limit of 80 kN. This extensive overloading had placed significant stress on the road, leading to rapid pavement deterioration. To counter this urgent crisis, the researchers strongly recommended swift implementation of robust axle load control systems to safeguard the road's integrity. Key insights from the data analysis included:

- i. About 40% of trucks on the highway are categorized as heavy vehicles.
- ii. A significant 58% of overloaded trucks belong to the 4-axle category.
- iii. The highway operates at an average equivalent standard of 8.0, highlighting the severity of overloading.

Furthermore, a notable traffic pattern emerged, with the majority of truck traffic flowing from South to North. This resulted in a higher load concentration on the North-bound carriageway, exacerbating the situation. The comprehensive traffic analysis clearly underscored the substantial impact on road deterioration. Urgent actions were essential for regulatory authorities to enforce stringent control mechanisms, effectively curbing excessive axle loads.

Goutami et al. (2017) investigated life cycle costs of different pavement compositions on Solapur to Sangareddy stretch of NH-9. They acquired data on traffic, axle loads, and subgrade CBR values. Employing IRC: 37-2012 guidelines, they devised a flexible pavement. Relative to alternate materials in IRC: 37-2012 and leveraging IIT PAVE software, they found thinner alternatives effective for similar traffic loads, except Cement-treated Base (CTB) and Granular Sub Base (GSB) pavements. Traffic analysis of the Solapur to Sangareddy section revealed significant directional disparities, with traffic measuring 106 MSA in one direction and 83 MSA in the other. Subgrade soil analysis identified between Ch. 423.750Km and Ch. 493.000Km as appropriate for the construction of subgrades, boasting CBR values of 5% and 10% respectively. Under IRC 37:2012 guidelines, conventional pavement mandated 725 mm and 735 mm thicknesses for Subgrade CBR of 5%, accommodating traffic of 83 MSA and 106 MSA correspondingly. The same requirements were 600 mm and 610 mm for Subgrade CBR of 10%. Employing IIT Pave software along with IRC 37:2012 for the development of alternate pavement options demonstrated comparable traffic handling capabilities with decreased overall thickness, barring CTB and GSB pavements. Notably, the lower CBR (5%) subgrade yielded a higher reduction in pavement thickness than the higher CBR (10%) subgrade. Furthermore, the reduction in pavement thickness was more pronounced for pavements designed for lower traffic (80 MSA) compared to higher traffic (102 MSA). Lower CBR (5%) subgrade and higher traffic direction led to increased total pavement thickness. In cases of CBR 10% and 106 MSA traffic, treated RAP pavement demanded lesser quantities compared to other alternatives.

Harish (2017) studied to address the evolving traffic patterns and increased use of heavier vehicles, which had outpaced the design standards for pavements, leading to early deterioration. The study pivoted from the application of traditional methods towards the use of local, recycled, and engineered marginal aggregates for construction purposes due to environmental and legal constraints. The primary cause of asphalt pavement failure was

identified as fatigue cracking and rutting, resulting from excessive strain on pavements. The research focused on alternative pavement materials such as cement-based products and reclaimed asphalt, examined through the use of IITPAVE software. A specific road stretch around Bangalore was selected, where the engineering characteristics of the subgrade soil were analysed. The study compared different pavement compositions, including bases and sub-bases made of cement-like materials with aggregate interlayers for crack relief, and foamed bitumen or bitumen emulsion-treated materials. The key finding was those alternative compositions, particularly the cemented base and sub-base featuring a Stress Absorbing Membrane Interface (SAMI), significantly enhance pavement serviceability. This combination effectively reduced strains, thickness, and cost. The presence of SAMI acted as a stress-relieving layer, dissipating energy and reducing tensile stress in the bituminous layer, which delayed crack propagation and reduced maintenance costs. Overall, the study recommended these alternative materials for their improved serviceability and cost-effectiveness in pavement construction.

2.2.3 Falling Weight Deflectometer (FWD) Test

Flores et al. (2023) investigated FWD testing to assess the structural properties of concrete slabs, with a focus on their asymmetric response. This study presents an innovative method by using multi-directional Falling Weight Deflectometer (FWD) testing, moving away from traditional unidirectional tests. FWD tests were conducted on two rectangular concrete slabs, measuring vertical deflections in eight directions using geophones. Notable asymmetries were found in a 22-year-old slab marked for replacement, while the new slab exhibited nearly symmetrical behavior. The researchers employed Kirchhoff–Love plate theory with unconstrained boundary conditions and modelled the support using a Winkler foundation. To replicate the observed deflections, they optimized the subgrade reaction modulus, but initial results were inconclusive. To improve accuracy, an auxiliary surface load was introduced as a second optimization variable, along with the Winkler foundation pressure. This improved the

model's ability to simulate subgrade pressure distribution. Calculating this pressure enabled the determination of the effective subgrade reaction modulus distribution. The study also considered inertia forces, enhancing the effective subgrade moduli by up to 3.5%, improving understanding of the structural responses under different loads. Multi-directional FWD testing offered deeper insights into the slab's non-uniform subgrade degradation under prolonged asymmetric loading. An index was also developed to measure structural asymmetry, aiding in decision-making for slab repair. Statistical hypothesis testing validated this index, establishing thresholds for symmetric and asymmetric behavior in FWD test results. This research advances pavement engineering by introducing a novel method to assess the structural integrity and asymmetry of concrete slabs.

Alam et al. (2020) conducted a study to develop an intelligent pavement performance model aimed at optimizing the maintenance and repair of highway networks, a significant part of state budgets. Their research highlighted the importance of such models for prioritizing pavement maintenance and rehabilitation. These models helped predict the remaining service life of pavements and identify their rehabilitation needs, enabling better planning of maintenance activities. This approach was intended to minimize costs for road agencies and users alike. The study primarily focused on flexible pavement performance or deterioration models, accounting for factors like vehicle interactions, environmental influences, pavement structure, and surface conditions.

Alam et al. particularly examined pavement distresses such as cracking, ravelling, potholes, and roughness, crucial for understanding pavement degradation patterns. This knowledge enabled informed decisions on pavement strengthening measures. The study highlighted that traffic volume, environmental conditions, and climate all impact the pavement's remaining lifespan. To estimate the remaining lifespan, the study employed Falling Weight Deflectometer (FWD) tests at regular intervals.

The research was conducted on a section of State Highway (SH)-12A (S-2) in Punjab, covering 79.000Km to 108.800Km. Deflection data collected from this area was aggregated into seven sections for detailed analysis as outlined in Table 2.9. The findings revealed a decline in pavement modulus value over time, signalling deterioration in the flexible pavement.

 Table 2.9: Summary of Average Deflection (After Alam 2020)

Chai	nage	Distance from Load Centre (mm)						
(Km)		0	200	500	900	1400	1900	2400
From	To	Dl	D2	D3	D4	D5	D 6	D 7
79.2	80	1.33	0.89	0.47	0.22	0.12	0.08	0.07
80	85	1.12	0.75	0.41	0.18	0.09	0.06	0.06
85	90	0.98	0.63	0.32	0.15	0.07	0.05	0.05
90	95	1.13	0.75	0.36	0.16	0.08	0.06	0.05
95	100	1.07	0.66	0.32	0.15	0.08	0.06	0.05
100	105	0.98	0.58	0.28	0.13	0.07	0.05	0.04
105	108.8	0.96	0.55	0.26	0.13	0.07	0.06	0.05

Following the criteria outlined by IRC 37, the pavement was engineered to accommodate a specific number of standard axles. As the number of standard axles passing over the pavement increased, its life decreased. Therefore, regular deflection tests were essential to assess the pavement's ability to handle traffic loads and to determine when an overlay should be applied for strengthening.

Rabbi and Mishra (2019) presented an innovative approach to pavement rehabilitation decision-making at Boise State University. Pavement assessment techniques have depended on both functional and structural information, such as evaluations of visible damage and the use of FWD testing. However, these often hinged on accurately determining pavement layer thicknesses, a resource-intensive process not always feasible within operational constraints. The study proposed using Deflection Basin Parameters (DBPs), derived from FWD data, are presented as a more effective option for evaluating the structural state of pavements. This approach circumvented the requirement for precise measurements of layer thickness. The research involved a detailed finite-element modelling to validate the use of DBPs. They tested

typical modulus values across various pavement layers, finding that DBP values generally aligned with established ranges for different layer conditions. This confirmation led to field analyses of four selected pavement sections in Idaho, comparing the DBP-based method with traditional visual distress assessments. Results indicated that DBPs, particularly those not requiring surface layer data (like the Surface Curvature Index), could reliably indicate the state of pavement layers beneath the surface. This method's advantage was its independence from layer thickness data, making it more adaptable to operational limitations. The study's application in Idaho demonstrated that combining DBPs with functional condition data provides a comprehensive view of pavement conditions, aiding in identifying problematic layers and facilitating more informed rehabilitation decisions. The team of researchers effectively proposed methods of rehabilitation to the Idaho Transportation Department based on this integrated approach, indicating the potential for broader application in network-level pavement maintenance programs. However, they emphasize the crucial role of accurate FWD data collection, as errors in this process could lead to incorrect assessments of pavement conditions. Continued research and application of this method could lead to more effective and economical pavement preservation practices.

Singh et al. (2019) directed their efforts toward devising efficient strategies for pavement maintenance and management along a segment of the National Highway (NH) located in Haryana, India. Their primary goal was to assess the pavement material characteristics and structural strength. Using Falling Weight Deflectometer (FWD) and KGPBACK software, dynamic loads were applied to the pavement, and the resulting deflections were analyzed to determine the elastic moduli of the layers. The pavement, a 7-meter-wide two-lane flexible structure, included a 200mm bituminous layer, a 325mm base/sub-base, and a subgrade. Test pits were dug to measure pavement thickness, and historical data on rehabilitation and traffic were gathered. The study identified various pavement distresses due to design flaws, material issues, and construction errors, dividing the pavement into segments as per IRC 115 (2014)

standards. IITPAVE software was used to design overlays based on the elastic moduli, while HDM-4 predicted pavement degradation over time. The HDM-4 model showed that bituminous overlays reduced distresses like cracking, rutting, and roughness. FWD deflection measurements were crucial in determining the recommended overlay thickness, validated by HDM-4 results. This study provided guidelines for estimating funds for highway maintenance, stressing the need for consistent monitoring.

Lee et al. (2019) introduced an innovative approach for assessing subgrade strength employing a Dynamic Cone Penetrometer (DCP) equipped with a load cell and an accelerometer at the tip of the cone. This development addressed the limitations of traditional Dynamic Cone Penetration Test (DCPT), such as the influence of conveyed energy and the uprightness of the penetrometer, by providing a more accurate measure of subgrade strength. Laboratory tests conducted on weathered soil compacted at different dry unit weights demonstrated that the dynamic cone resistance, a novel index of strength proposed in this study, increased with soil depth and compactness. The capability of the instrumented DCP to directly record dynamic reactions at the cone tip offered a significant advantage over standard DCP tests, making it less susceptible to errors associated with energy transfer and penetrometer tilting. This study presented a strong case regarding the instrumented DCP as an encouraging on-site testing approach for dependable characterization of subgrade strength, suggesting that it could enhance pavement design and structural analysis by providing a more sensitive measure of stiff soil's variance in strength compared to traditional methods.

Razali et al. (2018) explored the application of the FWD in evaluating the bond condition of subgrades within flexible pavements, especially under tropical soil environments. This research was essential for understanding how subgrade deflection impacts the debonding of flexible pavements, which was a significant concern in Malaysia. The study employed FWD, a non-destructive testing method, to measure pavement vertical displacements. This approach was crucial for monitoring the state of adhesion between the pavement and the subgrade. The

research was conducted in Sungai Dua, Pulau Pinang, Malaysia, focusing on the deflection of pavement to understand the subgrade conditions. The research emphasized the significance of deflection as a key indicator of subgrade condition, with variations noted across different road segments. Understanding the bonding state between pavement and subgrade was vital for maintaining pavement integrity and preventing premature failures. Early detection of subgrade issued through FWD could reduce maintenance costs significantly. Razali et al. offered valuable insights into flexible pavement maintenance, particularly in tropical environments. The study emphasized the importance of FWD testing in the early detection of potential issues, thereby enabling cost-effective maintenance strategies and ensuring pavement longevity. This approach was particularly relevant for areas with challenging soil conditions, like Malaysia, where subgrade integrity is a critical factor in pavement performance.

Nwanya and Okeke (2018) demonstrated that the DCPT method was utilized to evaluate the CBR and bearing pressures of the subsurface soils in areas of Owerri, Southeastern Nigeria. Six (6) DCPTs were measured to a depth of 6 m. Through field measurements to a depth of 6 meters, three distinct soil layers were identified, spanning from loose to medium and dense conditions with penetration resistances varying from 11.4 to 55.5 mm/blow. The study demonstrated a correlation between soil depth and strength, with CBR values increasing from 5% at 1 meter depth to 16% at depths of 5 and 6 meters. Similarly, bearing pressures showed a significant increase from 104.8 KN/m2 to 301.1 KN/m2 over the same depth range. A sample DCP reading and soil profile for sample 1 were shown in Table 2.10 and Fig.2.12, indicating the varied soil layers and their corresponding penetration index values, which were crucial for understanding the geotechnical properties and designing foundations in the region.

Table 2.10: DCP measurement for sample 1 within the research zone

	Penetration Records (in mm/blow)			CBR	Bearing Pressure	Description
S/no	# Blows	Depth	DPI	(%)	(KN/M2)	
0	0	0	0	0	0	0
1	15	0.5	33.3	6	122	medium soil
2	13	1	38.5	5	104.9	medium soil
3	11	1.5	45.5	4	90.3	medium soil
4	13	2	38.5	5	104.9	medium soil
5	22	2.5	22.7	9	180.5	medium soil
6	25	3	20.8	10	196.2	medium soil
7	24	3.5	15.6	14	265.4	medium soil
8	32	4	16.1	13	250.7	dense soil
9	31	4.5	15.6	14	265.4	dense soil
10	32	5	16.7	12	250.7	dense soil
11	30	5.5	17.2	12	237.5	dense soil
12	29	6	17.2	12	237.5	dense soil

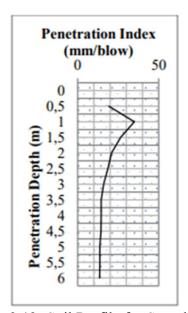
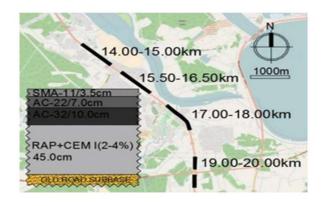
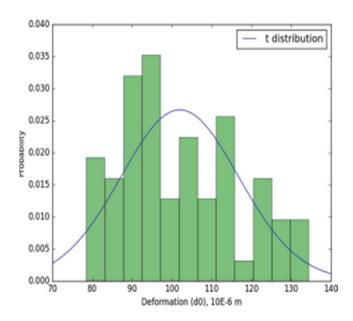



Fig. 2.12: Soil Profile for Sample 1


This investigation not only highlighted the variability of subsurface soil characteristics but also underscored the importance of such assessments in civil and geotechnical engineering projects for ensuring structural stability and safety.

Skels et al. (2017) explored the reinforcement of non-bound layers in road structures using RAP, employing both laboratory and field assessments. The focus was on the design criteria and examination methods for stabilized Recycled Asphalt Pavement in road base layers. Four sections of the State Main Road A7 were examined. The location and design of the analyzed road sections are shown in Fig. 2.13.

Fig. 2.13: Location of research sections along the road A7 Riga—Bauska—Lithuanian border and designed pavement structure. (After Skels et al.2017)

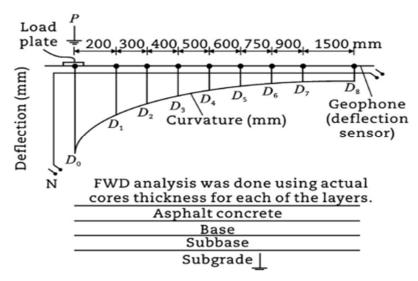
The equivalent modulus of elasticity (E_{eq}) was retroactively determined through analysis of data from the FWD, supplemented by laboratory tests. The study revealed E_{eq} values of 370 MPa at the surface, 170 MPa at a 30 cm depth, and 100 MPa at a 60 cm depth. A total of 67 FWD measurements from 1.0 km sections demonstrated the viability of using cement-stabilized RAP over traditional materials like dolomite or granite. The distribution of FWD deflection values is depicted in Fig. 2.14.

Fig.2.14: FWD measurement and t distribution for the studied four road A7 sections (After Skels et al.2017)

The elasticity modulus for cement-reinforced RAP showed high variability, with values up to 4000 MPa, indicating significant anisotropy. The modulus of elasticity results from laboratory tests on stabilized RAP samples were described in Table 2.11.

Table 2.11: Cement (2–4% CEM I) stabilized RAP testing results (After Skels et al.2017)

	Sample height/ diameter, mm	Max. compressive strength, MPa	E-modulus, MPa	
1	196/150	3.34		
2	196/150	2.83	1446	
3	195/150	3.89	2155	
4	158/150	1.48	703	
5	168/150	2.40	1057	
6	221/150	3.13	4390	
7	231/150	2.02	979	
8	190/150	2.08	557	
9	167/150	4.99	3883	
10	141/150	6.23	3784	
11	157/150	2.02	758	
Median		2.83	1446	

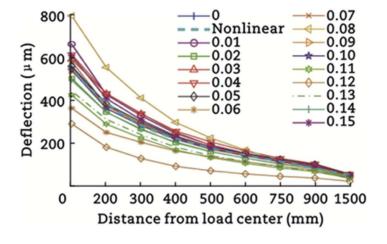

The study confirmed the technical, economic, and environmental feasibility of using cement-stabilized RAP in road construction. However, the variability in results necessitated improved design and construction specifications for stabilized RAP. Additionally, the study identified key parameters for pavement structures, emphasizing the need for more detailed investigations into pavement structures with stabilized road bases.

Solanki et al. (2016) conducted an extensive study along the Barnala-Mansa State Highway in Punjab, covering a 20 km stretch. Their investigation employed the Falling Weight Deflectometer (FWD) to assess pavement conditions both before and after overlay. Deflection data was collected at intervals of 0, 300, 600, 900, 1200, 1500, and 1800 millimeters from the load cell. This data was used to calculate the Surface Curvature Index (SCI), Middle Layer Index (MLI), and Lower Layer Index (LLI), which assessed the structural integrity of the pavement layers.

The SCI, representing the condition of the bituminous layer, indicated that values over 240 microns signified poor conditions, while values below 100 microns reflected good conditions. Before the overlay, most SCI values exceeded 240 microns, showing significant deterioration. The MLI, which reflects the base and sub-base layers, showed similar values (140 and 100)

for old and new layers, indicating good structural condition. The LLI, corresponding to the subgrade, reported values of 15 for the old pavement and 10 for the new, suggesting uniform subgrade conditions. Modulus values for the upper bituminous layer ranged from 600 to 2000 MPa, while the middle and lower layers had ranges of 100-450 MPa and 80-300 MPa, respectively, confirming the overall good structural integrity of the pavement.

Nega et al. (2016) concentrated on employing FWD testing for assessing the structural condition of pavements and projecting layer moduli via a back-calculation method. The research recognized that, despite its efficacy, FWD assessments can sometimes lead to inaccuracies in the estimated moduli of pavement layers, despite the calculated and observed deflection basins being within acceptable ranges, as shown in Figure 2.15.


Fig. 2.15: Configuration design of a standard FWD, placement of the loading plate, geophones, and the recorded deflection basin. (After Nega et al. 2016)

Such variances may be ascribed to a range of elements, including the properties of the pavement framework, like layer depth and temperature shifts, affecting the structural capability of the pavement and the retroactively calculated layer modulus.

The primary goal of the study was to examine FWD testing results on flexible pavement in Western Australia to predict the structural capacity of the pavement. The research involved

collecting FWD data, and core information, and carrying out assessments on pavement deterioration. Key findings of the study were:

- 1. The study successfully applied dynamic analysis and enhanced algorithms to predict the flexible pavement layer moduli.
- 2. The investigation showed that moduli values across most sections were consistently and accurately predicted, with some discrepancies in certain areas.
- 3. The research utilized the BISDEF program for back-calculating layer moduli across seven sites, covering a 7 km stretch with 105 points in total. The research suggested using multilayer computer programs like BISAR and WESLEA to improve the precision of layer moduli predictions.
- 4. Figure 2.16 presented the dynamic deflection basin for a sample project, revealing the complexities of analysing FWD deflection data.
- 5. The study highlighted difficulties in gathering a single set of moduli representative of field conditions, particularly when using back-calculation methods like BISDEF.
- 6. The study emphasized the need to account for air or surface pavement temperatures during FWD testing, as temperature fluctuations can impact asphalt concrete thickness and layer modulus.

Fig. 2.16: The nonlinear analysis identified dynamic deflection basins at various locations for Project 5 (After Nega et al. 2016)

Chai et al. (2013) explored the CBR of subgrades for thin bituminous pavements using FWD data, highlighting the inadequacies of existing models which overestimated subgrade CBR by relying on deflections recorded at 900 mm from the load centre (D900). Their research, conducted across eleven pavement sites in Brisbane, Australia, demonstrated that these models failed to account for the small deflections and the inherent non-linearity of thin pavement structures. By developing a new model that utilized deflections at 450 mm from the load centre (D450), the study provided a more accurate estimation of the in-situ subgrade CBR, particularly for pavements with asphalt layers less than 50 mm. This new model, verified against DCP data, showed improved correlation and reduced prediction error, suggesting a significant advancement in the methodology for evaluating subgrade strength in thin bituminous pavements.

Talvik and Aavik (2009) Performed an investigation into the correlation between FWD deflection basin parameters, including SCI, Base Damage Index (BDI), and Base Curvature Index (BCI) and the condition of road pavements in Estonia. Utilizing data from the Estonian Road Databank, the research aimed to establish threshold values for these deflection basin parameters to effectively evaluate pavement structural conditions. Analysis revealed strong correlations between indicators of the upper layers, denoted by SCI and BDI, which were examined alongside the pavement's equivalent modulus (E_{eq}), revealing correlation coefficients (R²) spanning from 0.5 to 0.9. However, the relationship between the subgrade indicator (BCI) and E_{eq} was weaker, indicating that weak subbases and subgrades compromised the structural capacity of Estonian roads. The research methodology involved normalizing FWD-measured deflections to a standard load and temperature to facilitate comparison across various pavement conditions. Despite efforts, no definitive correlation was established between deflection basin parameters and surface defects or rut depths in the pavement, likely due to the discrepancy between the localized nature of FWD measurements

and the continuous assessment of pavement defects. The study concluded with the creation of formulas for computing the maximum allowable values of SCI, BDI, and BCI for different pavement types, based on the minimum required equivalent modulus. These findings represented a significant advancement in utilizing FWD data for pavement condition assessment, providing a practical approach to identifying road network sections with inadequate structural capacity.

Sahoo and Reddy (2009) studied the correlation between DCP and CBR values in fine-grained soils through lab and field tests, revealing a notable relationship between the two, providing a reliable method for estimating subgrade strength—an essential parameter in highway pavement design. Specifically, the research established logarithmic models correlating lab DCP values with lab CBR values and field DCP values with field CBR values. The derived relationships, represented as $\log_{10} \text{LAB CBR} = 2.758 - 1.274 \log_{10} \text{LAB DCP}$ and $\ln \text{CBR} = 67.898 - 17.483 \ln(\text{FIELD DCP})$, suggested a consistent and accurate approach for in-situ subgrade evaluation. Fig. 6, depicting the field DCP-field CBR relationship for combined data, illustrated the robustness of their derived correlation across diverse soil samples, reinforcing the utility of DCP as a cost-effective tool for pavement layer assessment and design optimization. Fig 2.17 represents DCP-field CBR relationship.

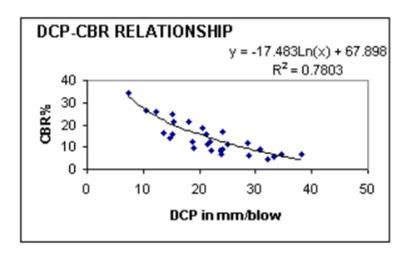
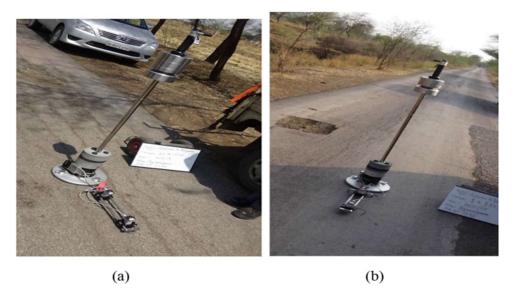


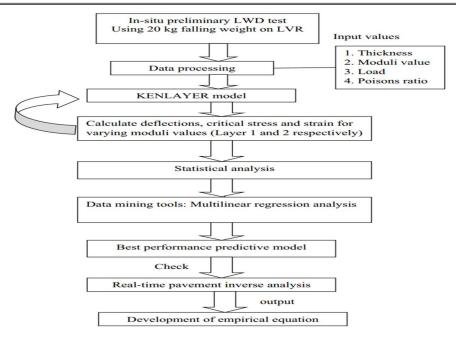
Fig. 2.17: Field DCP-CBR relationship (merged data) (After Sahoo and Reddy,2009)

This finding underscored the utility of DCP as an efficient, cost-effective tool for pavement layer and subgrade assessment, enhancing the process of pavement evaluation and design.


Horak (2008) explored the use of FWD for non-destructive testing of pavement structures. FWD data, combined with an analysis that blends semi-mechanistic and semi-empirical approaches, originating from South Africa, allowed for the benchmarking of pavements' structural conditions without detailed as-built data. This methodology utilized deflection bowl parameters to evaluate individual layer strengths and identify rehabilitation needs. Horak introduced an additional correlation investigation connecting calculated surface moduli with deflection bowl parameters for granular base pavements, improving the benchmarking technique. The study suggested that maximum deflection values, radius of curvature, and other deflection bowl parameters could effectively gauge pavement integrity, offering a practical tool for Pavement Management Systems (PMS) and project-level design investigations. Horak's method divided the deflection bowl into three zones, correlating each with specific pavement layers. This zoning facilitated the understanding of pavement response to loading and aided in pinpointing structural weaknesses. The paper also discussed the correlation between parameters of deflection bowls and surface moduli derived from calculations, offering a refined approach to pavement benchmarking.

2.2.4 Simulation of FWD Test by Finite Element Method (FEM)

Momin and Hamim (2022) presented a detailed analysis of the creation of a system for managing pavements in Bangladesh, focusing on a deflection prediction model for flexible pavements. Utilizing data from 252.6 km of road, including both national and regional highways, the research applied multiple linear regression analysis to establish a model correlating pavement deflection with International Roughness Index (IRI), the Annual Average Daily Traffic (AADT), width of the road, and duration since the last overlay. Significant findings included deflection values ranging from 0.5 to 2.0 mm, with most between 0.5 and 1.25 mm, and IRI measurements ranging between 2 and 12, mostly between


2 and 6. The correlation analysis revealed IRI as the strongest predictor of pavement deflection (r = 0.775, p < 0.001), with a model accuracy of 61.8% variance explanation $(R^2 = 0.618)$. The research concluded the insignificance of pavement width and AADT in deflection prediction, highlighting IRI and pavement age as key factors. This model provided a foundation for decision-makers to select appropriate rehabilitation or maintenance strategies, demonstrating a method to enhance pavement longevity and serviceability with an emphasis on non-destructive testing approaches.

Adigopula (2022) presented a novel approach for predicting the modulus values of pavement layers based on data obtained from Light Weight Deflectometer (LWD). This research was pivotal for thin asphalt pavement analysis, particularly in determining the layer moduli through empirical equations. The study utilized LWD data, integrated with the FEM analyses, to predict the moduli of various pavement layers. Fig. 2.18 demonstrated the Dynatest 3031 testing with different drop weights.

Fig. 2.18: Dynatest 3031 assessment involving (a) a 20 kg drop weight and (b) a 15 kg drop weight. (After Adigopula 2021)

A significant contribution was the formulation of an empirical expression for in-situ layer moduli estimation, eliminating the need for complex back calculation processes. Fig. 2.19 Outlined the methodology for developing empirical equations.

Fig.2.19: Approach employed in formulating empirical equations. (After Adigopula 2021)

The research focused on thin asphalt pavements, highlighting the efficacy of LWD in analyzing such structures. Adigopula's study successfully demonstrated a simplified method for estimating pavement layer moduli, offering a practical tool for pavement evaluation and design. Table 2.12. Described the description of the input values utilized in generating the dataset for modelling the pavement system.

Table 2.12: Assumed input values for generating the dataset in the pavement system model using KENLAYER. (After Adigopula 2021)

Data set	Asphalt layer 1 thickness, H1 (mm)	Base layer 2 thick- ness, H2 (mm)	Geophones offset (mm)	LWD falling weight (kg)	Layers	Poisons ratio	Modulus, M _R (MPa)
1	50	350-475	0, 300 and 600	20	Asphalt	0.35	500-700
					Base	0.40	280-480
					Subgrade	0.45	20-100

This empirical approach, validated through FEM and laboratory results, signified a step forward in pavement engineering, especially for low-volume roads and thin asphalt pavements.

Pai et al. (2020) investigated the feasibility of integrating slag-lime-treated indigenous soil as a subbase material in flexible pavement applications, aiming to reduce natural aggregate use and overall construction costs. Utilizing Ground Granulated Blast Furnace Slag (GGBS) and lime, the research treated expansive soil, known for its problematic construction and maintenance characteristics because of inadequate strength and pronounced swelling-shrinkage. The optimized mixtures, based on CBR and UCS tests, included soil with 12% GGBS, 6% GGBS + 3% lime, and 8% GGBS + 4% lime. Finite element analysis using PLAXIS 3D indicated a pavement service life increase of up to 65% with the treated soil subbase, leading to a 15.5% cost reduction. The findings suggested that slag-lime-treated native soil could serve as an economical and environmentally friendly alternative to conventional GSB materials in road construction.

Loizos and Scarpas (2013) explored the validation of FWD back analysis outcomes through Dynamic Finite Element (FE) modelling. The FWD was extensively used for non-destructive testing of pavements, primarily to estimate pavement material properties. This research examined the appropriateness of employing static versus dynamic models in the back analysis of FWD data, specifically focusing on estimating the elastic modulus of pavement materials. Dynamic FE simulations, both 2D and 3D, were used to verify the results of FWD back analysis procedures. Field data collected from both new and pre-existing asphalt pavements, utilizing various types of FWD were utilized, along with laboratory-tested core data for preliminary validation. Comparative analyses using Dynamic FE simulations and various back analysis methods, including MODCOMP, MODULUS, and ELMOD, were conducted. The investigation demonstrated the effectiveness of Dynamic FE modelling for validating the elastic modulus obtained through back analysis, offering a more accurate depiction of pavement response under dynamic conditions. Dynamic FE models were found to be valuable for validating and optimizing quasi-static back analysis methods, leading to more reliable pavement design and maintenance estimations. The study highlighted that while static models

are widely used due to their simplicity, dynamic models offer enhanced accuracy, especially under certain conditions. The utilization of Dynamic FE analysis for FWD back analysis verification was a promising approach in pavement engineering. It not only validated the back analysed data but also assisted in optimizing the pavement material properties used in construction and rehabilitation. This methodology offered a practical tool for engineers to validate and refine pavement designs and maintenance strategies.

Howard and Warren (2009) explored the effects of variability on the evaluation of thin flexible pavement performance through finite element analysis. The investigation focused on a pavement structure that included a slender asphalt surface, granular base, geosynthetics, and a fine-grained subgrade were considered. Employing PLAXIS software, the investigation integrated stationary transient loading and stress-dependent material models to replicate actual conditions. The findings highlighted the significant impact of variability on pavement behaviour, even within standards deemed acceptable for construction. Specifically, asphalt strain variations ranged from 8% to 141% due to variability, with vertical sensor positioning affecting strain readings by ±31%. This level of variability questioned the reliability of using asphalt strain gauges in thin pavements due to potential measurement errors. Additionally, subgrade stress experienced changes from 17% to 45% because of variability, underscoring the complexity of accurately assessing pavement performance. The research underscored the necessity of accounting for variability in pavement design and analysis to avoid misleading interpretations of instrumented measurements.

2.3 SUMMARY

The previous section has presented a comprehensive review of the available literature about soil property improvement by tyre scrap, pavement design and traffic studies, FWD test and simulation of FWD test in Finite Element method. These investigations have encompassed experimental studies as well as numerical and analytical approaches. Numerous studies have

investigated the effects of different-sized tyre scraps on various soil types, focusing on their impact on properties such as shear strength, bearing capacity, and CBR values. Key findings from literature include optimal tyre content levels for enhancing soil mechanics and the environmental benefits of using recycled materials. Additionally, the chapter highlighted the effectiveness of tyre-reinforced soils in geotechnical applications like subgrades for flexible pavements. The chapter has been concluded by emphasizing the potential for sustainable engineering practices using scrap tyres.

2.4 MOTIVATION

In regard to the literature review previously mentioned, it is observed that there have several advantages of using scrap tyres as a reinforcing agent in civil engineering field. The special qualities of the raw materials utilized in the manufacture of tyres include strength, flexibility, resilience, and high frictional resistance. The special qualities of scrap tyres may be put to good use when they are recycled as an alternative building material rather than being burned. Generally, waste or scrap tyres are used mainly in granulated or shredded format and exhibit interesting physical, mechanical and dynamic properties. There have been various effects of reusing waste tyres in geotechnical-related issues, such as-

- 1. Improving Road Infrastructure: The potential of waste tyres to enhance the mechanical properties of subgrade soil can lead to more durable, cost-effective, and resilient road infrastructures, especially in regions with challenging soil conditions. From many research works it has become a fact that scrap tyres may improve effectively the performance of embankments and backfills by reducing deflections, (Ibrahim et al. (2022), Akshatha et al. (2018), Apriyono et al. (2016), Johns et al. (2022)).
- **2. Innovative Engineering Solutions**: Exploring the use of waste tyre materials in geotechnical applications opens avenues for innovative engineering solutions, contributing to the advancement of the field. Recently, rubbers have been used as lightweight construction

material. (Tabasum et al. (2023), Mangi and Sarki (2021), Bai et al. (2020), Yang et al. (2020), Li and Li (2018), Peddaiah and Suresh (2017), Zornberg et al. (2004)).

- 3. Addressing Traffic Load Challenges: As traffic loads and vehicle sizes increase, there is a growing need for more robust and adaptable road infrastructures. Utilizing waste tyres in pavement subgrade can offer enhanced performance under these changing conditions. When embankment fill was constructed using cohesive soil and tyre shreds, heavy truck traffic and settlements demonstrated satisfactory long-term performances under traffic exposure. (Wangmo et al. (2020), Dhorajiya et al. (2019), Teja and Siddhartha (2015), Ravichandran et al. (2016))
- **4. Waste Management and Economic Benefits**: Repurposing waste tyres in construction not only addresses waste management issues but also offers economic benefits by reducing the need for traditional, often more expensive, materials.

In view of the above context for the research, by highlighting the significant potential of utilizing tyre scraps in practical applications to create a healthier environment for humanity. It underscores that, based on existing literature, scrap tyres can enhance soil properties and strength, which is a crucial consideration for geotechnical engineering. The current study is thus conducted with the aim of evaluating the performance of clayey subgrade mixed with scrap tyre material. (Amin et al.2023, Juliana et al. 2020, Munnoli et al. 2014, Promputthangkoon and Karnchanachetanee 2013).

CHAPTER 3 OBJECTIVE AND SCOPE

3.1 OVERVIEW

This chapter outlines the principal objective and scope of work of the present investigation.

3.2 OBJECTIVE

The objective is to evaluate the performance of soft cohesive subgrade in flexible pavement by incorporating tyre scrap, with comparison to the performance of the same without any modification.

3.3 SCOPE OF WORK

The primary goal is to assess the effectiveness of using tyre scrap as an admixture for improving subgrade layers in flexible pavements. The study compares the performance of this material, with existing original soil subgrade.

The performance of two different subgrade types is specifically compared in this study:

- i. Subgrade consisting solely of cohesive soil, and
- ii. Subgrade that combines cohesive soil with tyre scraps.

With the integration of waste tyre materials into the subgrade layer, the comparison aims to evaluate improvements in the strength, durability, and overall performance of the pavement structure. The evaluation of subgrade properties in a flexible pavement system is crucial for ensuring its ability to support traffic loads and maintain long-term performance and integrity. The key parameters for structural evaluation of the pavement subgrade include deflection, CBR, and Elastic Modulus (E_s).CBR test is used for evaluating the load-bearing capacity of subgrade soil. It quantifies the relative strength of the subgrade material by measuring its resistance to penetration under a standardized load, compared to that of crushed stone material.

The Elastic modulus (E_s) of a soil is a parameter that is commonly used in the estimation of settlement for pavement design and evaluation. It indicates how well the subgrade can distribute loads and reduce deformation. The focus of this study is to assess the effectiveness of incorporating scrap tyres into the pavement subgrade. The research site chosen for this investigation is the Jibantala-Taldi Road, which spans 12.45 Km in length and 5.5 m in width, located near Canning in the South 24 Parganas District of West Bengal, India. A sample stretch of the road section has been shown in Fig. 3.1. This road is under the jurisdiction of the Public Works Department (PWD), Government of West Bengal. Permission was obtained from the Department to conduct the necessary study on the road. The permission letter is included in ANNEXURE I. Original soil samples from the road site have been collected to determine essential soil parameters. while scrap tyres were obtained from a local car garage in Jadavpur, Kolkata, West Bengal, India.

Fig. 3.1: Sample stretch of Jibantala-Taldi Road

The study has been done with a three-dimensional analysis, which includes:

- i. Laboratory tests,
- ii. Field tests, and
- iii. Numerical work.

All these tests and associated studies are outlined below:

3.3.1 Laboratory Tests

This phase involves several tests to understand the properties of the original soil and the modified soil (with tyre scrap). These tests include:

- i. Soil Characterization: Laboratory tests such as Grain size analysis, Atterberg Limits, moisture content and specific gravity tests have been used to determine the basic properties of soils.
- ii. Shear strength: Unconsolidated Undrained test (UU) has been done to obtain shear strength parameters, specifically cohesion (C) and the angle of internal friction (a).
- iii. Compaction Characteristics: OMC and MDD have been determined by the Modified Proctor Test, which are crucial for understanding the soil compaction behaviour.
- iv. Bearing capacity of subgrade: Both unsoaked and soaked CBR tests have been conducted to understand the strength and stability of the soil under various conditions.

The study includes various tests to observe changes in soil strength after mixing different sizes of scrap tyres (ranging from 10mmX10mm to 30mmX30mm) with soil at varying percentages (from 5% to 30%) to determine the maximum achievable improvement. Soil-tyre mixtures have been prepared by combining road subgrade soil with shredded tyre scrap based on dry weight proportions, exploring ratios of 100:0, 95:5, 90:10, 85:15, 80:20, 75:25, and 70:30. To fulfil the purpose of the study, two standardised methods for testing have been undertaken for soil-tyre mixtures:

- a) Modified Proctor test
- b) CBR test

The innovative aspect of this study has been done by experiments with various sizes of scrap tyre pieces, mixed in various ratios with the soil as described.

3.3.2 Field Study

Based on these laboratory findings, a 30m long and 5.5m wide flexible pavement section has been constructed by following the design methodology of IRC 37:2018. This construction has been situated at 20.0 m away from 7.0Km Ch. of the existing pavement and utilized the optimally determined tyre scrap mix combined with the original soil collected from selected areas near the existing road. The purpose of this construction is to replicate the laboratory-obtained proctor and CBR values of the tyre mix soil under field conditions. A comprehensive traffic study, including an axle load test, has been carried out on the existing road to collect necessary data. This part of the study involves the collection of necessary field data, which is then combined with laboratory findings to complete the study. It includes-

- i. Traffic study: To understand the volume and type of traffic and the effect of various axle loads on the pavement surfaces under consideration.
- ii. Dynamic Cone Penetrometer Test (DCPT): The field CBR or in-situ CBR value has been estimated using this test.
- iii. Falling Weight Deflectometer (FWD): To measure the deflection and Elastic Modulus (Es) of the subgrade, which is an indicator of its ability to support loads.

3.3.3 Numerical Work

The study involves significant numerical work, including:

- i. Pavement Design: IIT PAVE software, a tool for designing pavements based on various parameters, has been utilized to complete the design.
- ii. Finite Element Modelling: The PLAXIS 3D software has been utilized to simulate the model for the present study. Then FWD test results, obtained from the analysis have been analysed to understand how the subgrade behaves under load in a more detailed and comprehensive manner.

3.3.4 Regression Analysis

An attempt has been made to obtain modified CBR with respect of normal CBR, tyre size and proportions as input variables using MINITAB, a statistical software.

By combining laboratory tests, field data, and numerical modelling, the study aims to provide a thorough evaluation of tyre scrap as a material for subgrade improvement. This can lead to more sustainable methods for building and maintaining roads, especially in areas with challenging soil conditions.

CHAPTER 4 METHODOLOGY

4.1 OVERVIEW

The study investigates the use of scrap tyres in pavement subgrades using a comprehensive methodology. The main methods and procedures encompass material collection for the study, laboratory testing, field studies, and numerical work.

4.2 LABORATORY TESTING AND MECHANISM

In the present work, the following tests have been performed-(i) Grain size distribution (ii)

Atterberg Limits (iii) Water Content (iii) Specific Gravity (iv) Unconsolidated Undrained

(UU) test (v) Modified Proctor compaction test and (vi) CBR test.

Tests are conducted to evaluate the impact of integrating tyre scrap of varying sizes (10mm X 10mm to 30mm X 30mm) and proportions (5% to 30%) into the soil. The goal is to identify the optimal tyre scrap inclusion for enhancing soil properties. For these mixtures, Modified Proctor and CBR tests are performed. It is worth mentioning that the road under study (Jibantala-Taldi) is classified as a major district road by the PWD. As stipulated in clause 6.1 of IRC:37-2018, the Modified Proctor Compaction test has been used to evaluate the value of Optimum moisture content (OMC) and Maximum Dry Density (MDD). The tests described above for soil and soil tyre scrap mix have been carried out using the IS Code techniques outlined in Table 4.1.

Table 4.1: Test programme for soil and soil tyre scrap mix

Sl. No.	Tests		Relevant IS Code	
1	Grain Size Distribution		IS:2720(PART-IV):1985	
2	Atterberg Limits	Liquid Limit Plastic Limit	IS:2720(PART-V):1985	
3	Water Content		IS:2720(PART-II):1973	
4	Specific Gravity		IS:2720(PART-III/Section1):1980	
5	Unconsolidated Undrained (UU) Test		IS:2720(PART-XI):1993	
6	Modified Proctor Compaction Test (OMC, MDD)		IS:2720 (PART-VIII): 1983	
7	CBR Test		IS:2720 (PART-XVI): 1987	

4.2.1 Grain Size Analysis

The soil grain sizes have been determined using IS:2720(PART-IV): 1985 at several points along the road. The results are visually represented using grain size distribution curves, which displayed cumulative particle percentages on a logarithmic scale.

4.2.2 Atterberg Limits

4.2.2.1 Liquid Limit

It is defined as the water content at which soil flows cohesively along a groove in a standardized cup under 25 impacts in Casagrande's apparatus, employing a 200g air-dried soil sample combined with water to determine soil consistency. This method is crucial for assessing the Liquid Limit of soil samples collected at Km intervals along roads.

4.2.2.2 Plastic Limit

The Plastic Limit, which is determined by the water content at which soil stops forming threads of 3 mm diameter without fragmentation, involves combining approximately 50 g of

oven-dried soil with water to assess its plasticity. This test, conducted according to IS 2720 (part V), is crucial for evaluating soil samples collected at intervals along the road.

4.2.3 Water Content

The percentage that represents the water to solid weight ratio in soil determines the moisture content, which is important for the study. Soil samples from specific road chainages have been analysed using the oven drying technique outlined in IS:2720(PART-II):1973.

4.2.4 Specific Gravity

Specific gravity, defined as the weight ratio of soil solids to distilled water at the same volume and temperature, is critical for understanding unit weight. The original soil sample has been tested for specific gravity in accordance with IS 2720 (Part III/Section 1).

4.2.5 Unconsolidated Undrained (UU) test

UU triaxial compression test, per IS 2720 (Part-XI):1993, assesses soil shear strength without directly measuring pore water pressure. Conducted on unconsolidated soil samples from various pavement subgrade chainages, it determines shear strength parameters. Samples are prepared to match field conditions by adjusting density and moisture content, eliminating structure and anisotropy through remoulding and compaction. This ensures homogeneity and meets the requirements for the UU triaxial test.

4.2.6 Modified Proctor Compaction Test

A 2.5 kg air-dried soil sample, sieved to pass through a 4.75 mm sieve, is blended with water incrementally from 5% to 20%. Compacted in Proctor moulds in five layers with 25 blows each, the modified Proctor test determines OMC and MDD following IS:2720 (PART-VIII): 1983 guidelines.

4.2.7 California Bearing Ratio (CBR)

The CBR test involves penetrating a soil sample with a 5 cm diameter plunger at a constant rate into a mould containing soil compacted in three layers using a 2.6 kg hammer. CBR

values, determined at penetrations of 2.5 mm and 5.0 mm, are computed following IS:2720 (PART-XVI): 1987 guidelines, conducted on various soil and soil-tyre mixtures at OMC.

4.3 FIELD STUDIES

In this present study, a series of field tests have been done methodically, covering numerous aspects of traffic and pavement analysis. These tests consist of Traffic Study, DCPT and FWD test.

4.3.1 Traffic Study

The traffic study aims to comprehensively assess traffic volume and diversity using advanced census methodologies, systematically counting and categorizing vehicles to analyze traffic patterns. It is structured into Traffic Census and Axle Load Survey segments to understand vehicular flow, types, and weight distribution per axle, providing insights into traffic density and its impact on road infrastructure.

4.3.1.1 Traffic Census

In designing pavement thickness, a crucial step involves conducting an exhaustive traffic study to ensure accommodating anticipated volumes and environmental factors, considering material attributes, traffic load frequency, magnitudes, and environmental conditions for longevity estimation of flexible pavements within 15 to 20 years.

Commercial Vehicles Per Day (CVPD), Passenger Car Unit (PCU), and Average Daily Traffic (ADT) are essential traffic engineering concepts vital for traffic flow management, roadway design, and transportation infrastructure decision-making, detailed further below.

i. Commercial Vehicles Per Day (CVPD)

CVPD, representing the count of passenger vehicles passing a point on a roadway within a day, is a fundamental unit in traffic engineering, crucial for traffic planning, road design, capacity analysis, and traffic forecasting, aiding in assessing vehicle traffic volume for transportation authorities and engineers.

ii. Passenger Car Unit (PCU)

PCU standardizes the impact of different vehicle types on traffic flow by assigning values to account for their varying effects on congestion, aiding in the analysis of roadway capacity, congestion, and service levels through the conversion of vehicle counts into Traffic Volume.

iii. Average Daily Traffic (ADT)

ADT, the average daily traffic count of vehicles passing a specific roadway point over a year, aids in traffic management and infrastructure planning, informing decisions about maintenance, expansion, signal timing, and traffic control devices by offering insights into overall traffic load. By collecting and analyzing data related to CVPD, PCU, and ADT, transportation professionals can make evidence-based decisions to improve road networks, and enhance traffic flow, and safety through a comprehensive traffic census spanning a continuous 7-day period.

A 7(seven) day traffic survey is carried out to find out the (CVPD) for a specific location, following these steps:

- **A. Define Study Objectives**: Clearly define the objectives of the survey. In this case, the objective is to determine the CVPD for the location over a 7-day period.
- **B. Select Survey Location:** Choose the location or specific road segment where to measure CVPD.
- C. Equipment and Personnel: Procure the essential equipment and personnel for the survey, including automatic traffic counters (ATC) or manual traffic counters, and when necessary, data collection personnel.
- **D. Data Collection Plan**: Develop a data collection plan that includes the following:
- a) Data Collection Period: Plan to collect data for 7 consecutive days to obtain a comprehensive view of traffic patterns.
- b) Data Collection Times: Determine the specific times of day when data will be collected.

 This could include multiple time blocks during the day.

c)Data Collection Locations: Identify the specific locations within the study area where data will be collected, and ensure these locations are representative of the entire area.

- d)Data Collection Method: Specify the collection method whether it will be using automated counters or manual methods to collect data.
- **E. Data Collection**: Execute the data collection plan, ensuring consistent and accurate data collection as per the specified schedule and locations. Ensure that data is recorded separately for each day
- **F. Data Analysis**: After the 7-day data collection period, analyse the collected data to determine the CVPD. Calculate the combined volume of passenger vehicles (cars) and delivery vehicles (trucks, vans) for each day and calculate the daily average.
- **G. Report and Documentation**: Compile the results of the analysis into a comprehensive report. This report should include:
- a) Daily and average CVPD values for each day of the survey.
- b) Any variations or trends observed over the 7-day period.
- c) A description of the study methodology, including data collection equipment and procedures.
- d) Any limitations or challenges encountered during the survey.
- **H. Recommendations and Interpretation**: Provide recommendations or interpretations based on the CVPD data. This might include suggestions for road improvements, traffic management measures, or insights into the use of the surveyed area.
- **I.Follow-Up and Ongoing Monitoring**: Consider whether ongoing monitoring is necessary to track changes in CVPD over time or assess the effectiveness of any recommended measures. Remember to follow any local regulations, standards, or guidelines for traffic surveys, and ensure the accuracy and reliability of your data collection methods to obtain meaningful results.

CVPD provides daily vehicle counts, which can be averaged over a year to calculate ADT, considering daily and seasonal variations. PCU standardizes the impact of different vehicle types on traffic flow, aiding in capacity analysis, traffic management, and road design by converting vehicle counts into PCU values to assess combined effects on road capacity and congestion, thus facilitating understanding and analysis of traffic patterns and road performance.

4.3.1.2 Axle Load Survey

An axle load test assesses road pavements and bridges' structural integrity and load-carrying capacity, aiding in maintenance decisions by applying controlled loads and measuring deflections and strains. A systematic survey determines the Vehicle Damage Factor (VDF) crucial in road design, ensuring both ease and safety in conducting representative samplings. The primary objective of this survey is to ascertain the Vehicle Damage Factor (VDF) by following IRC 37:2018. The Vehicle Damage Factor (VDF) is a critical coefficient in road design, estimating the damage diverse vehicles may inflict on pavements, and guiding the creation of durable surfaces capable of withstanding anticipated traffic loads.

The VDF plays a crucial role in converting data on commercial vehicles' axle configurations and loads into standard axle load repetitions, with surveys conducted meticulously over 24 hours. Special attention is given to vehicles over 3 tons, recognizing their inherent stress on road surfaces, essential to assess how vehicle loads may impact pavement wear or damage in order to plan maintenance and construction. To calculate the VDF in an axle load survey, these steps need to be followed-

i. Gather Data: Collect data on actual axle loadings of vehicles. This data is usually obtained through field surveys to measure and record the weights of various types of vehicles using weigh-in-motion (WIM) systems, portable scales, or other data collection methods.

ii. Determine Vehicle Classifications: Categorize the vehicles into appropriate classes based on their characteristics, such as the number of axles and axle spacings. Common vehicle classes may include passenger cars, single-unit trucks, and multi-unit trucks.

iii. Calculate Equivalent Single-Axle Loads (ESALs):

For each vehicle class, calculate the Equivalent Single-Axle Load (ESAL) using the formula:

ESAL = (Load on Axle) * (VDF for the Vehicle Class)

The load on the axle is typically measured in kilonewtons (kN) or pounds-force (lbf).

iv. Calculate VDF:

Calculate the VDF for each vehicle class by dividing the ESAL by the actual load on the axle: VDF = ESAL / (Load on Axle)

v. Aggregate VDF Values:

In case of multiple vehicle classes, to aggregate the VDF values to calculate an overall VDF for the entire survey. This is done by taking a weighted average of the VDF values for each vehicle class, with the weights based on the proportion of each class in the total traffic.

vi. Quality Control:

Ensure the accuracy of your data and calculations. Check for any outliers or errors in the data and address them to ensure the reliability of your VDF estimates.

vii. Documentation:

Document the methodology and assumptions used in calculations, including the source of the data, the formulas, and any specific criteria for classifying vehicles. This material is crucial for transparency and future reference. It is noteworthy that the VDF values are subject to variation based on the specific road type, survey site, and vehicle characteristics in the area. Therefore, it is essential to tailor calculations to the specific conditions and requirements of the study. Additionally, consulting relevant transportation engineering standards and guidelines can provide further guidance on calculating VDF in axle load surveys for pavement analysis and design.

4.3.2 Dynamic Cone Penetration Test (DCPT)

The Dynamic Cone Penetrometer (DCP) facilitates rapid in-situ assessment of subgrade strength crucial for evaluating its capacity to support pavement loads in road construction. The central thrust of this investigation encompasses two primary objectives:

- i. Thoroughly scrutinizing the engineering attributes of the subgrade soil through the utilization of the DCPT methodology.
- ii. Conducting a comparative analysis between the results obtained from the DCPT and the laboratory-calculated CBR values.

The current study utilizes DCPT to assess subgrade strength, measuring in-situ CBR by applying a standard weight to drive a cone into the ground, presenting dynamic cone resistance, a strength index derived from the instrumented DCP, and comparing it with laboratory testing for both types of pavements. Scala developed the Scala Penetrometer in Australia in 1956, which prompted the development of the Dynamic Cone Penetrometer (DCP) for subgrade soil testing. This device, similar to the current DCP, featured a 9 kg hammer dropping from 510 mm to apply force onto a cone. Later, van Vuuren (1969) developed a comparable tool with a 10 kg hammer dropping from 460 mm, establishing a correlation between DCP results and CBR values. Using a DCP with an 8 kg hammer and a 574 mm drop height, the Transvaal Roads Department in South Africa compared cones with apex angles of 30° and 60° in 1973 (Kleyn 1975). Further studies by Kleyn and Savage (1982) involved similar configurations for subgrade testing. The methodology and data analysis for DCPT may be divided into four parts and are described below-

4.3.2.1 Setup of Dynamic Cone Penetrometer (DCP)

The DCP is an instrument specifically engineered for the swift, in-situ assessment of subgrade properties. Fig.4.1 illustrates the standard configuration of the DCP. Upper and lower shafts make up the DCP in this arrangement. The lower shaft is attached to the upper shaft by an anvil, which holds an 8 kilogram drop hammer with a 575 mm drop height. The lower shaft

has a cone with a 60-degree angle and an anvil fastened at the end of it. An additional rod, marked in millimetres, is attached to the lower shaft to serve as a measurement device. Two people are usually needed to run the DCPT. While one operator takes measurements, the other releases the hammer. The cone tip is first placed on the test surface to start the test. While the reading rod remains stationary on the test surface the entire time, the lower shaft with the cone moves on its own. Since the ground surface is loose and disturbed, and because the testing equipment weighs a lot, the initial reading is usually not zero. The value of this initial reading is regarded as the initial penetration, which corresponds to below zero.

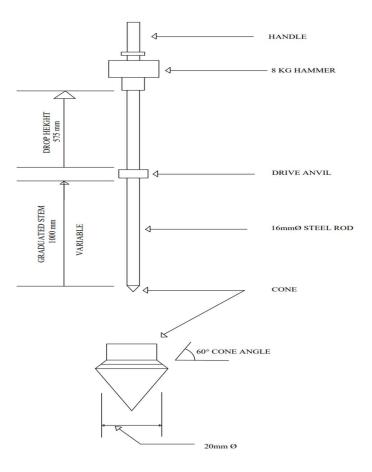


Fig. 4.1: Schematic diagram of the DCPT instrument

4.3.2.2 DCPT mechanism

For the operation of the DCPT, two people are usually necessary. While the other takes measurements, one operator lets go of the hammer. The cone tip is first placed on the test surface to start the test. While the reading rod remains stationary on the test surface the entire

time, the lower shaft with the cone moves on its own. Due to the weight of the testing apparatus and the loose, disturbed nature of the ground surface, the initial reading is usually not zero. As it corresponds to below zero, the value of this initial reading is regarded as the initial penetration. The penetration result after the initial hammer drop is shown in Fig. 4.2. Hammer blows are applied repeatedly, and following each blow, the penetration depth is measured. Until the desired penetration depth has been achieved, this process is repeated.

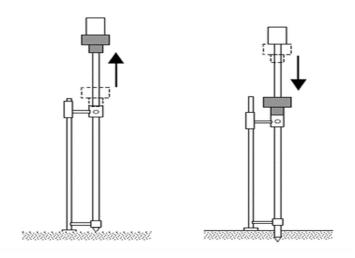


Fig. 4.2: DCP test before and after hammer drooping effect

4.3.2.3 Preparation of DCPT outcome data

The depth of penetration is measured after each impact, expressed as millimeters per blow (mm/blow). The DCPT offers rapid subgrade strength evaluation and generates significant data in a short time; however, it may not provide laboratory-soaked CBR values, as it correlates penetration depth to blow counts. Since the recorded blow counts are cumulative values, outcomes of DCPT are reported as incremental values defined as:

Where, PI = DCP penetration index in units of length divided by blow count; ΔD_p = penetration depth;

BC = blow counts corresponding to penetration depth ΔD_p .

As a result, values of the penetration index (PI) represent DCPT characteristics at certain depths. Fig. 4.3 shows a typical DCPT results.

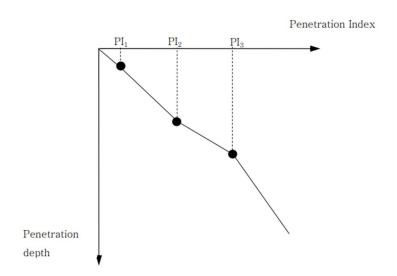


Fig. 4.3: Typical DCP test result

4.3.2.4 Relationship between Penetration Index (PI) and CBR Values

Several authors have delved into the relationships between CBR and the DCP penetration index PI. CBR values are frequently applied to pavement and road design. For the PI and CBR correlation, two different kinds of equations have been taken into consideration. Those are the inverse and log-log equations. The following general forms can be used to represent the log-log and inverse equations for the relationship:

log-log equation:
$$\log CBR = A - B(\log(PI)^C)$$
.....(4.2)
inverse equation: $CBR = D(PI)E + F(2.3)$(4.3)

where CBR = California Bearing Ratio; PI = penetration index obtained from DCPT in units of mm/blow or in/blow; A, B, C, D, E, and F = regression constants for the relationships.

According to Harison's (1987) statistical research, the inverse equation was shown to be inadequate and error-prone, while the log-log equation is more reliable for correlating DCP Penetration Index (PI) with CBR. Several coefficients (A, B, and C) for the log-log equation were provided by later researchers, notably Livneh in 1987 and 1989. These proposals were

based on their findings from the laboratory and field, and they further refine the equation for use in pavement assessment and design.

$$\log CBR = 20.2 - 71.0 \log(PI)....(4.4)$$

$$\log CBR = 14.2 - 69.0 \log(PI)...$$
 (4.5)

where CBR = California Bearing Ratio; PI = DCP Penetration Index. Although eqn. (4.4) was suggested based on eqn. (4.3), differences in results from eqn. (4.3) and eqn. (4.4) are small. Following a further examination of data by various writers, Livneh et al. (1994) suggested the following equation as the optimal correlation:

$$\log CBR = 46.2 - 12.1 \log(PI)$$
.....(4.6)

Typical log-log equations for the CBR-PI correlation proposed by various authors are summarized in Table 4.2. The penetration for each blow has been noted down in the field data sheet and after that, the field CBR from the DCPT test has been calculated using the correlation between CBR and PI (Penetration Index), the correlation has been given in Table 4.2.

Table 4.2: Correlations between CBR and PI (After Harison 1987 and Gabr et al. 2000)

Author	Correlation	Field or Laboratory Based Study	Material Tested
Kleyn (1975)	$\log CBR = 2.62 - 1.27 \log(PI)$	Laboratory	Unknown
Harison (1987)	$\log CBR = 2.56 - 1.16\log(PI)$	Laboratory	Cohesive
Harison (1987)	$\log CBR = 3.03 - 1.54 \log(PI)$	Laboratory	Granular
Livneh et. al. (1994)	$\log CBR = 2.46 - 1.12\log(PI)$	Field and Laboratory	Granular and Cohesive
Ese et. al. (1994)	$\log CBR = 2.44 - 1.07 \log(PI)$	Field and Laboratory	Aggregate base course (ABC)
NCDOT (1998)	$\log CBR = 2.60 - 1.07\log(PI)$	Field and Laboratory	ABC and Cohesive
Coonse (1999)	$\log CBR = 2.53 - 1.14\log(PI)$	Laboratory	Piedomont residual soil
Gabr (2000)	$\log CBR = 1.40 - 0.55\log(PI)$	Field and Laboratory	Aggregate base course (ABC)

The correlation for cohesive soil has been used to convert the DCPT into CBR. For the existing subgrade soil is appraised as cohesive soil by visual means, the correlation by Harrison formula has been used for the present purpose. Though, CBR has been calculated by formulas given by Klern (1975) and Livneh et al (1994) also to compare the CBR values which have been obtained by Harrison's (1987) formula. The summarized co-relation table has been illustrated in Table 4.3.

Table 4.3: Correlations between CBR and PI

Author	Correlation	Field or Laboratory Based Study	Material Tested
Kleyn (1975)	$\log CBR = 2.62 - 1.27\log(PI)$	Laboratory	Unknown
Harison (1987)	$\log CBR = 2.56 - 1.16\log(PI)$	Laboratory	Cohesive
Livneh et. al. (1994)	$\log CBR = 2.46 - 1.12\log(PI)$	Field and Laboratory	Granular and Cohesive

4.3.3 Falling Weight Deflectometer (FWD) Test

Assessing flexible pavement performance involves subjecting them to traffic-like loads, measuring elastic deflection, and conducting data analysis considering factors like subgrade strength, layer thickness, and drainage conditions.

The Falling Weight Deflectometer (FWD) closely replicates real-world loading conditions, generating load pulses as a moving wheel load traverses the pavement. Utilizing the energy potential of a raised weight, the FWD applies load pulses to the pavement surface, simulating vehicle wheel loads, with data collected from sensors for post-test analysis of pavement properties.

According to Walubita et al. and Solanki et al., The FWD is a key Non-Destructive Testing (NDT) equipment for evaluating pavement strength, capable of calculating the elastic modulus of individual layers. In the current study, the primary objective is to conduct a comparative analysis between the subgrade deflection and elastic modulus of existing pavement and

modified pavement. For conducting the FWD survey, a loading force within the range of 0-100 kN is utilized. This range allows the FWD to effectively simulate various types of vehicles loads on the pavement surface. In FWD study, the setup includes deflection sensors or geophones which are strategically placed at specific distances from the canter of the loading plate. According to IRC 115:2014, the distances are - 0 mm (D0), 300 mm (D1), 600 mm (D2), 900 mm (D3), 1200 mm (D4), 1500 mm (D5), and 1800 mm (D6). These sensors have been used to measure the surface deflection resulting from dropped weights such as 40kN (0.56 MPa contact stress) over a contact area of diameter 300 mm. The loading time of the FWD typically ranges between 25 to 30 milliseconds. A typical FWD Schematic representation has been illustrated in Fig.4.4.

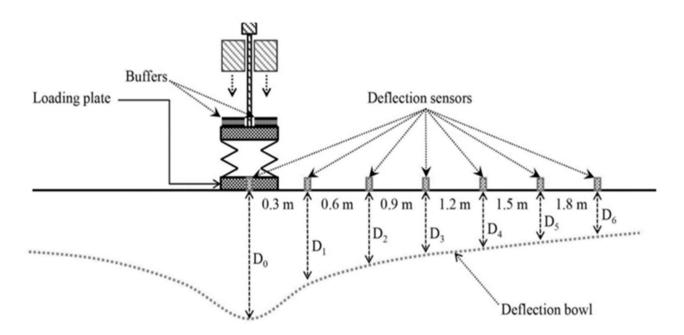


Fig. 4.4: Typical representation of FWD operation.

The FWD is used to impart a dynamic load to the existing pavement, and the response is recorded. The acquired deflection values are then used in the KGPBACK program to calculate the elastic moduli of the modelled pavement layers, in accordance with IRC: 115-2014. Figure 4.5 illustrates that the deflection bowl observed beneath a loaded wheel can be technically divided into three distinct regions.

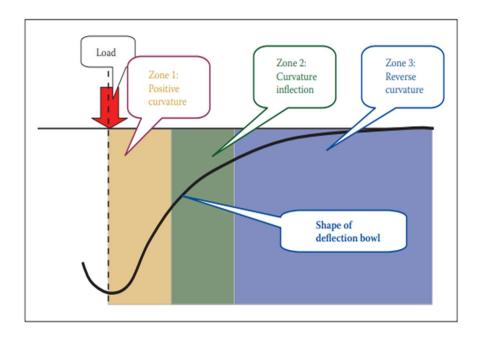


Fig. 4.5: Curvature zones of a deflection bowl (After Horak, 2008)

Zone 1, the deflection bowl that is nearest to the loading point, has a positive curvature with a radius of around 300 mm. Zone 2, or the transitional area, extends between 300 and 600 mm from the loading point and indicates the change from positive to reverse curvature. The location of the inflection point depends on the composition of the pavement layer. Zone 3, which is the furthest away from the loading area and reaches the road surface, has a reverse curvature. spanning approximately 600 mm to 18000 mm, with dimensions influenced by pavement depth and subgrade response. The performance mechanism for FWD is described below-

4.3.3.1 FWD deflection testing points & measurement:

At each measurement point, four drops have been executed: the first is the 'seating drop,' while the remaining three record deflections. The bituminous layer's pavement temperature has been also logged following IRC: 115-2014, Section 5.4.7. The steps for measuring deflections at a test point are as follows:

i. Mark the test point on the pavement.

- ii. Center the load plate over it.
- iii. With adequate contact and no surface water, lower the loading plate onto the pavement.

There can be no more than a 10% slope.

- iv. Lower the geophone frame to touch the pavement surface.
- v. Raise the mass to reach a 40 kN target load (+10%).
- vi. Execute one seating load drop without recording data.
- vii. Using the data collecting system, raise and lower the mass while recording load and deflection data. At different radial points, note the peak load and deflections. For accuracy, make sure there are at least two drops in each spot.
- viii. If deflections vary or deflection/load pulses are improper in the previous steps, repeat the drop.
- ix. Proceed to the next test site after raising the load plate and geophone frame.
- x. When the pavement temperature exceeds 45°C, no deflection measurements should be taken.

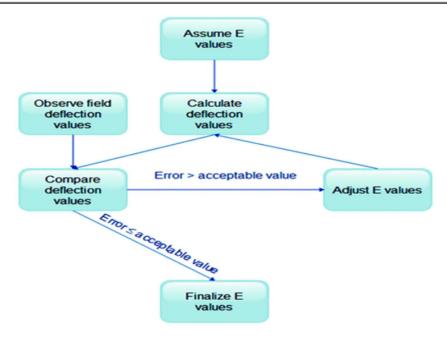
4.3.3.2 Analysis of data

The FWD applies a dynamic load to the pavement, and its response is measured, with deflection values used in KGPBACK software to calculate elastic moduli of modelled pavement layers as per IRC: 115-2014. The KGPBACK program, a version of BACKGA, is utilized for back-analysis, relying on FWD deflection measurements to assess in-service pavement structural condition by determining in situ elastic moduli. Here is a technical modification and brief explanation of how KGPBACK works:

i. Objective: KGPBACK is designed to determine the in situ elastic moduli of individual pavement layers by iteratively adjusting the assumed moduli values until the calculated deflection values closely match the observed deflections.

ii. Input Data:

• **Measured Surface Deflections**: Data obtained from FWD testing.


• Tyre Contact Pressure: The pressure applied by the FWD's tyres on the pavement.

- **Geophone Positions**: Locations of the geophones used to measure deflections.
- Poisson's Ratio: A material property related to the pavement's deformation behaviour.
- Range of Moduli for Each Layer: Assumed elastic moduli values for each pavement layer.

iii. Process:

- Start with an initial set of assumed elastic moduli values for each layer.
- Calculate deflection values based on these assumed moduli values.
- Compare and analyse the computed and observed deflection values.
- For the subsequent iteration, adjust the estimated elastic moduli values.
- Until the calculated and observed deflection values converge to a smaller difference, continue through this iterative process.
- **iv. Iteration**: The software iterates through these processes until the discrepancy between the calculated and observed deflection values becomes much lower, suggesting that the assumed moduli values have been improved to closely reflect the real pavement attributes.
- v. Output: The results of the analysis are the in situ elastic moduli values for each pavement layer, which represent the actual properties of the layers, as closely as possible, based on the observed deflections and input parameters.

The iterative back-calculation process depicted in Figure 4.6 refines the initial assumptions to provide a more accurate representation of the elastic properties of pavement. This is a crucial tool in pavement engineering for assessing the structural integrity of roads and making informed decisions regarding maintenance and rehabilitation.

Fig. 4.6: Back calculation process (After Singh et al.,2019)

Temperature and seasonal corrections are necessary after KGPBACK calculation to account for the variations in pavement material properties caused by temperature changes and seasonal effects. These corrections are important for the following reasons:

- i. Temperature-Related Changes: Pavement materials, including asphalt and subgrade soils, exhibit different mechanical properties at varying temperatures. As temperature fluctuates, the stiffness and modulus of the materials change. This means that the back-calculated pavement layer moduli obtained using KGP methods may not accurately reflect the actual material properties if temperature effects are not considered.
- ii. Seasonal Effects: Seasonal changes can lead to variations in environmental conditions, such as moisture content and frost susceptibility of the subgrade. These fluctuations can affect the structural behaviour of the pavement. To obtain a more accurate representation of the pavement's structural condition, it is essential to account for seasonal variations.
- iii. Accurate Performance Prediction: Correcting for temperature and seasonal effects ensures that the back-calculated pavement layer properties align with the conditions

the pavement experiences throughout the year. This accuracy is crucial for making informed decisions regarding maintenance, rehabilitation, or design modifications to enhance pavement performance.

iv. Long-Term Structural Integrity: Neglecting temperature and seasonal corrections can lead to incorrect assessments of pavement structural integrity. This, in turn, can result in suboptimal maintenance strategies and may reduce the overall service life of the pavement.

In summary, temperature and seasonal corrections are required after KGPBACK calculation to improve the accuracy of pavement layer moduli and to account for real-world variations in temperature and seasonal conditions, which can significantly impact pavement performance and longevity.

i. Correction for Temperature

The temperature of the pavement affects the back-calculated moduli values of the bituminous layers assessed by the FWD survey. The standard pavement temperature for India is recommended as 35°C, so the back-calculated moduli obtained at temperatures other than the identified standard temperature will have to be corrected using a suitable correction factor using equations 4 and 5 of IRC:115-2014, and the same is extracted below for easy reference.

$$E_{T1} = \lambda E_{T2}$$
(4.7)

Where, λ , temperature correction factor, is given as

$$\lambda = (1-0.238 \ln T_1) / (1-0.238 \ln T_2) \dots (4.8)$$

Where, E_{T1} = Back-calculated modulus (MPa) at temperature T_1 (°C) E_{T2} = Back-calculated modulus (MPa) at temperature T_2 (°C)

ii. Correction for Seasonal Variation

The strength of the subgrade and granular subbase/base layers is dependent on the moisture content. The type of subgrade soil, the gradation and makeup of the fines in the granular layers, and other factors will determine how much the strength is impacted. The pavement layer

moduli values are supposed to correspond to the time when the subgrade is at its weakest when following these criteria. This time frame falls within India's monsoon recession. Therefore, it is preferable to monitor deflections during this time. If doing the same is not practical, a correctional process ought to be used. Equations 6 and 7 of IRC:115-2014 can be used to estimate the modulus value of a subgrade layer based on modulus values back-calculated from deflections measured in the winter and summer, respectively. In a similar manner, the modulus value of the granular layer can be estimated using Equations 8 and 9 of IRC:115-2014, which derive the modulus value from deflections measured in the winter and summer, respectively.

$$E_{sub\ mon} = 3.351 * (E_{sub\ win})^{0.7688} - 28.9 \dots (4.9)$$

$$E_{sub\ mon} = 0.8554 * (E_{sub\ sum}) - 8.461 \dots (4.10)$$

Where, $E_{sub\ mon}$ = Subgrade modulus in monsoon (MPa)

 E_{sub_win} = Subgrade modulus in winter (MPa)

 $E_{sub\ sum}$ = Subgrade modulus in summer (MPa)

$$E_{gran\ mon} = -0.0003*(E_{gran\ sum})^2 + 0.9584*(E_{gransum}) - 32.989 \dots (4.11)$$

$$E_{gran\ mon} = 10.5523 * (E_{gran\ win})^{0.624} - 113.857 \dots (4.12)$$

Where, $E_{gran\ mon}$ = Granular layer modulus in monsoon (MPa)

 $E_{gran\ win}$ = Granular layer modulus in winter (MPa)

 $E_{gran \ sum}$ = Granular layer modulus in summer (MPa)

4.4 NUMERICAL WORK

In the current research, two distinct numerical components were developed. The first part involves pavement design utilizing IITPAVE, a software specifically tailored for pavement design based on Indian conditions. This approach focuses on creating a structural design for pavements, considering factors such as traffic load, material properties, and environmental conditions.

The second numerical component is centred around pavement deflection analysis using PLAXIS 3D. This segment of the study leverages the capabilities of PLAXIS 3D for finite element analysis, providing insights into how pavements respond to loads typically measured by a FWD. This analysis helps in understanding the deformation and stress distribution within the pavement structure under various loading conditions, which is crucial for assessing pavement durability and service life. Together, these two parts offer a comprehensive approach to pavement analysis, combining structural design with detailed deflection and stress analysis.

4.4.1 Pavement Design and Analysis by IIT PAVE Software

In the present study, the pavement thickness for both suggested subgrades—original soil and soil mixed with tyre scraps has been calculated sequentially using the IIT PAVE software. MoRTH Research Scheme R-56 "Analytical design of Flexible Pavement" funded the development of the Indian Institute of Technology Kharagpur's IIT PAVE program, which is an improved version of FPAVE. It is utilized in pavement research, particularly in the analysis of flexible pavements. This program is essential for planning and researching flexible pavements in the field of transportation engineering. The FEM is used by the IIT PAVE project to evaluate how flexible pavements react to different loads. The program provides a thorough examination of pavement behavior, taking into account variables including traffic volumes, meteorological conditions, and material quality. By simulating different loading scenarios, the software may provide stress and strain data at crucial places in the pavement structure, allowing for an examination of the pavement's performance over time. The IITPAVE program's intuitive interface makes data entry, structural adjustments, and outcome visualization easier. By providing a more accurate and timely method for pavement design and analysis, IITPAVE software has played a major role in the field of pavement engineering. IITPAVE, a multi-layer analysis program, is used to analyze flexible pavement and locate critical pavement locations where stresses and strains are present. To design a flexible

pavement, the thickness of each layer needs to be determined based on the strength characteristics of the pavement materials. This can be done by using the CBR value as well as traffic data, and by using IITPAVE software which computes the actual value of strains coming on the pavement due to wheel load. This software requires the input of pavement layer thickness, applied loads on the pavement surface, tyre pressure, wheel spacing, and Poisson's ratio. Upon running the software, it generates output data, specifically the actual horizontal tensile strain and vertical compressive strains at critical pavement locations. The software computes many functional parameters, including stresses, strains, and deflections, assuming that the pavement is a linear elastic layered system. The software can be used to calculate the strains and stress parameters required to check for sub-grade rutting and fatigue cracking of bituminous layers. These strains are vertical compressive strain and horizontal tensile strain. Overall, the design process involves using the IITPAVE software to determine the thickness of component layers. The procedure is based on the strength characteristics of the pavement materials, as specified by IRC 37:2018.

4.4.2 Finite Element Analysis by PLAXIS 3D

In the current study, FE analysis using PLAXIS 3D (Version 20) is employed to establish a correlation between FWD deflections and PLAXIS-derived deflections. Technical brief on the methodology is illustrated below-

4.4.2.1 Model Setup in PLAXIS 3D:

The steps for model set up are as follows:

- i. Geometry Creation: The first step involves creating a three-dimensional model of the pavement structure, including layers representing the subgrade, base, and surface layers.
- ii. Material Properties: Assign appropriate material properties (like elasticity, Poisson's ratio, and density) to each layer based on laboratory tests or standard values.

iii. Boundary Conditions: Set boundary conditions to replicate the actual field conditions.

This often includes specifying the base and lateral boundaries to simulate the infinite extent of the ground.

4.4.2.2 Loading Conditions:

Steps for loading condition include:

i. FWD Simulation: Implement a loading mechanism in PLAXIS 3D to mimic the FWD test. This involves applying a transient dynamic load. Magnitude and duration is similar to that of the FWD.

ii. Mesh Refinement Around Load: Ensure the mesh is sufficiently refined around the load application area to capture detailed responses.

4.4.2.3 Analysis and Calculation:

Steps are as follows:

- i. Conduct a FE analysis to calculate the deflection of each pavement layer under the simulated FWD load.
- ii. The analysis should capture the vertical displacement of the Pavement's surface, which corresponds to the deflection measured by FWD in the field.

4.4.2.4 Correlation with FWD Data:

- i. Compare the PLAXIS 3D model's deflection results with actual FWD deflection data collected from the field.
- ii. Use statistical or analytical methods to establish a correlation between the two sets of data. This may involve regression analysis or other statistical tools to understand the relationship and validate the model.

4.4.2.5 Interpretation and Validation:

- i. Interpret the results to understand the pavement behaviour under load.
- ii. Validate the PLAXIS model by ensuring the correlation with FWD data is within acceptable limits of accuracy.

4.4.2.6 Adjustments and Iterations:

i. If necessary, adjust the model parameters based on the correlation results and rerun the analysis for improved accuracy.

This approach provides a detailed understanding of the pavement's structural behaviour and aids in validating finite element models using real-world data, thus enhancing the reliability of pavement design and analysis.

4.5 FLOWCHART OF THE STEPS:

Figure 4.7 depicts the successive stages taken in the investigation in a flowchart manner. Each node in the flowchart likely symbolizes a unique activity or decision point, visually illustrating the procedure used throughout the research study. The flowchart aids in understanding the methodology and sequence of the analysis's procedures.

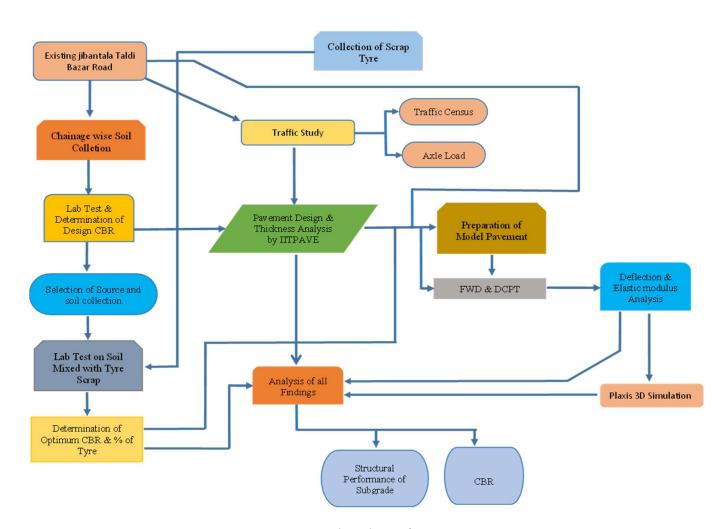


Fig. 4.7: Flowchart of steps

4.6 SUMMARY:

This chapter has presented the methodology employed in the investigation, encompassing both laboratory and field studies. An overview of the tests conducted on the existing subgrade soil and tyre scrap materials, including grain size analysis, Atterberg limits, and California Bearing Ratio (CBR) testing has been outlined. Furthermore, the preparation of soil-tyre mixtures and the procedures for dynamic cone penetration and falling weight deflectometer tests has been described. Finally, numerical modelling using IIT PAVE and PLAXIS 3D is also outlined, providing a comprehensive framework for analyzing pavement performance. The methodologies are systematically presented to ensure the reproducibility and reliability of the research findings.

CHAPTER 5 LABORATORY TESTS

5.1 OVERVIEW

The laboratory tests for the current investigation have been performed in two stages. The original soil has been tested in the first phase, followed by soil mixed with shredded tyre scrap in the second. To examine the original soil, samples have been collected at every Km chainage along the Jibantala-Taldi Road, which has a length of 12.45 Km as shown in Fig.5.1

Fig. 5.1: Sample collection chainages on the road

The samples have been collected from locations adjacent to the road, at a depth of 1.0 m below the Existing Ground Level (EGL). Soil samples have been collected from 1.0 m below the existing ground level (EGL) for California Bearing Ratio (CBR) and other relevant tests, as

the existing road subgrade is located at this depth. According to IRC 37:2018, the subgrade bottom must maintain a minimum clearance of 1.0 m (or 0.6 m for roads with no history of overtopping) from the water table or high flood level. In this case, the water table is approximately 2.0 m below the existing road level. Hence, the subgrade depth of the existing road also complies with IRC specifications. Soil sample collection has been illustrated through Fig. 5.2.

Fig. 5.2: Soil sample collection from Jibantala-Taldi Road

5.2 TEST PROGRAM FOR SOIL

The laboratory tests for the current investigation have been performed in two stages. The original soil has been tested in the first phase, followed by soil mixed with shredded tyre scrap in the second. To examine the original soil, samples have been collected at every Km along the Jibantala-Taldi Road, which has a length of 12.45 Km. The samples have been collected from locations adjacent to the road, at 1.0 m below the EGL. The test program for soil sample has been outlined in Table 5.1.

Table 5.1: Test program for soil

Sl. No.	Tes	sts	Number of tests				
1	Grain Size I	Distribution	14				
2	Attarbara Limita	Liquid Limit	14				
	Atterberg Limits	Plastic Limit	14				
3	Water C	03					
4	Unconsolidated Un	drained (UU) Test	03				
5	Specific	Gravity	14				
6	6 Modified Proctor Compaction Test (OMC, MDD)						
7	7 CBR Test						

5.3 TEST PROGRAMME FOR SCRAP TYRE MIX SOIL

Table 5.2, shows the details of test program for soil mixed with shredded tyre scrap. For the present study, various sizes of scrap tyres (10mm x 10mm, 15mm x 15mm, 20mm x 20mm, 25mm x 25mm and 30mm x 30mm) have been utilized. One of the sample tyre scraps of size 15mm X 15mm is depicted in Fig. 5.3.

Table 5.2: Test program for tyre scrap mix soil

Sl.No.	Tests	Number of tests
1	Modified proctor compaction test (OMC, MDD)	30
2	CBR at OMC (Unsoaked and soaked)	30

Fig. 5.3: Sample tyre scrap of size 15mm X 15mm

5.4 LABORATORY TEST RESULTS

In order to fulfill the objectives of the study, all the tests listed in Table 5.1 have been conducted, and the outcomes obtained are displayed individually for both the original soil and the soil mixed with tyre scrap.

5.4.1 Test Results for Original Soil

The original soil samples are collected from the Jibantala-Taldi Road surroundings and brought to the Soil Mechanics Laboratory of Jadavpur University, Kolkata, West Bengal, India, for further analysis. The samples have been subjected to an initial process of oven drying and sieving using a 2.36 mm IS sieve. Following this, the soil specimens have undergone a drying process in an oven set at 105°C for 24 hours to ensure thorough desiccation. Sample photographs of Laboratory tests have been depicted in Fig. 5.4.

Fig. 5.4(A) and (B): Laboratory sample preparation and data collection.

Grain Size Analysis has been conducted to ascertain the particle size distribution within the soil samples. Additionally, Liquid Limit (LL) and Plastic Limit (PL) tests have been carried out to evaluate the plasticity characteristics. Shear strength properties of the soil have been determined through Unconsolidated Undrained (UU) tests. The compaction characteristics of the soil have been reassessed using the Modified Proctor Test, which involved compacting the

soil at various moisture contents to determine the MDD. Furthermore, CBR tests have been conducted on the collected samples to measure the load-bearing capacity and mechanical strength of the road subgrade. The results of these laboratory tests for the normal soil at the specified road chainage has been illustrated in Table 5.3. Particle size distribution curves of the original soil has been shown in Fig. 5.5.

 Table 5.3: Laboratory test results on road soil with respect to chainage

Chainage (in	Description of	Modified	l proctor	Att	erberg Lii	nits	Grain	size analy	vsis (%)		ry CBR value (%)
Km)	soil	MDD (g/cc)	OMC (%)	LL (%)	PL (%)	PI (%)	Sand	Silt	Clay	Soaked	Unsoaked
0.100	Grey clayey silt	1.760	15.18	45.70	21.80	23.90	12	61	27	3.80	5.27
1.000	Grey silty clay/clayey silt	1.751	15.25	46.80	21.30	25.50	10	60	30	3.75	4.98
2.000	Brownish grey silty clay	1.741	16.80	48.50	21.28	27.22	7	60	33	3.62	4.96
3.000	Grey silty clay	1.724	17.06	50.20	21.20	29.00	4	62	34	3.39	4.60
4.000	Grey silty clay	1.720	17.42	51.20	20.26	30.94	4	61	35	3.15	4.15
5.000	Grey silty clay	1.710	18.14	53.90	20.10	33.80	2	62	36	3.05	4.01
6.000	Brownish grey silty clay	1.730	16.50	48.60	21.30	27.30	6	61	33	3.30	4.45
7.000	Grey silty clay/clayey silt	1.728	17.12	46.70	21.90	24.80	7	62	31	3.45	4.65
8.000	Brownish grey clayey silt	1.750	15.60	45.60	21.20	24.40	10	64	26	3.75	5.09
9.000	Grey silty clay	1.740	15.86	47.20	22.60	24.60	6	67	27	3.57	4.90
10.000	Brownish grey silty clay	1.740	16.20	47.50	21.30	26.20	5	69	26	3.55	4.89
11.000	Grey silty clay	1.730	17.16	48.70	22.40	26.30	5	64	31	3.41	4.47
12.000	Grey silty clay	1.730	16.90	50.20	22.00	28.20	6	61	33	3.28	4.55
12.450	Greyish brown silty clay	1.730	17.05	47.70	22.40	25.30	8	62	30	3.40	4.59

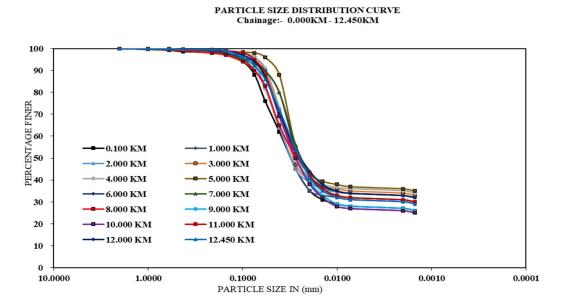
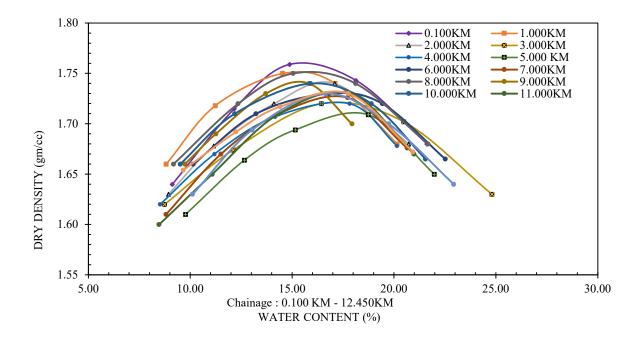
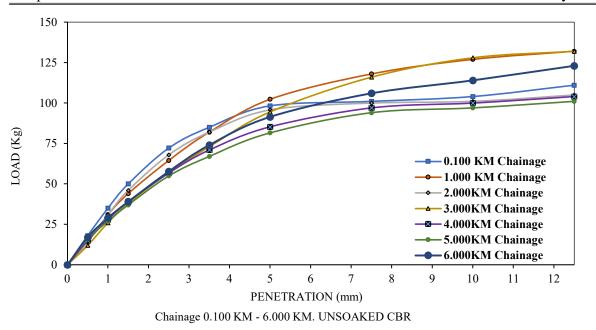
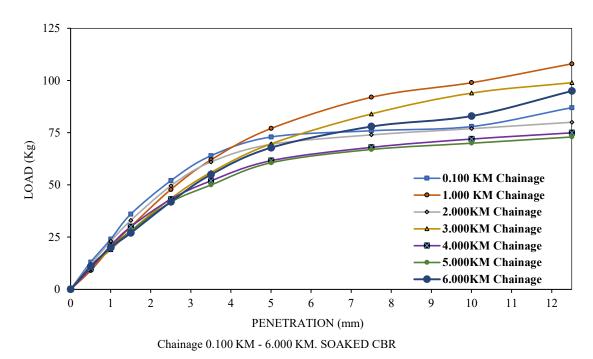




Fig. 5.5: Particle size distribution curve


The compaction curves for the road subgrade soil are depicted in Fig. 5.6, while Fig. 5.7 to 5.10 illustrate the CBR curves.

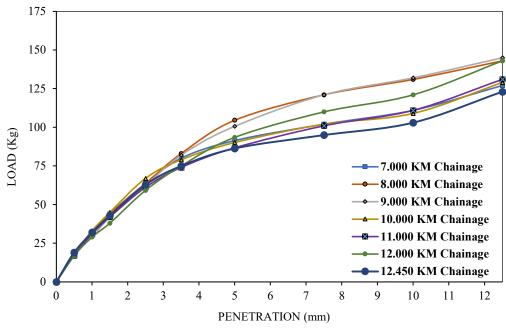

Fig. 5.6: Modified Proctor Compaction Curve for existing road subgrade between chainages 0.100 Km and 12.450 Km

Fig. 5.7: Load vs. Penetration curve for existing road subgrade between 0.100 km and 6.000 km in unsoaked condition

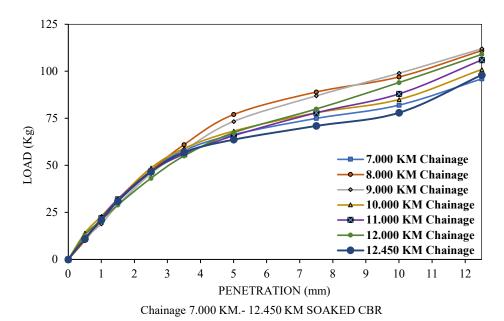


Fig. 5.8: Load vs. Penetration curve for existing road subgrade between 0.100 km and 6.000 km in soaked condition

Chainage 7.000 KM.- 12.450 KM UNSOAKED CBR

Fig. 5.9: Load vs. Penetration curve for existing road subgrade between 7.000 km and 12.450 km in unsoaked condition

Fig. 5.10: Load vs. Penetration curve for existing road subgrade between 7.000 km and 12.450 km in soaked condition

5.4.2 Evaluation of Design CBR And Soil Sample Collection for Tests on Soil Tyre Mix

The 80th percentile CBR value, as specified in Clause 6.2.2 of IRC:37-2018, can be used to calculate the design CBR of a road if the design traffic volume is below 20 msa during the pavement design. Therefore, for further analysis, it is advisable to ascertain the CBR value of

the soil by averaging at least three specimens prepared using the specific soil. In accordance with this clause, Fig.5.11 presents an 80th percentile CBR graph, illustrating a value of 3.36 for the 80th percentile CBR. This value can be effectively utilized for subsequent design processes.

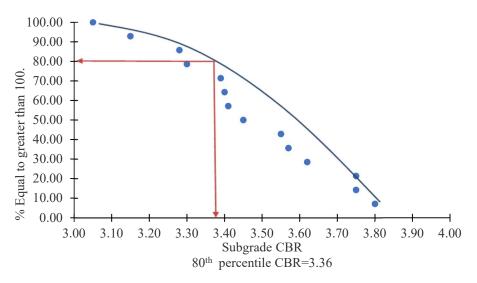


Fig. 5.11: Design CBR curve

5.4.3 Property Of Scrap Tyre Material Used in This Study

The waste tyre material, in the form of shredded tyres used in this investigation, has been purchased from a local car garage in the Jadavpur area of Kolkata. The outer circle steel reinforcement around the tyre has been removed using a hexablade. The remaining of the tyre has been sliced into fragments ranging from 10 to 25 mm in length and width, and 2 to 3 mm in thickness, considering an aspect ratio (AR = Length of shred/Width) of 1. Table 5.4 displays some properties of the scrap tyre material that was tested at a NABL Lab in Kolkata.

Sl No **Property** Sample 1 Sample 2 1 Density 1.11 gm/cm^3 1.13 gm/cm^3 2 232°C **Melting Point** 236 °C 3 Specific Gravity 1.13 1.15 Water Absorption 4 NIL NIL Capacity 5 Elastic Modulus 1.01Mpa 1.03Mpa

Table 5.4: Properties of scrap tyre

**NABL Lab report has been attached in Annexure II

5.4.4 Test Results for Shredded Tyre Scrap Mixed Soil

5.4.4.1 Collection and preparation of soil samples for tyre scrap mixing

The design CBR value of 3.36, as shown in Fig.5.11, is based on the 80th percentile CBR graph. The next phase aims to match this CBR value with soil that will be considered for mixing with shredded tyre scrap. For these purposes, Soil samples have been collected from various points (chainages) along the existing road at 3.00Km, 6.00Km, 7.00Km, 11.00Km, 12.00Km, and 12.45Km. The CBR values of these locations are 3.39, 3.30, 3.45, 3.41, 3.28, and 3.40, which are closely aligned with the target design CBR value of 3.36. Manual mixing has been conducted to achieve a homogeneous mixture of soil and scrap tyre. In the laboratory, the soil sample was combined with various sizes of scrap tyre, ensuring a uniform blend while taking appropriate precautions throughout the process. After mixing these soils, three samples have been collected from the mixture and tested as remoulded samples. The test results have been presented in Table 5.5.

Table 5.5: Property of mixed soil formed by collecting soil from different chainages of 3.00Km, 6.00Km, 7.00Km, 11.00Km, 12.00Km, and 12.45Km. (Atterberg Limits, Bulk Density, Moisture Content and Grain Size Analysis)

Sl.	Sample	Description _ of soil	Atterberg Limits			Bulk Density	Moisture	Grain	Size A (%)	nalysis
No	No.		LL (%)	PL (%)	PI (%)	(Y _b) (gm/cc)	Content (%)	Sand	Silt	Clay
1	SAMPLE 1	Grey silty clay	48.68	21.93	27.01	2.11	19.23	7	62	31
2	SAMPLE 2	Grey silty clay	48.88	21.91	26.96	2.02	20.02	6	62	32
3	SAMPLE 3	Grey silty clay	48.73	21.87	26.82	2.13	19.77	6	64	30
	Suggested values		48.68	21.87	26.82	2.02	19.23	6	62	32

Figure 5.12 represents particle size distribution of mix soil

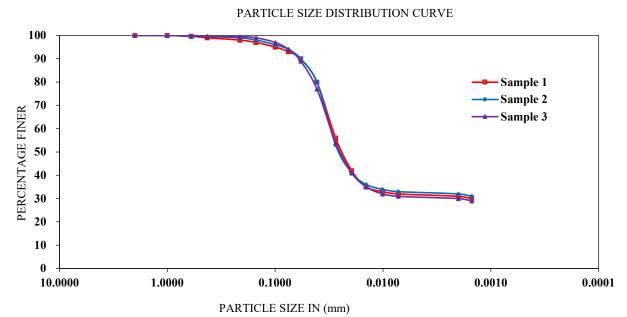


Fig. 5.12: Particle size distribution curve for mix soil

Table 5.6, showing an average CBR value of 3.37, which is mostly equal to the design value of 3.36.

Table 5.6: Property of mixed soil formed by collecting soil from different chainages of 3.00Km, 6.00Km, 7.00Km, 11.00Km, 12.00Km, and 12.45Km. (Modified Proctor, Unconsolidated Undrained (UU) and Laboratory CBR (%))

			Modified Unconsolidated Undraine Proctor (UU)					Labora	tory CBR (%)
Sl. No	Sample No.	Description of soil	MDD OMC (gm/cc) (%)		Cohesion(C) (t/m²)	Angle of internal Friction(©)	Soaked	Unsoaked	
1	SAMPLE 1	Grey silty clay	1.729	16.99	2.52	2.2	3.37	4.55	
2	SAMPLE 2	Grey silty clay	1.730	16.97	2.50	2.0	3.39	4.58	
3	SAMPLE 3	Grey silty clay	1.730	16.98	2.51	2.3	3.39	4.56	
Suggested values		1.729	16.97	2.50	2.0	3.37	4.55		

The corresponding compaction and CBR curve for mix soil are displayed in Fig.5.13 and 5.14 respectively.

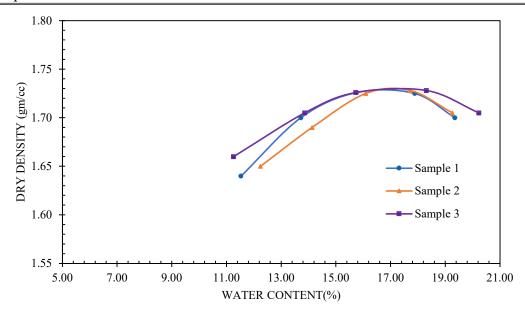


Fig. 5.13: Modified Proctor Compaction Curve for mix soil

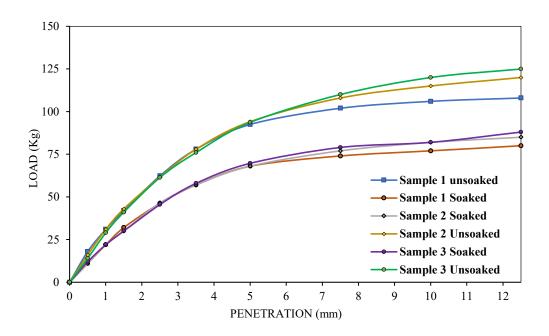
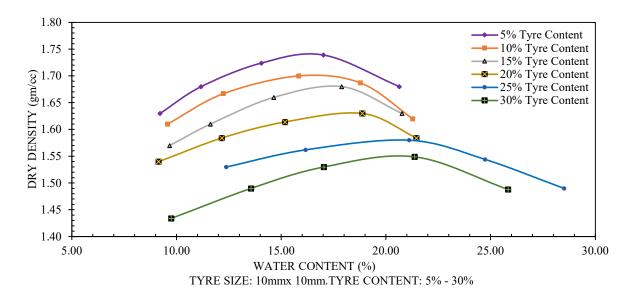
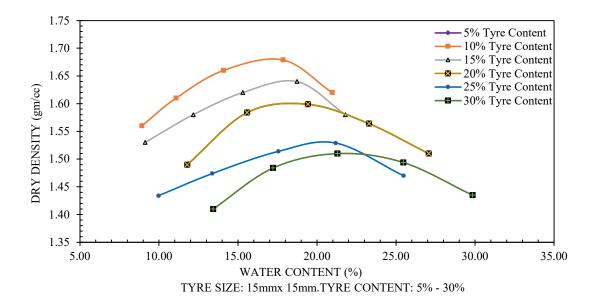


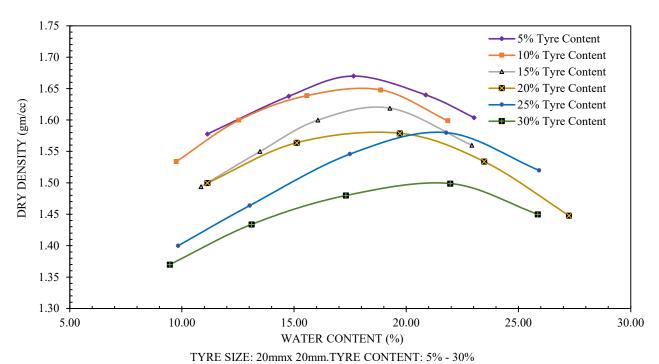
Fig. 5.14: Load vs. Penetration Curve for mix soil


UU curves for mix soil samples have been presented in ANNEXURE -III

This mix soil mass is then further processed with different sizes and proportions of tyre scrap as stated earlier. The test results for the soil-shredded tyre scrap mix are presented in Table 5.7.


Table 5.7: Laboratory test results for soil- shredded tyre scrap mix.

Tyre Size (in	Percentage	Percentage _	Modifi	ed Proctor	Laborato	ry CBR value (%)
mm)	(%) of Soil	(%) of Tyre	OMC (%)	MDD (gr/cc)	Soaked	Unsoaked
	95	5	16.70	1.74	7.60	8.40
	90	10	16.45	1.70	7.90	9.30
10 X 10	85	15	17.40	1.68	7.00	8.70
10 A 10	80	20	18.24	1.63	6.04	7.90
	75	25	20.30	1.58	5.10	6.50
	70	30	20.88	1.55	4.67	6.35
	95	5	17.10	1.70	7.80	9.10
	90	10	17.10	1.68	8.90	10.25
15 X 15	85	15	18.10	1.64	7.30	8.60
13 X 13	80	20	18.56	1.60	6.10	7.80
	75	25	20.65	1.53	5.80	7.00
	70	30	21.24	1.51	4.56	6.50
	95	5	17.55	1.67	7.67	8.34
	90	10	18.24	1.65	8.45	9.13
20 X 20	85	15	18.93	1.62	7.13	8.10
20 A 20	80	20	18.98	1.58	6.08	7.57
	75	25	21.22	1.50	5.53	6.66
	70	30	21.56	1.50	4.52	6.12
	95	5	18.45	1.65	6.45	8.13
	90	10	18.95	1.63	6.56	8.96
25 X 25	85	15	19.01	1.60	5.34	7.78
23 A 23	80	20	19.68	1.56	5.43	7.12
	75	25	21.68	1.49	4.53	6.23
	70	30	21.98	1.49	4.25	6.03
	95	5	19.36	1.65	6.22	8.00
	90	10	19.55	1.61	6.31	8.46
30 X 30	85	15	19.14	1.55	5.49	7.53
30 A 30	80	20	20.44	1.53	4.88	6.58
	75	25	22.05	1.49	4.33	6.02
	70	30	22.12	1.48	4.01	5.89


The corresponding compaction curves for road subgrade soil are displayed in Fig.5.15 to Fig.5.19 and the CBR curves are plotted in Fig.5.20 to 5.29 respectively. Modified Proctor Compaction curves for soil scrap tyre mixture on the basis of Table 5.7, are illustrated below:

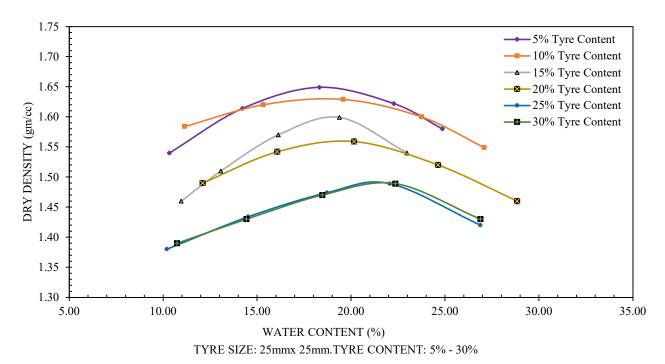

Fig. 5.15: Modified Proctor Compaction Curve for Original Soil mixed with Various Percentages of 10 mm x 10 mm tyre Scrap


Fig. 5.16: Modified Proctor Compaction Curve for original soil mixed with Various Percentages of 15 mm x 15 mm tyre Scrap

Fig. 5.17: Modified Proctor Compaction curve for original soil mixed with various Percentages of 20 mm x 20 mm tyre Scrap

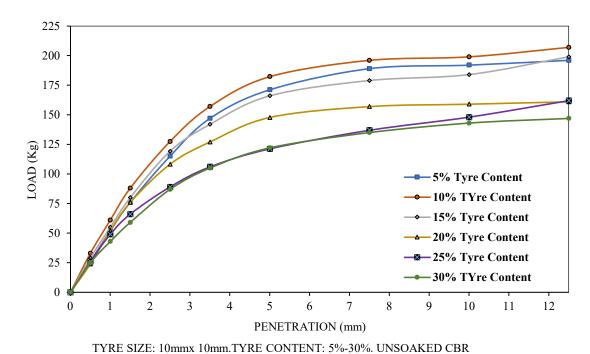


Fig. 5.18: Modified Proctor Compaction curve for original Soil mixed with various Percentages of 25 mm x 25 mm tyre Scrap



Fig. 5.19: Modified Proctor Compaction curve for original Soil mixed with various Percentages of 30 mm x 30 mm tyre Scrap

CBR curves for soil scrap tyre mixture on the basis of Table 5.7 are illustrated below-

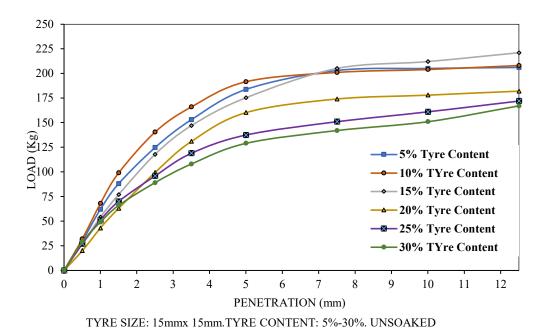
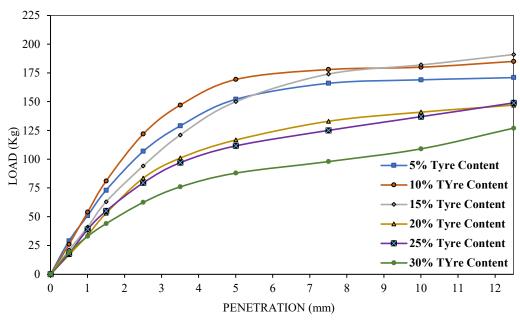


Fig. 5.20: Load vs. Penetration Curve for Original Soil Mixed with Different Percentages of 10 mm x 10 mm tyre scrap, in unsoaked condition



TYRE SIZE: 10mmx 10mm. TYRE CONTENT: 5%-30%. SOAKED

Fig. 5.21: Load vs. Penetration Curve for Original Soil Mixed with Different Percentages of 10 mm x 10 mm tyre scrap, in soaked condition

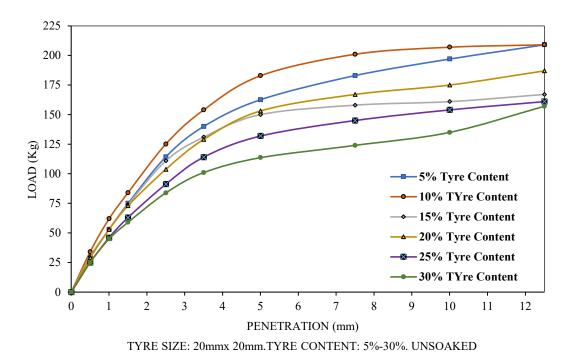
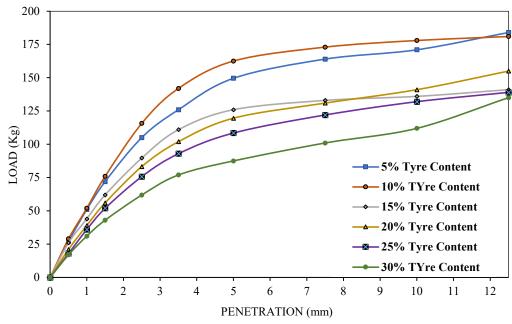


Fig. 5.22: Load vs. Penetration Curve for Original Soil Mixed with Different Percentages of 15 mm x 15mm tyre scrap, in unsoaked condition



TYRE SIZE: 15mmx 15mm. TYRE CONTENT: 5%-30%. SOAKED CBR

Fig. 5.23: Load vs. Penetration Curve for Original Soil Mixed with Different Percentages of 15 mm x 15mm tyre scrap, in soaked condition.

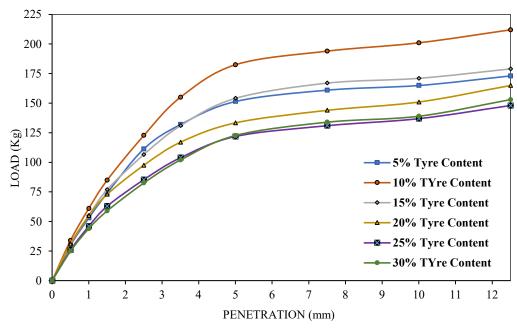


Fig. 5.24: Load vs. Penetration Curve for Original Soil Mixed with Different Percentages of 20 mm x 20mm tyre scrap, in unsoaked condition

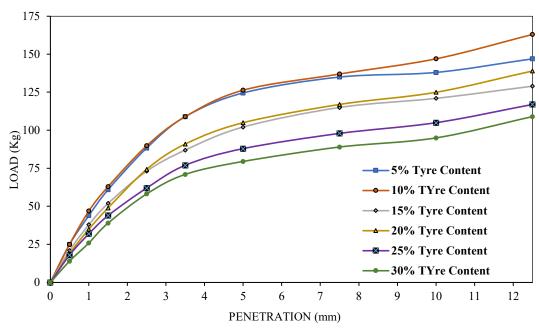

TYRE SIZE: 20mmx 20mm. TYRE CONTENT: 5%-30%.

Fig. 5.25: Load vs. Penetration Curve for Original Soil Mixed with Different Percentages of 20 mm x 20mm tyre scrap, in soaked condition

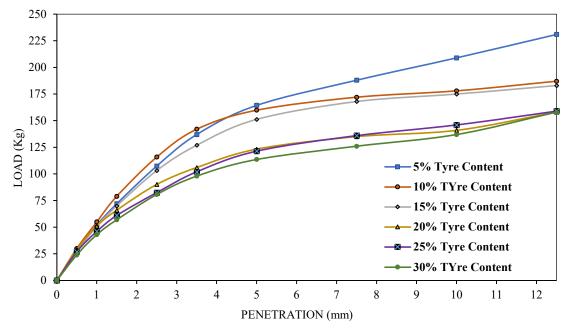

TYRE SIZE: 25mmx 25mm.TYRE CONTENT: 5%-30%. UNSOAKED

Fig. 5.26: Load vs. Penetration Curve for Original Soil Mixed with Different Percentages of 25 mm x 25mm tyre scrap, in unsoaked condition

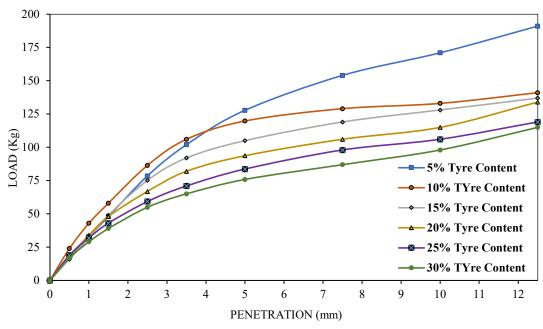

TYRE SIZE: 25mmx 25mm.TYRE CONTENT: 5%-30%. SOAKED CBR

Fig. 5.27: Load vs. Penetration Curve for Original Soil Mixed with Different Percentages of 25 mm x 25mm tyre scrap, in soaked condition

TYRE SIZE: 30mmx 30mm.TYRE CONTENT: 5%-30%.

Fig. 5.28: Load vs. Penetration Curve for Original Soil Mixed with Different Percentages of 30 mm x 30mm tyre scrap, in unsoaked condition

TYRE SIZE: 30mmx 30mm. TYRE CONTENT: 5%-30%. SOAKED CBR

Fig. 5.29: Load vs. Penetration Curve for Original Soil Mixed with Different Percentages of 30 mm x 30mm tyre scrap, in soaked condition

Based on Table 5.7, it is evident that the optimum CBR of 8.90 (Soaked) has been found at a tyre scrap size of 15mm x 15mm with a tyre percentage of 10%. This scrap tyre-mixed soil has been then further tested for bulk density (Y_b) and UU tests for future study. Mix soil sample have been collected from the respective chainage points as stated in Section 5.4.4.1 and have been prepared for UU test. The test results are presented in Table 5.8.

Table 5.8: UU and Bulk Density of soil mixed with tyre scrap of size 15mm x 15mm at a percentage of 10%

		Unconsolidated	Bulk Density	
Sl. No	Sample No.	Cohesion(C) (t/m²)	Angle of internal Friction(φ)	(Y _b) (t/m ³)
1	SAMPLE 1	4.62	8°	1.99
2	SAMPLE 2	4.50	8°	1.97
3	SAMPLE 3	4.58	8°	2.03
Sugge	sted values	4.50	8°	1.97

UU curves for mix soil samples have been illustrated in Annexure III

5.5 SUMMARY

This chapter has presented the results of various laboratory tests conducted to evaluate the properties of both original subgrade soil and soil mixed with shredded tyre scrap. Detail analyses of grain size distribution, Atterberg limits, compaction characteristics, and California Bearing Ratio (CBR) values have been included. The findings have been revealed significant improvements in the strength and compaction properties of the subgrade when mixed with specific proportions and sizes of tyre scrap. Additionally, the chapter has highlighted the optimal mix ratios that enhance subgrade performance, providing a solid foundation for the subsequent field studies and numerical analyses.

CHAPTER 6 FIELD TESTS AND ASSOCATED STUDY

6.1 OVERVIEW

This research work encompasses various field studies aimed to evaluate different aspects of pavement design. The principal objective of this study is to assess and compare the structural performance of two distinct pavement subgrade: one is existing road subgrade and another is subgrade modified with scrap tyres. To assess this performance by the study, the following field tests are considered: Traffic Survey along with Pavement Design and structural performance assessment of the subgrade using FWD and other allied works.

6.2 TRAFFIC STUDY AND PAVEMENT DESIGN

This study includes the collection of essential data about axle loads and traffic volume, which are crucial for pavement design. It comprises the following key components:

- i. Traffic Census.
- ii. Axle Load Survey.
- iii. Pavement Design.

Along the project route, a number of traffic data have been collected, such as axle load surveys and traffic volume counts. To obtain the basic traffic study parameters for this work, traffic analysis and axle load survey have been conducted to initiate the pavement design.

6.2.1 Traffic Census

In this present investigation, a traffic analysis has been performed by using an Auto Traffic Counter and Classifier (ATCC) with model KVC01 Hardware + Software made by Kotai, India. This involves employing automated devices to gather data regarding vehicular traffic patterns and volume on a specific section of the Jibantala-Taldi Road. These traffic counters have been strategically placed to provide valuable insights for transportation planning, road design, and traffic management. To collect data, a video camera has been

utilized to record various information such as vehicle counts, vehicle types (e.g., cars, trucks), speed, and vehicle classifications (e.g., passenger cars, buses, motorcycles). The video camera has been installed at chainage 11.50 Km to capture vehicle-related information. Data collection has taken place continuously over a period of seven (7) days. Following data collection, the ATCC has been employed to conduct traffic analysis, resulting in a classified traffic count presented in the form of a traffic census. This census aims to determine the annual variation of traffic over consecutive seven days along the Jibantala-Taldi Road section. The primary objective is to calculate the total average CVPD to assess traffic flow rates. A sevenday traffic study is conducted and is summarized in Table 6.1. This data is analyzed to inform the design of pavements in accordance with Clause 4.1.2 of IRC 37:2018. Detailed vehicle information Supported by daily traffic data have been provided in Annexure-IV. Graphical representations of ADT and PCU have been shown in Fig. 6.1 and Fig 6.2.

Table 6.1: Summary of Traffic census

Road: Jibantala bazar to Taldi bazar. Chainage:11.50 Km. Location: Taldi Direction of traffic: Up- From Jibantala to Taldi, Down- From Taldi to Jibantala Assumed year of traffic opening:2021

TRAFFIC DATA ANALYSIS

(Summary Sheet)

Road: Jibantala Bazar to Taldi bazar Road

11+50 km Location: Taldi

Direction of Traffic :	Up	From: Jibai	ntala			To: Tald	i				Down	From: Taldi				To: Jibanta	ala	
							Motorised V	ehicle							Noi	Non-motorised Vehicles		
			Fast Pas	senger				Fast	Goods		Slow	Goods						
Time Period	Two	Auto	Car / Icon /	Motorized -	1	Bus		Т	ruck		— Agriculture	Agriculture	Total Motorised	Animal / Hand	Cycle	Cycle	Others	Total Non- motorised
	Wheeler	Rickshaw	Van	Van	Mini / RTVs	Standard	LCV	2-Axle	3-Axle	MAV	Tractor	Tractor withTrailer	Vehicles	Drawn		Rickshaw		Vehicles
09.06.2019	992	44	511	26	0	0	90	184	64	13	75	223	2162	0	290	48	0	338
10.06.2019	955	61	573	24	0	0	100	206	46	7	94	202	2271	0	334	47	0	381
11.06.2019	945	92	612	35	0	0	85	205	66	6	77	165	2288	0	308	45	0	353
12.06.2019	997	64	594	32	0	0	94	208	43	9	81	163	2276	0	323	49	0	372
13.06.2019	874	46	483	45	0	0	80	198	65	8	64	190	2053	0	346	52	0	398
14.06.2019	922	59	498	47	0	0	96	176	53	9	50	162	2072	0	338	49	0	387
15.06.2019	870	50	498	47	0	0	106	191	60	11	63	180	2076	0	322	53	0	375
Average	936	59	538	37	0	0	93	195	57	9	72	184	2171	0	323	49	0	372
Equivalency Factor	0.5	1.0	1.0	1.0	1.5	3.0	1.5	3.0	3.0	4.5	1.5	4.5		6.0	0.5	2.0	4.5	
Daily PCU	468	59	538	37	0	0	140	586	170	41	108	826	2973	0	162	98	0	260
	Total	average Come	ercial Vehicle	per day (CVPD))	445	(195+57+9-	+184)										
	Total	Passenger Ca	r Unit (PCU)=			3233	(2973+260))										

GRAPHICAL PRESENTATION OF PCU (PASSENGER CAR UNIT) AND ADT (ANNUAL DAILY TRAFFIC)

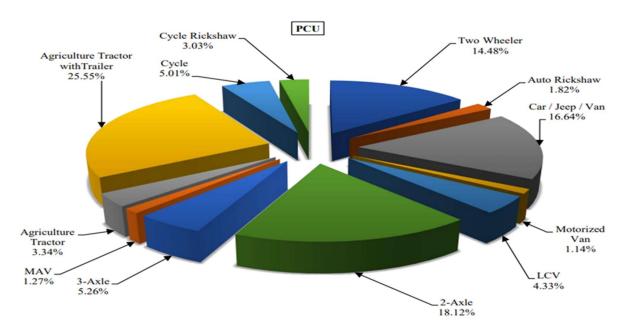


Fig. 6.1: Vehicle distribution chart as per PCU

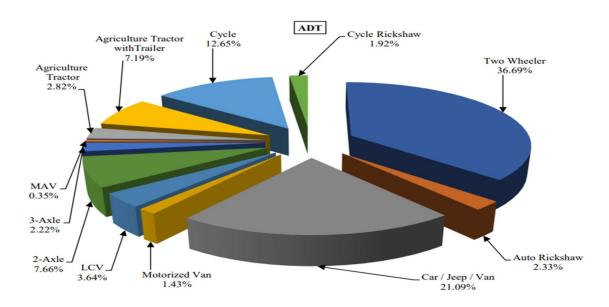


Fig. 6.2: Vehicle distribution chart as per ADT

6.2.2 Axle Load Survey

On regular working days, a continuous 24-hour axle load survey has been carried out at chainage 11.50 km on the project route. For this study, a portable axle weigh pad model no. SEPT-912 made by S.P Engineering & Technology, India, has been utilized to measure the load, as illustrated in Fig. 6.3 and Fig. 6.4.

Fig. 6.3: Axle load test

Fig. 6.4: Axle load test data collection

Vehicles have been randomly stopped and their loads on each axle were measured to obtain the loading pattern, and data are continuously monitored and recorded to find out the VDF. Detail VDF analysis for different types of vehicles along with summary of Axle Load Test results are depicted in Table 6.2, and the supporting vehicular load information to find out VDF are presented in Annexure-V. Finally, the VDF is computed in compliance with IRC 37:2018 clause 4.4 and is provided in Table 6.2.

Table 6.2: Summary of Axle load test results

Name of the Road: Jibantala Taldi Road, Location: Taldi Direction- Up: From Jibantala to Taldi, down: From Taldi to Jibantala Date:09-06-2019 to 10-06-2019 Chainage-11.500 Km

	Road: Location: Up: Down:	JIBANTA TALDI From From	JIBANT TALDI		to to Dat	TALDI JIBANT <i>A</i> e:	09-06-20	019 to 10	0-06-2019
Sl. No.	Type of Vehicle	No. of Samples	VDF	ADT	Total Damaging Effect	No. of Samples	VDF	ADT	Total Damaging Effect
1	LCV	10	2.51	47	117.97	15	2.418	46	111.24
2	TRAILER	20	2.514	92	231.29	20	1.52	92	139.84
3	2 - Axle Truck	20	6.7	98	656.6	20	5.125	97	497.13
4	3 - Axle Truck	8	7.95	29	230.55	7	7.582	28	212.3
5	MAV	3	9.65	5	48.25	3	8.562	4	34.25
Total		61	29.324	271	1284.66	65	25.208	267	994.77
Con	nbined VDF		4.	74			3.	.73	
Ad	opted VDF				4.7	74			

All of the needed traffic data has been collected from Jibantala-Taldi Road, and the pavement is designed for a 15-year term utilizing IRC 37:2018, using these data along with effective CBR. Same traffic data has been considered to design pavement of tyre scrap mix modified subgrade.

6.2.3 Pavement Design

To accomplish the primary objective of the research IIT PAVE software has been used to determine the pavement thickness for both of proposed subgrade consisting of original soil and tyre scrap mixed soil sequentially. The multi-layer analysis program, IIT PAVE software

is utilized to analyse flexible pavement, aiming to ascertain stresses and strains at critical pavement points (Harish, 2017). The strength properties of the pavement materials need to be taken into consideration when designing a flexible pavement to determine the thickness of each layer. This can be done by using the CBR value as well as traffic data, and by using IIT PAVE software which computes the actual value of strains coming on the pavement due to wheel load. The software calculates various functional parameters, such as stresses, strains, and deflections, under the assumption that the pavement behaves as a linear elastic layered system. The software may be used to calculate the strains and stress parameters for both vertical compressive strain and horizontal tensile strain, which are crucial mechanistic aspects to check for sub-grade rutting and bottom-up cracking of bituminous layers. In general, the design procedure involves using the IIT-PAVE program to ascertain the component layer thicknesses, derived from the strength characteristics of the pavement materials, in accordance with IRC 37:2018.

6.2.3.1 Determination of pavement thickness by IITPAVE using original soil as subgrade

The following steps have been utilized to ascertain the thickness of flexible pavement: -

i. Calculation of Design Traffic

The traffic design has been calculated using equation 4.5 from IRC 37:2018. This equation estimates the traffic design by considering the projected number of standard axles that the pavement will encounter over its design life period. The equation is as follows:

$$N_{des} = \frac{365[(1+r)^n - 1] \times A \times D \times F}{r}$$
 (6.1)

Where, N_{des} = Cumulative number of standard axles to be carried during the design period of 'n' years,

A = Initial traffic (CPVD) in the year of completion of construction.

D = Lane distribution factor.

F = Vehicle damage factor (VDF),

n=Design period (years).

r = Annual inflation rate of commercial vehicles in decimal.

The expected traffic in the completion year of a construction project can be calculated using the equation referenced in Equation 4.6 of IRC37:2018.

$$A = P(1+r)^{x}$$
.....(6.2)

Where, P = Count of commercial vehicles per day as per the previous record,

x = difference in the number of years between the last record and the year of termination of construction,

The input parameters for determining the design traffic of Jibantala-Taldi Road in the present study have been provided in Table 6.3.

Table 6.3: Input Parameters for design traffic calculation of Jibantala-Taldi Road

Sl. No.	Description of input parameters	Particulars	Reference
1	CVPD During Census (P)	445	Table 6.1
2	Year of Traffic Census	2019	Table 6.1
3	Assume the Year of Opening Traffic	2021	Table 6.1
4	Difference in the number of years (x)	2	2021-2019
5	Considered Rate of Increment (r)	5%	Clause 4.2.2 of IRC37:2018
6	CVPD at Opening year of Traffic	490.61	From eqn. 6.2
7	Lane Distribution Factor (D)	0.75	Clause 4.5.1.2 of IRC37:2018
8	VDF	4.74	Table 6.2
9	Design Life	15 Yrs.	Clause 4.3.2 of IRC37:2018
10	Type of pavement considered	Flexible	According to the project

From equation 6.2,

$$A = 445(1 + 0.05)^{2} = 490.61 \text{ CVPD}.$$

The design traffic has now been calculated by putting these numbers into equation 6.1 and taking into account the increasing number of standard axles that will be accommodated over a 15-year design period-

$$N_{des} = \frac{365[(1+0.05)^{15}-1]\times490.61\times0.75\times4.74}{0.05} = 13.74 \text{ MSA}$$

ii. Analysis based on performance criteria of pavement

The following performance criteria for flexible pavement design are suggested by IRC: 37-2018 recommendations:

A. Subgrade Rutting Performance Criteria

When a mean rut depth of 20 mm or greater is recorded over the wheel tracks, critical rutting conditions are considered. Clause 3.6.1 of IRC 37:2018 discusses and provides empirical equations to calculate the sub-grade rutting life. The guidelines outlined in clause 3.7 of IRC 37:2018 recommend using the performance equation for subgrade rutting (equation 6.3) with 80% reliability, particularly when designing for traffic volumes less than 20 MSA.

$$N_R = 4.1656 \times 10^{-08} \left[\frac{1}{\epsilon_*}\right]^{4.5337}$$
 (for 80 % reliability)(6.3)

where, N_R = subgrade rutting life. ε_v = Maximum vertical compressive strain at the top of the sub grade.

B. Fatigue Cracking Criteria for Bituminous layer

A section of pavement is deemed to be in a critical or failure condition if fatigue cracking has developed and affects 20% or more of the paved surface area. The fatigue life of the bituminous layer can be determined by using clause 3.6.2 of IRC 37:2018. The guidelines outlined in clause 3.7 of IRC 37:2018 recommend using the performance equation for fatigue (equation 6.4) with 80% reliability, especially when designing for traffic volumes less than 20 msa.

$$N_f \, = \, 1.6064 \, \times C \times \, 10^{-04} \big[\frac{1}{\epsilon_t}\big]^{3.89} \times \big[\frac{1}{M_{Rm}}\big] (for \, 80 \, \% \, reliability)......(6.4)$$

Where, C= adjustment Factor= 10^{M} and M= $4.84((V_{be}/V_a+V_{be})-0.69))$,

 V_a = per cent volume of air void in the mix used in the bottom bituminous layer,

 V_{be} = per cent volume of effective bitumen in the mix used in the bottom bituminous layer,

 N_f = fatigue life of bituminous layer,

 $\varepsilon_t = \max$ horizontal tensile strain at the bottom of the bituminous layer,

 M_{Rm} = resilient modulus (MPa) of the bituminous mix used in the bottom Bituminous layer, The input parameters necessary for analysing the performance criteria of bituminous pavement are outlined in Table 6.4.

Table 6.4:Input parameters for the analysis of pavement performance criteria for normal soil and scrap tyre modified soil

Sl. No.	Description of input parameters	Particulars	Reference
1	Air voids (V _a)	3.50%	Clause 12.3 of IRC37:2018
2	Binder content (V _{be})	11.50%	Clause 12.3 of IRC37:2018
3	Resilient Modulus of Bitumen (Mr)	3000 mpa	Table 9.2 of IRC37:2018
4	CBR of material under Subgrade	3.36%	Clause 12.3 of IRC37:2018
5	Sub Base - 1 (Separation layer)	GSB - Gr V	Clause 7.2.1 of IRC37:2018
6	Sub Base - 2 (Drainage layer)	GSB - GrIII	Clause 7.2.1 of IRC37:2018
7	Base – 1	WMM	Clause 7.2.1 of IRC37:2018
8	Binder Course	DBM	Clause 7.2.1 of IRC37:2018
9	Wearing Course	BC	Clause 7.2.1 of IRC37:2018
10	Ambient Temperature	35° C	Pavement Temperature
11	Design Traffic (Rutting life for granular layer)	13.74 MSA	Equation 6.1
12	Design Traffic (Fatigue life for bituminous layer)	13.74 MSA	Equation 6.1

By using the values from Table 6.4 the following strain values can be determined for both normal and tyre modified soil subgrade-

- a) Maximum vertical compressive strain at the top of the sub grade (ε_v) = 0.0006276 (from equation 6.3).
- b) Maximum horizontal tensile strain at the bottom of the bituminous layer(ϵ_t) = 0.0003325 (from equation 6.4).

iii. Subgrade CBR value

The soaked CBR for normal soil subgrade of Jibantala-Taldi Road is 3.36, while the scrap tyre mixed soil yields a CBR value of 8.90. It is worth noting that incorporating 15mm×15mm tyre scraps with a thickness of 2mm to 3mm into the original soil at 10% of its dry weight produces a modified CBR value of 8.90.

iv. Pavement thickness analysis trial by using IIT PAVE software

Numerous functional characteristics, including stresses, strains, and deflections, are calculated assuming the pavement to be a linear elastic layered structure. The IIT-PAVE software is useful for planning and analysing flexible pavements and can be used to analyse linear elastic layered systems. The vertical compressive strain and horizontal tensile strain are critical mechanistic factors to assess subgrade rutting and bottom-up cracking of bituminous layers, and to evaluate the satisfactory performance of flexible pavements, this method is employed. Pavements can be designed utilizing any combination of inputs through this approach. The program is used to calculate these stresses and strains parameters. The initial parameters needed for pavement design have been established in the context of this work. The selection of a suitable pavement thickness is of utmost importance, and it can be achieved as per the IRC guidelines. Figure 12.1 of IRC 37:2018 provides a range of trial pavement thicknesses for 5% CBR. In the present study, Fig. 6.5 represents the trial pavement thickness chart for 5% CBR, following IRC 37:2018. This chart can serve as a reference for categorizing the thickness components of bituminous and granular layers obtained from IITPAVE analysis. Using IIT PAVE software, trial pavement thickness research has been conducted to assess the rutting strain within the subgrade and the tensile strain at the interface between the bituminous and granular layers with an 80 percent reliability. The outcomes of the analysis are shown in Table 6.5. Figures 6.6 and 6.7, respectively, illustrate a standard input and output interface of an IITPAVE study for a typical soil subgrade. All of the previously listed parameters in Table 6.4 are inputs for the software

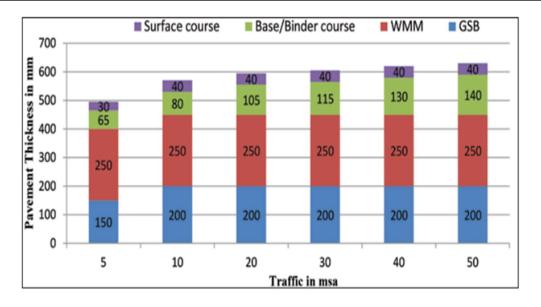


Fig. 6.5: Trial pavement thickness for 5% CBR. (After IRC 37:2018)

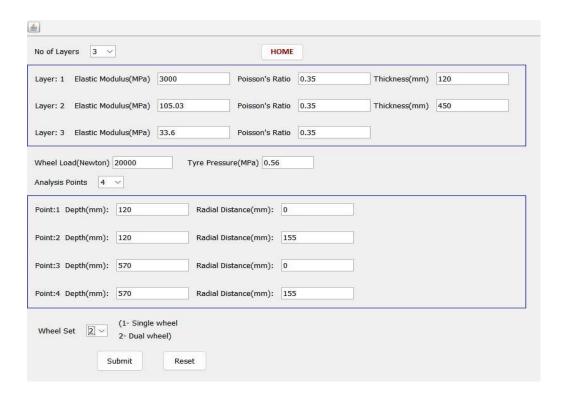


Fig. 6.6: Typical input window of IITPAVE analysis for normal soil subgrade

Table 6.5: Trial pavement thickness analysis for normal soil subgrade by IITPAVE

Trial	Thickness of	Thickness of	of	CBR	Resilient	Resilient	Resilient	Calculated horizon & vert strai	ical	Calculated maxi horizontal tensile stra	strain & vertical	
No.	bituminous layer(mm)	granular layer(mm)	Value	modulus (Subgrade)	modulus (Granular)	modulus (Bituminous)	Calculated tensile strain at bottom of bituminous layer	Calculated vertical strain on subgrade	Maximum tensile strain at the bottom of bituminous layer	Maximum vertical strain on subgrade	Remarks	
1	105	440	3.36%	33.60	103.97	3000	0.3476 x 10 ⁻³	0.7007 x 10 ⁻³	0.3325 x 10 ⁻³	0.6276 x 10 ⁻³	Design unsafe	
2	110	450	3.36%	33.60	105.03	3000	0.3310×10^{-3}	0.6599 x 10 ⁻³	0.3325 x 10 ⁻³	0.6276 x 10 ⁻³	Design unsafe	
3	120	450	3.36%	33.60	105.03	3000	0.3048×10^{-3}	0.6168 x 10 ⁻³	0.3325 x 10 ⁻³	0.6276 x 10 ⁻³	Design safe	

After several trial runs, the safe thickness has been obtained from Table 6.5. Specifically, in trial 3, the bituminous layer has a thickness of 120mm, while the granular layer has a thickness of 450mm.

Fig. 6.7: Typical output window of IITPAVE analysis for normal soil subgrade

Using the aforementioned data, a standard pavement cross-section is provided in Figure 6.8.

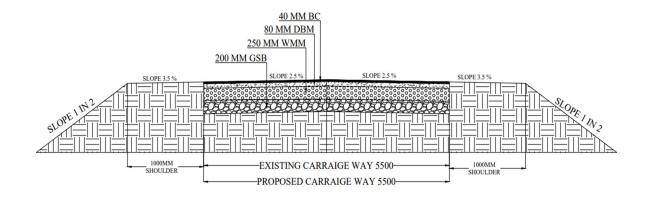


Fig. 6.8: Typical Cross Section of pavement for original Soil Subgrade of CBR 3.36

6.2.3.2 Determination of pavement thickness by IITPAVE using shredded tyre scrap mixed soil as subgrade

To determine the safe thickness for shredded tyre scrap mixed soil as subgrade, the peak CBR value has been considered within the investigation. The CBR value obtained is 8.90 for a mixture containing 10% tyre scrap with a size of 15mm X 15mm. The same equations and methods described earlier (section 6.2.3.1) have been utilized to determine the thickness using IIT PAVE trial method. All parameters, including traffic data, design traffic, and performance criteria, have remained unchanged. For the IIT PAVE design, multiple trial runs have conducted to achieve a pavement design that is both safe and cost-effective. In this case, three (3) test iterations have been conducted, and the findings are delineated in Table 6.6. Figure 12.5 of IRC 37:2018 provides a range of trial pavement thicknesses for 9% CBR. In the present study, Fig. 6.9 represents the trial pavement thickness chart for 9% CBR, following IRC 37:2018. This chart can serve as a reference for categorizing the thickness components of bituminous and granular layer properties derived from IITPAVE analysis.

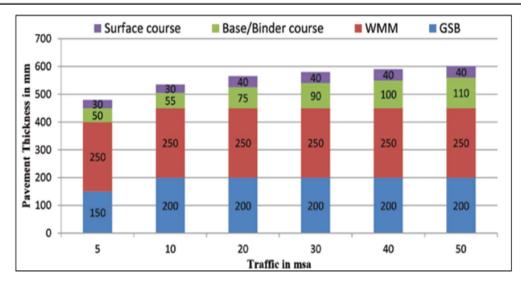


Fig. 6.9: Trial pavement thickness for 9% CBR. (After IRC 37:2018)

Using IIT PAVE software, trial pavement thickness research has been conducted to assess the rutting strain in the subgrade and the tensile strain at the interface between the bituminous and granular layers with an 80 percent reliability. The findings of the analysis are depicted in Table 6.6. Figure 6.10 and Figure 6.11, respectively, depict the standard soil subgrade input and output windows for an IITPAVE study. The input for the software includes all of the parameters described earlier.

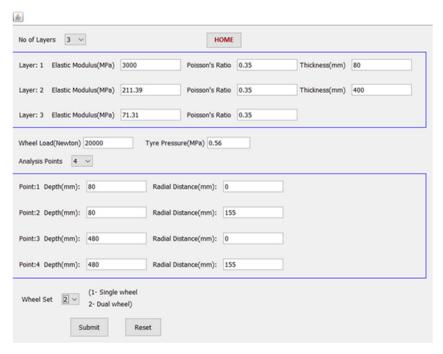


Fig. 6.10: Typical input window of IITPAVE analysis for tyre scrap modified soil subgrade.

Table 6.6: Trial pavement thickness analysis for tyre scrap modified soil subgrade by IITPAVE

	Thickness Thickness		Chickness				Calculated horizonta vertic strain from HTP	al	Calculated maxin horizontal tensile s strai	train & vertical	
Trial no.	of bituminous layer	of granular layer	CBR Value	Resilient Modulus (Subgrade)	Resilient Modulus (Granular)	ulus Modulus Calculated tensile		Calculated Vertical Strain at Subgrade	Maximum tensile strain at the bottom of the bituminous layer	Maximum vertical strain on subgrade	Remarks
1	75	340	8.90%	71.31	196.48	3000	0.3235 x 10 ⁻³	0.6194 x 10 ⁻³	0.3325 x 10 ⁻³	0.6276 x 10 ⁻³	Design unsafe
2	80	340	8.90%	71.31	196.48	3000	0.3128 x 10 ⁻³	0.5992 x 10 ⁻³	0.3325 x 10 ⁻³	0.6276 x 10 ⁻³	Design unsafe
3	80	400	8.90%	71.31	211.39	3000	0.2963 x 10 ⁻³	0.4915 x 10 ⁻³	0.3325 x 10 ⁻³	0.6276 x 10 ⁻³	Design safe

After several trial runs, the safe thickness has been obtained from Table 6.6. Specifically, in trial 3, the bituminous layer has a thickness of 80mm, while the granular layer is 400 mm thick.



Fig. 6.11: Typical output window of IITPAVE analysis for tyre scrap modified soil subgrade

Using the aforementioned data, a standard pavement cross-section is provided in Fig.6.12

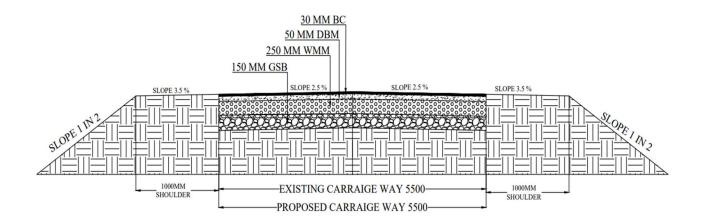


Fig. 6.12: Typical Cross Section of pavement for scrap tyre modified subgrade of CBR 8.90

6.3 STRUCTURAL PERFORMANCE ASSESSMENT STUDY OF SUBGRADE

This step involves the execution of FWD tests and DCPT on both pavement types to evaluate their structural performance. This phase involves preparation of a new Pavement with scrap tyre-modified Subgrade.

By conducting these field studies and assessments, the study aims to offer valuable insights into the performance along with feasibility of utilizing scrap tyre-modified subgrades in pavement construction. In the current study, a FWD has been utilized to evaluate pavement performance. The FWD investigation initially encompasses the full 12.45 km length of an existing road. This comprehensive FWD analysis aims to understand the deflection patterns of the subgrade. Subsequently, a focused study is conducted on a specific 30m segment of the road, between 3.00 km and 3.03 km along the Jibantala-Taldi Road. This section has been selected because it uniquely conformed to the designed pavement cross-section and smooth surface which has a thickness of 570 mm as outlined in Section 6.2.31 of the thesis report. And also, this segment having CBR value at 3.00 km, which was 3.39 as per laboratory tests.

This value is remarkably similar to the intended design value of 3.36, ensuring that the segment is representative for subgrade strength of the entire road. To enhance the study, an additional pavement section, identical in length (30m) and width (5.5m), has been constructed at a distance of 20m from 7.0km chainage point of the existing road. Both the pavement sections have a subgrade depth of 500mm. This new section features a subgrade modified with tyre scrap. Comparative analyses have been performed on both the existing and the newly constructed pavements to evaluate their performances. A detailed methodology for constructing the new pavement is presented below.

6.3.1 Pavement Preparation for Scrap Tyre-Modified Subgrade

To fulfil the main goal of the study, a new pavement of length 30m and width 5.5m has been constructed near the Jibantala-Taldi Road, located within a 20m distance from the existing road. The pavement design calculations (Table-6.6) have computed a safe thickness of 480mm for a modified CBR of 8.90. According to Table-5.7, it has been found that incorporating 10% scrap tyre material, with a size of 15mm x 15mm, mixed with 90% original soil having an approximate CBR of 3.36, results in a combined CBR of 8.90. The following procedures have been established to develop the pavement. Fig. 6.13 represents the site for pavement preparation.

Fig. 6.13: Site before model pavement preparation

6.3.1.1 Preparation of subgrade

To maintain uniformity in the CBR, which is targeted at 3.36, soil samples have been collected from various segments of the Jibantala-Taldi Road where the CBR values approximated 3.36. The subgrade preparation with tyre scrap mixed soil has been executed following the steps described below:

i. Calculation of required soil and tyre scrap in subgrade: To construct the new pavement, the specifications for the subgrade dimensions have been specified as 500mm in depth, 5.5m in width, and 30m in length. Thus, the calculated volume of the Subgrade (V) is $(0.500 \times 5.5 \times 30.0) = 82.5 \text{ m}^3$.

According to Table 5.7 of Chapter 5, the optimum CBR of 8.90 for scrap tyre-modified soil in soaked conditions is observed with an OMC of 17.10% and a MDD of 1.68 g/cc.

Hence, the total dry weight of soil and tyre, required to make the subgrade = (1.68×82.5) Ton = 138.6 Ton

Given that the scrap tyre content constitutes 10% of the dry weight of the soil, the calculation follows as:

Dry weight of soil + 10% of dry weight of soil (Scrap tyre) = 138.6 tons.

Hence, the total dry weight of soil (W_s) is (138.6/1.1) = 126 tons, and the total weight of scrap tyre is=138.6-126= 12.6 tons.

ii. Calculation for bulk volume of soil used in subgrade: Soil samples are collected from specified chainages as detailed in Section 8.3, mixed, and then dumped at the site for subgrade preparation. The required scrap tyre has been also dumped at the site. The moisture content (w) of the blended soil is found to be 19.23% (according to Table 5.5 of Section 5.4.4.1), and the Bulk Density (γ_b) is 2.02 gm/cc. To calculate the amount of bulk soil needed to achieve the required dry soil weight, the following calculation is made,

Here, w= W_w/W_s = 0.192, (Where W_w =Weight of water and W_s =Weight of solid= 126 Ton) Or, $1+W_w/W_s=1+0.192$ Or, $W_w + W_s / W_s = 1.192$

Hence, W / $W_s = 1.192$ (where W= $W_w+W_{s=}$ Bulk Weight of mixed soil at Moisture Content(w) of 19.23%)

W / 126 = 1.192

Hence, W = 150.23 Ton

Total Bulk Volume = 150.23 / 2.02 = 74.37m³

Therefore, a total bulk volume of 74.37m³ of soil, can produce 126 tons of dry soil.

iii. Mixing of soil and scrap tyre for subgrade construction: This 74.37m³ of soil, mixed uniformly with 12.6 tons of scrap tyre, to construct pavement of 500mm deep subgrade, 30m length and 5.5m of width. Bulk soil samples have been collected from various points (chainages) along the existing road at 3.00 km, 6.00 km, 7.00 km, 11.00 km, 12.00 km, and 12.45 km, and have been transported to the site using small vehicles. Fig 6.14 shows scrap tyre mixing with subgrade soil.

Fig. 6.14: Scrap tyre mixing with subgrade soil

iv. Subgrade Preparation Process: The subgrade has been compacted manually by ramming and mechanically by using a roller, dividing the total 500mm thickness into three

parts (150mm + 150mm + 200mm). Table 6.7 outlines the soil and scrap tyre requirements for each layer.

Table 6.7: Soil and scrap tyre requirements for each layer

Depth of Sub Grade	Requirement of soil	Requirement of Scrap tyre
150mm	22.31m ³	3.78 T
150mm	22.31m ³	3.78 T
200mm	29.75m^3	5.04 T

By keeping the same soil parameters and calculation guidelines for a pavement with a length of 1 km, width of 5.5 m, and a subgrade depth of 500 mm, the calculated volume of the Subgrade (V) is $(0.500 \times 5.5 \times 1000) = 2750 \text{ m}^3$.

The required amount of bulk soil for the modified pavement will be 2478 m³ and the scrap tyre amount will be 420 tons to achieve the same condition of obtaining a modified CBR of 8.90 from a normal soil CBR of 3.36. Fig. 6.15 shows the subgrade preparation at site.

.

Fig. 6.15: Preparation of subgrade

6.3.1.2 Preparation of Base and Subbase

i. Granular Sub-Base (GSB) of thickness 150mm: -

The sub-base materials consist of natural sand, moorum, gravel, laterite, kankar, brick metal, crushed slag, crushed stone, reclaimed crushed concrete/reclaimed asphalt pavement, riverbed material, or combinations thereof, tailored to meet grading and physical standards. Granular sub-base (GSB) must adhere to the MORTH Road and Bridge Specifications. The composition of a GSB layer for 1 m³ is as follows:

- $0.2560 \text{ m}^3\text{ of } 37.50 \text{mm} \text{ stone chips.}$
- 0.2560 m³ of 22.40mm stone chips.
- 0.1920 m³ of 11.20mm stone chips.
- $0.3200 \text{ m}^3 \text{ of } 5.60 \text{mm} \text{ stone chips.}$
- 0.2560 m³ of Sand.

GSB volume needed for 30m of road, width 5.5m and GSB thickness $0.150m=(30 \text{ x } 5.50 \text{ x} 0.15) = 24.75 \text{ m}^3$

Based on this volume, the required materials have been collected to prepare the GSB.

ii. Wet Mix Macadam (WMM) of thickness 250mm: -

This procedure entails supplying, distributing, compacting, and laying graded stone aggregate in accordance with WMM specifications. It also includes screening granular and aggregate materials, pre-mixing them at Optimum Moisture Content (OMC) in the wet mix plant, transporting the blended material to the site, and spreading it in consistent layers. According to Clause 406 of the Specifications for Road & Bridge Works of the Ministry of Road Transport & Highways (5th Revision), the composition of a GSB layer for 1 m³ is as follows:

- 0.3960 m³ of 26.50mm stone chips.
- 0.2640 m³ of 13.20mm stone chips.
- $0.3564 \text{ m}^3 \text{ of } 5.60 \text{mm} \text{ stone chips.}$
- 0.3036 m³ of stone dust

WMM volume needed for 30m of road, width 5.5m and WMM thickness $0.150m = (30 \text{ x } 5.50 \text{ x } 0.25) = 41.25 \text{ m}^3$

Based on this volume, the required materials have been collected to prepare the WMM. Fig. 6.16 shows the subbase preparation at site.

Fig. 6.16: Preparation of subbase layer

ii. Dense Bituminous Macadam (DBM) of thickness 50mm: -

The preparation of DBM entails supplying and deploying dense bituminous macadam through a Hot Mix Plant capable of manufacturing an average of 75 tonnes of material per hour. The plant uses coarse, fine, and filler aggregates as well as bituminous binder in accordance with the design Job Mix Formula that complies with the Marshall Method specifications. Additionally, chip cleaning and screening are done, and the plant creates a uniform and high-quality mix that ensures all of the mineral aggregate particles are coated evenly. The heated mixture is subsequently conveyed to the construction site, where the blended materials are placed at the specified temperature. In accordance with Clause 505 of the Specifications for Road & Bridge Works of the Ministry of Road Transport & Highways (5th Revision), composition of DBM layer for 1 m3 as follows-

- 0.2197 m3 of 26.50mm stonechips.
- 0.2197 m3 of 22.40mm stonechips
- 0.3662 m3 of 11.20mm stonechips
- 0.2197 m3 of 5.60mm stonechips
- 0.4394 m3 of stone dust and grit.
- 44kg of lime stone dust.
- 111kg of Bitumen 30grade

DBM volume needed for 30m of road, width 5.5m and DBM thickness 0.05m = (30 x 5.50 x 0.05) = 8.25 m3.

Based on this volume, the required materials have been collected to prepare the DBM. Fig. 6.17 shows the surface layer preparation at site.

Fig. 6.17: Preparation of surface layer

iii. Bituminous Concrete (BC) of thickness 30mm: -

In this process, bituminous concrete is provided and laid using a Hot Mix Plant incorporating coarse aggregates, fine aggregates, filler materials, and bituminous binder that meets the necessary specifications. Additionally, chips are screened, cleaned, and a uniform and high-quality mix is prepared in the Hot Mix Plant, guaranteeing that all of the mineral aggregate

particles are coated evenly. The heated mixture is then conveyed to the construction site, where the blended materials are laid at a pre-determined temperature. In accordance with Clause 507 of the Specifications for Road & Bridge Works of the Ministry of Road Transport & Highways (5th Revision), composition of BC layer for 1 m3 as follows-

- 0.2959 m3 of 13.20mm stonechips.
- 0.2959 m3 of 11.20mm stonechips.
- 0.2959 m3 of 5.60mm stonechips.
- 0.5919 m3 of stone dust and grit.
- 45kg of lime stone dust.
- 137kg of Bitumen 30grade.

BC volume needed for 30m of road, width 5.5m and DBM thickness 0.03m=(30 x 5.50 x 0.03) = 4.95 m3.

Based on this volume, the required materials have been collected to prepare the BC. Fig. 6.18 shows the finished pavement at site.

Fig. 6.18: Finished pavement under FWD study

6.3.2 FWD Study on Pavement

The FWD is a key NDT equipment for evaluating pavement strength, capable of calculating the elastic modulus of individual layers (Walubita et al. 2011 and Solanki et al. 2014). In the current study, the primary objective is to conduct a comparative analysis between the subgrade deflection and elastic modulus of existing pavement and pavement modified with scrap tyre materials. Transportation engineers typically employ FWD measurements for overlay design purposes. In order to conduct the FWD survey on the project road, GEOTRAN FWD, which is a Fully-Automatic Trailer-mounted system was employed as shown in Fig. 6.19. This specialized FWD system has the capability to apply a loading force within the range of 0-100 kN, allowing it to effectively simulate various types of vehicles loads on the pavement surface.

.

Fig. 6.19: GEOTRAN FWD operation under process

6.3.2.1 Locations of FWD Test

The focus is on the 3.00 km to 3.03 km stretch of Jibantala-Taldi Road, chosen for its smooth surface and uniform cross-section, which is ideal for FWD tests. Both the modified and

existing pavements, each 30.00m in length, have been divided into four equal segments of 10.0m for testing, allowing for direct performance comparison. This methodological approach has ensured a precise evaluation of the impact of tyre scrap on pavement quality. Table 6.8 shows the different chainage points under study.

Table 6.8: Test points and Chainages

CL N	Pavement	Selected Pavement Chainage		FWD test points				
Sl. No	type	(m) for FWD test	1st point	2nd point	3rd point	4th point		
1	Existing pavement	3.00×10^{3} m to 3.03×10^{3} m	At 3.00×10 ³ m	At 3.01×10 ³ m	At 3.02×10 ³ m	At 3.03×10 ³ m		
2	Modified pavement	0.00 m to 30.00m	At 0.00m	At 10.00m	At 20.00m	At 30.00m		

6.3.2.2 Details of FWD equipment

The equipment is equipped with a backup battery and is conveniently trailer-mounted, complete with all necessary accessories for pavement evaluation. The following describes the primary parts of the GEOTRAN FWD system.:

i. The Vehicle: To accommodate the whole FWD system, including the hydraulic and electrical connections, the car has undergone unique modifications. These adjustments are made to make room for necessities like working people, electronic circuits, and personal computers. To extract electricity from the car's engine for the purpose of charging the batteries, an alternator is integrated. The computer and electronic circuitry are powered by a sine wave inverter. A 550 mm diameter hole is created in the floor of the vehicle to facilitate the passage of the loading plate and falling mass during the FWD testing process. To warn other drivers during testing, especially at night, the vehicle also has flashing lights installed.

ii. Supporting Frame: A sturdy rectangular frame is constructed and firmly attached to the floor of the vehicle to protect the FWD system from harsh weather conditions.

iii. Mass and Rubber Pad Arrangement: The FWD system includes a two-stage cylinder, with its base secured to the upper horizontal element of the supporting frame. The cylinder's bottom flange is where the loading plate assembly is attached. To measure load impact, a load sensor with a capacity of 100 kN, known as the Strain Impact Sensor, is positioned on the loading plate assembly. This assembly comprises a 300 mm diameter bottom plate with a rubber sole affixed to its underside to ensure the even distribution of the load during testing.

iv. Loading Plate Assembly: A universal joint is installed at the base of the top plate of the assembly to provide flexibility and ensure uniform placement on the pavement. To house the central geophone, a casing is constructed.

v.Geophone Arrangement: To gauge the deflections of the pavement surface, seven geophones are situated within a geophone frame at radial intervals of 0, 300, 600, 900, 1200, 1500, and 1800 from the center of the loading plate. The loading plate assembly contains the first geophone. The hydraulic system moves the geophone frame vertically and straightens and folds it. Moreover, this instrument mostly exceeds or matches all the criteria given in the IRC: 115- 2014.

6.3.2.3 Testing procedure & frequency

The detailed test methodology and the procedure have been described in IRC: 115-2014 "Guidelines for Structural Evaluation and Strengthening of Flexible Road Pavements Using Falling Weight Deflectometer (FWD) Technique". However, as per the requirement, the sampling procedure has been customized in this project. In adherence to the same, structural evaluation of the existing 'pavement and subgrade system' by measuring its response in terms of deflection has been carried out using FWD for the project roads in the month of January 2022 (16/01/2022 to 17/01/2022). In the present work, FWD is applied to measure subgrade deflection of the pavements, in line with the procedures outlined in Section 3 of IRC 115: 2014. This analysis involves testing at various locations as described in Table 6.8. For both pavements the intermediate distance for testing is 10.0m, for the newly constructed modified

pavement, the entire length of 30.0m is partitioned into four (4) segments, each measuring 10.0m in length. Using a load of 40 kN or a contact pressure of 565.9 kPa, Maree and Bellekens (1991) and Maree and Jooste (1999) analysed deflection bowls obtained during FWD testing. They concentrated on a range of common pavement structures seen in South Africa, such as bituminous, cemented base pavements, and granular pavements. High-density (FWD) surveys covering the outside and inside wheel tracks of the slow, fast, and shoulder lanes on various roadways have been conducted at intervals of 5.0m to 10.0m. After that, elastic moduli have been ascertained using back-analysis techniques that considered the known layer thicknesses.

6.3.2.4 Testing Equipment:

The equipment used for the testing is-

- i. The GEOTRAN FWD Trailer Mounted FWD is equipped with one loading plate and seven geophones positioned at intervals of 0, 300, 600, 900, 1200, 1500, and 1800 mm from the centre of the loading plate.
- ii. Towing Vehicle.
- iii. GPS, Air Temperature and Pavement Surface Temperature sensors as part of the FWD instrument.
- iv. Red flags and red cones and flashing lamps for traffic arrangement.

6.3.2.5 Pavement composition details:

The existing details of the pavement crust have been furnished and the pit results have been presented in Table 6.9 for both types of pavements. Further analysis of the FWD data has been conducted based on these pit results.

Table 6.9: Crust thickness for both the pavements

Category	Layers	Pavement thickness of existing road Subgrade	Pavement thickness for scrap tyre modified subgrade	
Bituminous	BC	40mm	30mm	
Layer	DBM	80mm	50mm	
Granular	WMM	250mm	250mm	
layer	GSB	200mm	150mm	
Total thicknes	S	570mm	480mm	

6.3.2.6 CBR determination for FWD

This study has been divided into field and laboratory components to examine and compare the performance between the existing and modified pavements. In the current study, a specific 30.0 m stretch of the Jibantala-Taldi Road, precisely between the 3.00 km to 3.03 km chainage has been selected. This segment has been selected due to its CBR value at 3.00 km, which was 3.39 as per laboratory tests. This value is remarkably similar to the intended design value of 3.36, ensuring that the segment is representative for subgrade strength of the entire road. The modified model pavement length is 30.0m, hence for further study, 30m length has been considered for the old pavement also. This methodological approach ensures a precise evaluation of the impact of tyre scrap on pavement quality. Table 6.10 shows the different chainage points under study.

Table 6.10: CBR Test points and chainage

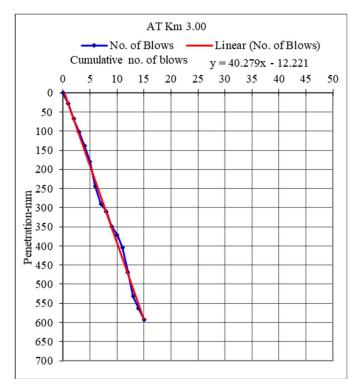
	Pavement type	Selected Chainage		Test points				
Sl. No		(m) for/Lab test and DCPT test	1 st point	2 nd point	3 rd point	4 th point		
1	Existing pavement	3.00×10^{3} m to 3.03×10^{3} m	At 3.00×10 ³ m	At 3.01×10 ³ m	At 3.02×10 ³ m	At 3.03×10 ³ m		
2	Modified pavement	0.00 m to 30.00m	At 0.00m	At 10.00m	At 20.00m	At 30.00m		

Hence, the determination of the CBR value, used for the FWD test according to IRC: 115-2014, has been divided into two parts: one is the in-situ or field CBR determination by DCPT, and the other is CBR determination by laboratory tests. The aspects of both tests are discussed below-

i. In-situ CBR determination by Dynamic Cone Penetration Test (DCPT)

In accordance with clause 5.5.4 of IRC: 115-2014, CBR values have been obtained through the DCPT within the designated pavement section provide the foundation for determining the elastic modulus of that specific segment. In several studies, DCPT has been performed to determine the in-situ CBR or field CBR of the soil. Nwanya and Okeke (2018), used the DCPT in Owerri, southeastern Nigeria, to assess subsurface soils up to 6 meters deep, determining CBR and bearing pressure. The study identified three (3) soil layers with varying densities and resistances. The penetration resistance ranged from 11.4 to 55.5 mm/blow, revealing layers of loose, medium, and dense soils. CBR values increased from 5% to 16% with depth, while average bearing pressures rose significantly from 104.8 to 301.1 KN/m², indicating increasing soil strength with depth. Sahoo and Reddy (2018), studied, using DCPT to estimate soil strength, specifically targeting the relationship between DCPT and CBR values in finegrained soils. They conducted laboratory experiments to explore the correlation between CBR values and DCP penetration depth across different fine-grained soil types. Their results indicated a strong correlation between CBR and DCP values for each soil type and across the combined data set. To encapsulate this relationship, they formulated logarithmic equations: Log10 LAB CBR = 2.758 - 1.274 Log10 LAB DCP and Ln CBR = 67.898 - 17.483Ln (FIELD DCP), further confirming the strong link between CBR and DCPT values. These studies collectively contribute to a deeper understanding of pavement engineering, offering innovative methodologies for assessing, designing, and maintaining pavement performance.

Lee et al. (2019), evaluated subgrade strength using DCP. It highlights the limitations of standard DCPs and introduces an advanced version with a load cell and accelerometer integrated at the cone tip. This instrumented DCP records dynamic responses and computes the dynamic cone resistance, serving as a novel strength index. Tests on weathered soils indicate this method offers a more reliable subgrade strength profile, with the potential for improved pavement design and construction quality assurance. Within this current research study, the scope of DCPT testing encompasses the section from the 3.0 km chainage point to the 3.03 km chainage point. The project area is characterized by a consistent soil profile primarily comprised of Grey/Brownish Silty Clay. To facilitate a comprehensive assessment of subgrade characteristics, 1m x 1m test pits were excavated at 30.0m intervals, organized in a staggered pattern. This procedure was replicated for the newly constructed scrap tyre modified subgrade, with DCPT measurements conducted at Four (4) distinct locations, spaced at 10m intervals, as specified in Table 6.10. Within each of these test pits, the DCPT method was utilized to determine the in-situ CBR of the subgrade. In the present study, DCP was made by EIE Instruments Pvt. Ltd. India. Notably, the subgrade maintains a consistent thickness of 500mm. Vakili et al. (2021), demonstrated that adding lime to marl soil improved its mechanical properties, including UCS and CBR, validating the effectiveness of DCPT in soil behaviour analysis. In the present work, the comprehensive summary of the test results is presented in Table 6.11. The DCPT-oriented in-situ CBR test results have been obtained by using 3 different methods as described in Table 4.3 of Chapter 4. DCPT operation on the existing subgrade has been shown in Fig. 6.20.


Fig. 6.20: DCPT operation on subgrade

To determine the worst-case scenario, the minimum CBR value among the three has been considered for further study.

Table 6.11: Summary of DCPT test results

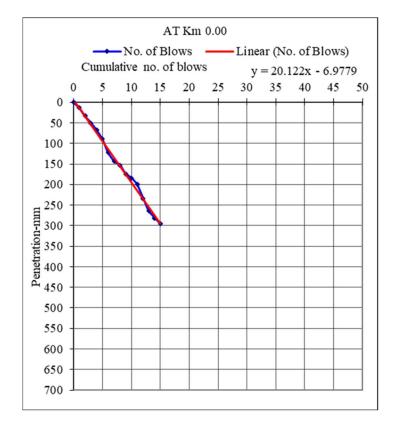

Sl. No	Chainag e (in m)	Side	Visual classificat ion of soil	Average CBR by Harriso n	Averag e CBR by Kleyn	Average CBR by Livneh	DCPT inferre d CBR
	-	-	For existin	g pavement	-	-	
1	3.00×10 ³ m	L/S	Grey silty clay	4.99	3.82	4.6	3.82
2	3.01×10^{3} m	R/S	Grey silty clay	5.01	3.83	4.62	3.83
3	3.02×10^{3} m	L/S	Grey silty clay	5.1	3.91	4.69	3.91
4	3.03×10 ³ m	R/S	Grey silty clay	5.8	4.5	5.32	4.5
		Foi	Scrap tyre m	odified pave	ement		
5	0.00m	L/S	Grey silty clay	11.16	9.21	10	9.21
6	10.00m	R/S	Grey silty clay	10.26	9.3	10.09	9.3
7	20.00m	L/S	Grey silty clay	11.27	9.33	10.1	9.33
8	30.00m	R/S	Grey silty clay	11.37	9.4	10.18	9.4

Fig.6.21 and Fig.6.22 show the sample DCPT curves for existing subgrade and modified subgrade.

Calculation of average CBR from Trend Line						
CBR(Harrison)	4.99					
CBR(Kleyn)	3.82					
CBR(Livneh)	4.60					
Adopted DCPT CBR : 3.82						

Fig. 6.21: DCPT Test Result Graph for existing subgrade at Chainage 3.0×10^3 m

Calculation of average CBR from Trend Line							
CBR(Harrison) 11.16							
CBR(Kleyn)	9.21						
CBR(Livneh)	10.00						
Adopted DCPT CBR: 9.21							

Fig. 6.22: DCPT Test Result Graph for modified subgrade at Chainage 0.00m.

ii. CBR determination by Laboratory testing

Modified proctor and CBR tests have performed on the collected samples from the existing road subgrade and modified subgrade. The test values along with locations are have been illustrated in Table 6.12.

Table 6.12: Modified Proctor and CBR test results for existing and modified subgrade soil

Sl. No	Chainage (in Km)	Side	Visual classification of soil	OMC (%)	MDD Density(gm/cc)	Lab CBR %(Soaked)
1	3.00×10 ³ m	L/S	Grey silty clay	17.11	1.714	3.40
2	3.01×10 ³ m	R/S	Grey silty clay	17.09	1.719	3.43
3	3.02×10 ³ m	L/S	Grey silty clay	17.09	1.720	3.37
4	3.03×10 ³ m	R/S	Grey silty clay	17.06	1.720	3.39
5	0.00m	L/S	Grey silty clay	16.59	1.629	8.79
6	10.00m	R/S	Grey silty clay	16.61	1.628	8.84
7	20.00m	L/S	Grey silty clay	16.59	1.631	8.83
8	30.00m	R/S	Grey silty clay	16.62	1.631	8.80

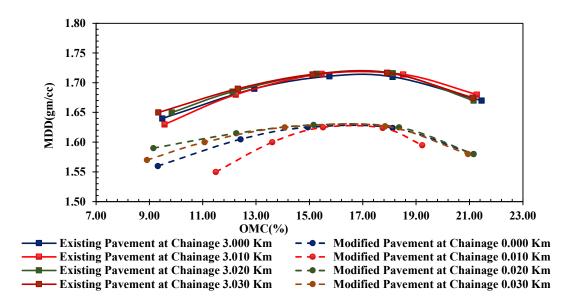


Fig. 6.23 and Fig. 6.24 show the modified proctor and CBR curve for both the pavements

Fig. 6.23: Variation in modified proctor for different pavements

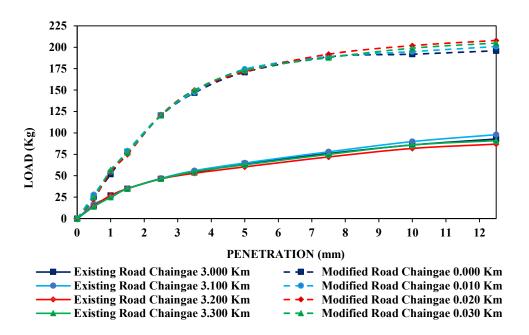


Fig. 6.24: Variation in CBR for different pavements

iii. DCPT test results analysis for FWD test

DCPT penetration resistance values have been obtained at various test locations along the road stretch. These values have been used to calculate the field CBR using relevant correlations.

To determine the laboratory CBR, soil samples have been collected from the chainage points specified in Table 6.10. The calculated field CBR values are then compared with the laboratory CBR values, which are given in Table: 6.13.

Table 6.13: Comparison table between field and laboratory CBR

Sl. No.	Chainage (in m)	Lab CBR %(Soaked)	DCPT inferred CBR						
	CBR Values for existing subgrade								
1	3.00×10^{3}	3.40	3.82						
2	3.01×10^{3}	3.43	3.83						
3	3.02×10^{3}	3.37	3.91						
4	3.03×10^{3}	3.39	4.50						
	CBR Values for	modified subg	rade						
5	0.00	8.79	9.21						
6	10.00	8.84	9.30						
7	20.00	8.83	9.33						
8	30.00	8.80	9.40						

From the above table, it is evident that based on the DCP tests conducted along the road stretch from Jibantala Bazar to Taldi Bazar, field CBR values have been calculated and compared with the corresponding laboratory CBR values. This analysis reveals a valuable insight into the load-bearing capacity of the subgrade soil. For the existing pavement, laboratory CBR values range from 3.39 to 3.43, while for the tyre scrap modified subgrade pavement, they range from 8.79 to 8.84. In contrast, the DCPT values range from 3.82 to 4.50 for the existing pavement and 9.21 to 9.40 for the subgrade-modified pavement. To ensure a conservative analysis for further processing in FWD and to account for the worst-case scenario, the minimum CBR values obtained from laboratory tests have been considered for further analysis. These values are 3.39 and 8.79 for the existing subgrade and scrap tyre-modified subgrade, respectively. It is worth noting that Solanki et al. (2016) employed laboratory CBR

values in their FWD analysis for the Barnala - Mansa Section of SH13, which spans a length of 20 km in the district of Barnala, Punjab, India.

6.3.2.7 FWD test on existing pavement and tyre scrap modified pavement

i. Identification of test points

A) Chainage wise test points for both the pavements

The test point locations are pre-determined, and points are calculated for each section of the project. These sections are then subdivided based on the data from the visual pavement condition survey and test pit information. To account for various factors and establish comparability between the two pavements, both roads are partitioned into four equal parts for conducting the FWD test. All the FWD test points with chainage are outlined in Table 6.14

Table 6.14: FWD test points and chainage

	Pavement	Selected	FWD test points					
Sl. No	type	Chainage (m) for FWD test	1st point	2nd point	3rd point	4th point		
1	Existing pavement	3.00×10^{3} m to 3.03×10^{3} m	At 3.00×10 ³ m	At 3.01×10^{3} m	$At \\ 3.02 \times 10^3 \text{m}$	At 3.03×10 ³ m		
2	Modified pavement	0.00 m to 30.00m	At 0.00m	At 10.00m	At 20.00m	At 30.00m		

B) Standardized Representation of test points

The study compares two pavements by dividing each into four equal segments by establishing specific Reference Chainage (RC) points for further analysis. Both pavements are 30.0m long but with different chainages. To simplify deflection data representation, the chainages are categorized as RC1 (0.00m for modified and 3×10³m for existing pavement), RC 2 (10.0m for modified and 3.01×10³m Km for existing pavement), RC 3 (20.0m for modified and 3.02Km×10³m for existing pavement), and RC 4 (30.0m for modified and 3.03×10³m for existing pavement).

ii. Collection of deflection data from FWD

To satisfy the criteria of the present study, FWD tests were conducted between 3.0 km and 3.03 km chainage points on the existing pavement. Fig. 6.25 depicts the FWD test and deflection recording on the Jibantala-Taldi Road to obtain deflection data for individual geophones.

Fig. 6.25: FWD deflection recording on Jibantala -Taldi Road

For the existing subgrade deflection data from four points as specified in Table 6.14 are gathered specifically for structural performance analysis of subgrade, and these data points are presented in Table 6.15.

 Table 6.15: Summary of average deflection (For Existing pavement)

	Distance from Load Centre(mm)								
Chainage	0	300	600	900	1200	1500	1800		
(m)			De	flection(m	m)				
	D0	D1	D2	D3	D4	D5	D6		
3.00×10^{3} m	0.519	0.322	0.197	0.099	0.063	0.048	0.022		
3.01×10 ³ m	0.509	0.324	0.217	0.109	0.065	0.047	0.037		
3.02×10 ³ m	0.529	0.34	0.236	0.093	0.063	0.047	0.038		
3.03×10 ³ m	0.518	0.342	0.146	0.096	0.062	0.047	0.036		
Average deflection	0.519	0.332	0.199	0.099	0.063	0.047	0.033		

FWD test has been also conducted on the scrap tyre modified subgrade pavement at various specified intervals between 0.00Kmp to 0.030Kmp. The deflection data from four chainage points for the modified subgrade are specified in Table 6.16.

 Table 6.16: Summary of average deflection (for modified subgrade)

	Distance from Load Centre(mm)								
Chainage	0	300	600	900	1200	1500	1800		
(m)	Deflection(mm)								
	D 0	D1	D2	D3	D4	D5	D6		
0.00m	0.412	0.172	0.078	0.051	0.029	0.019	0.013		
10.00m	0.422	0.165	0.08	0.049	0.027	0.021	0.018		
20.00m	0.387	0.15	0.075	0.044	0.038	0.025	0.015		
30.00m	0.393	0.158	0.074	0.051	0.025	0.022	0.012		
Average deflection	0.404	0.161	0.077	0.049	0.03	0.022	0.015		

Fig. 6.26 represents deflection records of scrap tyre modified subgrade. The deflection data for both the subgrades have been gathered specifically for performance analysis of pavement subgrade. Fig. 6.27 illustrates the deflection data collected for the subgrades.

Fig. 6.26: FWD deflection recording on scrap tyre modified subgrade pavement



Fig. 6.27: Deflection data collected for the subgrades

6.3.2.8 Back Calculation of Layer Modulus (KGPBACK) for both type of pavement

The FWD is used to impart a dynamic load to the existing pavement, and the response is recorded. Using the deflection values that were acquired, the KGPBACK program is then used in accordance with IRC: 115-2014 recommendations to ascertain the elastic modulus of the pavement layers that were modelled. The KGPBACK software has been utilized for back calculating the layer modulus. The bituminous layer, granular layer, and subgrade make up the three layers of the pavement system that have been modelled. The transportation engineering department at IIT Kharagpur, India, created the KGPBACK software, a customized version of the BACKGA program, which is an essential tool for the back-analysis process that determines the elastic modulus of pavement surfaces. The deflection measurements used in this computation come from the FWD. By calculating the in situ elastic modulus of various pavement layers, this process aims to evaluate the structural health of in-

service pavements. The pavement layer modulus is obtained by using the KGPBACK software with normalized data and the extra input parameters specified in Table 6.17.

Table 6.17: Input parameters for KGPBACK software analysis

		Values				
Sl.No	Parameters	For existi	ng pavement	-	tyre modified e pavement	
1	Single Wheel Load (N)	40000		40000		
2	Contact Pressure (MPa)	0.56 (As per IRC: 115- 2014)		0.56 (As per IRC: 115- 2014)		
3	Number of deflections		7		7	
4	Radial distance between each geophone (mm)	0 300 600 900 1200 1500 1800		0 300 600 900 1200 1500 1800		
5	Design CBR (%)	3.36		8.90		
6	Measured Deflections (mm)	As per Table 6.15		As per Table 6.16		
7	Pavement Layer Thickness(mm)		570		480	
8	Poisson's ratio values	0.5,0.4, 0.4 (bituminous layer, granular layers & subgrade as per IRC: 115-2014)		la granula subg	4 (bituminous ayer, r layers & grade as 115-2014)	
	Moduli range (as per	BT Layer	750 to 3000	BT Layer	750 to 3000	
9	Clause III.8.4 of IRC:115 2014 guidelines) in MPa	Granular	100 to 500	Granular	100 to 500	
		Subgrade	16.8 to 67.2	Subgrade	44.5 to 178.0	
		(5* CBR to 20*CBR)		(5* CBR to 20*CBR)		

The sample inputs and outputs of the KGPBACK are illustrated from Fig. 6.28 to Fig. 6.31

```
PRINT INPUT DATA !!!!

PL. SEE THE MANUAL SUPPLIED FOR HELP !!!!

TYPE PEAK FWD LOAD (N), CONTACT PRESSURE (MPa)
Standard Values are 40000 0.56
40000 .56

HOW MANY DEFLECTIONS WERE MEASURED (4 TO 10)?

PRINT RAD.DISTANCES (mm) WHERE DEFLECT. WERE MEASURED eg: 0, 300, 600, 900, 1200, 1500 is a Typical Configuration for six Geophones

0 300 600 900 1200 1500 1800

PRINT MEASURED DEFLECTIONS IN mm.
.519 .322 .197 .099 .063 .048 .022
GIVE THE PAVEMENT RELATED INPUTS (3-LAYER SYSTEM)
TYPE EACH LAYER THICKNESS(mm). START FROM TOP
120 450

TYPE POISSON RATIO OF EACH LAYER. START FROM TOP
Suggested values are 0.5 0.4 0.4
.5 .4 .4

INPUT RANGE (lower and upper) FOR EACH LAYER MODULUS
Please note that Backcalculation Results will depend on the selection of appropriate Ranges. The slection of Ranges has to be made judiciously on the basis of of the Pavement Condition

PRINT LOWER AND UPPER BOUND MODULI (MPa) LAYERS
Pl. See the Manual supplied for guidance
750 3000
100 500
16.8 67.2
```

Fig. 6.28: Sample Input window of KGPBACK for existing pavement

```
#
       !!! THANKS FOR USING KGPBACK !!!
                                              #
#
            THE RESULTS ARE GIVEN BELOW
                                               #
**************
# INPUT DATA #
################
No.of Layers
                                     = 3
FWD Load (N)
                                     = 40000.00
Contact Pressure (MPa)
                                    = .56
No.of Deflection points = 7
Deflections measured using FWD (mm) = .51900 .32200 .19700 .09900 .06300 .04800
Radial distances from centre of load(mm) = .0 300.0 600.0 900.0 1200.0 1500.0 1800.0
Layer thickness (mm)
                                    = 120.00 450.00
Poisson ratio values
                                     = .50 .40 .40
Layer Modulus (MPa) Ranges Selected :-
 (a) Bituminous Surfacing
                                    = 750.0 3000.0
                                    = 100.0 500.0
 (b) Granular Base
 (c) Subgrade
                                     = 16.8 67.2
##################
# OUTPUT DATA #
 Backcalculated Layer Moduli are:
Surface (MPa) = 2296.2
 Base (MPa) =
Subgrade (MPa) =
                   67.2
```

Fig. 6.29: Sample output window of KGPBACK for existing pavement

```
TYPE PEAK FWD LOAD (N), CONTACT PRESSURE (MPa)
Standard Values are 40000 0.56
40000 .56

HOW MANY DEFLECTIONS WERE MEASURED (4 TO 10)?
7

PRINT RAD.DISTANCES (mm) WHERE DEFLECT. WERE MEASURED eg: 0, 300, 600, 900, 1200, 1500 is a Typical Configuration for six Geophones

0 300 600 900 1200 1500 1800

PRINT MEASURED DEFLECTIONS IN mm.
.412 .172 .078 .051 .029 .019 .013
GIVE THE PAVEMENT RELATED INPUTS (3-LAYER SYSTEM)
TYPE EACH LAYER THICKNESS(mm). START FROM TOP 80 400

TYPE POISSON RATIO OF EACH LAYER. START FROM TOP Suggested values are 0.5 0.4 0.4
.5 .4 .4

INPUT RANGE (lower and upper) FOR EACH LAYER MODULUS Please note that Backcalculation Results will depend on the selection of appropriate Ranges. The slection of Ranges has to be made judiciously on the basis of of the Pavement Condition

PRINT LOWER AND UPPER BOUND MODULI (MPa) LAYERS Pl. See the Manual supplied for guidance

750 3000
100 500
44.5 178
```

Fig. 6.30: Sample Input window of KGPBACK for modified pavement

```
!!! THANKS FOR USING KGPBACK !!!
            THE RESULTS ARE GIVEN BELOW
*******
# INPUT DATA #
**************
No. of Layers
                                     = 3
FWD Load (N)
                                     = 40000.00
Contact Pressure (MPa)
                                     = .56
No.of Deflection points = 7
Deflections measured using FWD (mm) = .41200 .17200 .07800 .05100 .02900 .01900
Radial distances from centre of load(mm) = .0 300.0 600.0 900.0 1200.0 1500.0 1800.0
                                                                                          .01300
                                    = 80.00 400.00
Layer thickness (mm)
Poisson ratio values
                                     = .50 .40 .40
Layer Modulus (MPa) Ranges Selected :-
(a) Bituminous Surfacing = 750.0 3000.0
(b) Granular Base
                                    = 100.0 500.0
(c) Subgrade
                                     = 44.5 178.0
***************
# OUTPUT DATA #
*************
Backcalculated Layer Moduli are:
Surface (MPa) = 2997.8
Base (MPa) = 176.6
Base (MPa)
Subgrade (MPa) =
                   178.0
```

Fig. 6.31: Sample Output window of KGPBACK for modified pavement

The back-calculated modulus of each layer is computed and shown in Table 6.18 using the inputs listed in Table 6.17. Fig. 6.32 shows the back-calculated modulus chart for both the pavements.

Table 6.18: Back calculated moduli for pavement layers

Pavement	Back calculated Moduli (MPa)						
type	Chainage (m)	Bituminous	Granular	Subgrade			
	3.00×10^{3} m	2296.20	102.30	67.20			
Existing	3.01×10^{3} m	2975.80	107.80	67.20			
pavement	3.02×10^{3} m	2300.60	111.30	67.20			
	3.03×10 ³ m	2925.20	189.90	67.20			
	0.00m	2997.80	176.60	178.00			
Modified	10.00m	2918.60	189.90	178.00			
pavement	20.00m	2958.20	232.20	178.00			
	30.00m	2815.20	186.80	178.00			

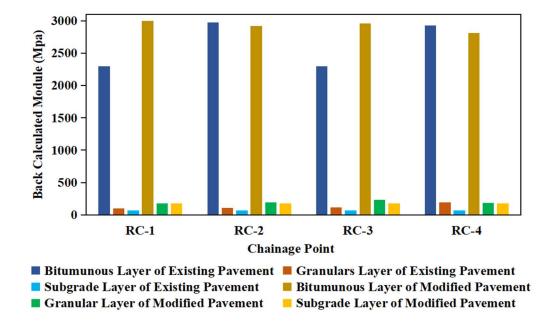


Fig. 6.32:Back calculated moduli chart for both the pavements

6.3.2.9 Determination of corrected back calculated moduli (MPa)

Back-calculated moduli of bituminous, granular, and subgrade layers obtained via software analysis have been modified using appropriate correction factors:

i. A pavement temperature correction factor has been applied exclusively to the bituminous layer, following the guidelines outlined in clause 6.4.2 of IRC:115-2014. Table 6.19 illustrates the calculation of correction factors and the resulting corrected back-calculated moduli for the bituminous layer, specifically accounting for temperature variations.

Table 6.19: Corrected Back Calculated moduli for bituminous layer of pavements

Pavement type	Chainage in Km	λ, temperature correction factor = (1- 0.238 lnT1) / (1-0.238 lnT2)	Equation	on parameters	Back- Calculated moduli for bituminous layer (MPa)	Corrected Back- Calculated moduli for bituminous layer (MPa)
			T1 (In°C)	T2 (In °C) (Asphalt Temperature)		
	3.00×10^{3} m	0.8	35	29.7	2296.2	1836.96
Existing	3.01×10^{3} m	0.78	35	29.2	2975.8	2321.12
pavement	3.02×10 ³ m	0.78	35	29.3	2300.6	1794.47
-	3.03×10 ³ m	0.79	35	29.5	2925.2	2310.91
Scrap tyre _ modified subgrade pavement -	0.00m	0.78	35	29.1	2997.8	2338.28
	10.00m	0.79	35	29.5	2918.6	2305.69
	20.00m	0.79	35	29.4	2958.2	2336.98
	30.00m	0.79	35	29.6	2815.2	2224.01

ii. Additionally, a correction for the seasonal variation factor has been implemented for the granular and subgrade layers, in accordance with clause 6.5.1 of IRC:115-2014. Table 6.20 illustrates the calculation of correction factors and the resulting corrected back-calculated modulus for the granular layer and subgrade layer, specifically accounting for seasonal variations. In this work, the winter season has been considered. Fig. 6.33 shows the corrected back-calculated modulus chart for both the pavements.

Table 6.20: Corrected Back Calculated moduli for granular (E_{gran_win}) and subgrade (E_{sub_win}) layers of pavement

Pavement type	Chainage in m	Back Calculated modulus of subgrade (E _{sub_win} in MPa)	Back Calculated modulus of granular layer (Egran_win in MPa)	Corrected Back Calculated modulus for subgrade E _{sub_mon} =3.351*(E _{sub_win})0.7688- 28.9(MPa)	Corrected Back Calculated modulus for granular layer Egran_mon=3.351*(Egran_win)0.624-113.857(MPa)
	3.00×10 ³ m	67.20	102.30	56.22	75.60
Existing pavement	3.01×10 ³ m	67.20	107.80	56.22	81.89
	3.02×10 ³ m	67.20	111.30	56.22	85.83
	3.03×10 ³ m	67.20	189.90	56.22	164.85
	Average	Back Calculate	ed modulus	56.22	102.04
	0.00m	178	176.60	151.11	152.50
Modified - pavement -	10.00m	178	189.90	151.11	164.85
	20.00m	178	232.20	151.11	202.11
	30.00m	178	186.80	151.11	162.00
	Average	Back Calculate	ed modulus	151.11	170.36

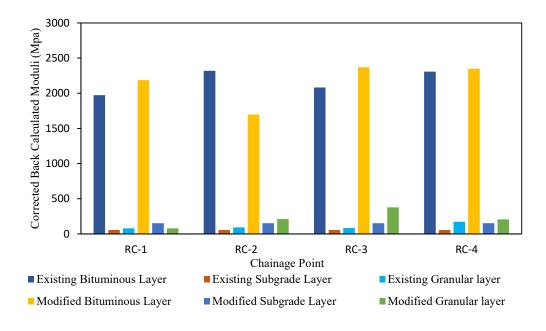


Fig. 6.33: Corrected back calculated Moduli chart for both the pavements

The Tables (Table 6.18 to 6.20) above clearly illustrate that in the case of the scrap tyre-modified subgrade pavement, there has been an increase in the back-calculated moduli for each component of the pavement when compared to the existing pavement. These back-calculated moduli play a crucial role in analysing the in-service pavement and evaluating its structural condition as outlined in Clause 6.3.1 of IRC:115-2014.

6.3.2.10 Deflection and Elastic Modulus of Subgrade

In this study, the primary focus is dedicated to the analysis and comparison of subgrade deflection and elastic moduli for existing and modified pavement. To effectively characterize the subgrade condition and gauge its structural performance, deflections have been measured at two key distances: 1200 mm (referred to as D1200) and 1500 mm (referred to as D1500) from the centre of the load. The difference between these two deflections is referred to as the Lower Layer Index (LLI), which is a deflection bowl parameter derived from the results of deflection tests. LLI serves as a characterization of the subgrade condition and proves valuable in predicting performance and assessing the overall condition. The significance of these measurement points has been highlighted in prior studies conducted by Horak (2008), Talvik and Aavik (2009), as well as Solanki et al. (2019).

Table 6.21 provides a summary of the average deflection for D1200 and D1500 along with the LLI and average elastic moduli values for both types of pavements, offering insights into the subgrade's overall performance and condition.

Table 6.21: LLI for Subgrade Layer in both pavement types

	Chainage	Distance from Load Cent	Lower layer Index (LLI) in mm		
Pavement		1200	1500		
type	(m)	Deflection(mm)	Deflection(mm)		
		D4	D5		
	3.00×10^{3} m	0.063	0.048	0.015	
Existing subgrade	3.01×10^{3} m	0.065	0.047	0.018	
	3.02×10 ³ m	0.063	0.047	0.016	
	3.03×10^{3} m	0.062	0.047	0.015	
Ave	0.016				
Savan tuma	0.00m	0.029	0.019	0.01	
scrap tyre modified subgrade pavement	10.00m	0.027	0.021	0.006	
	20.00m	0.038	0.025	0.013	
	30.00m	0.025	0.022	0.003	
Aver	0.008				

The average elastic modulus values for both pavements are shown in Table 6.22, as obtained from the data in Table 6.21.

Table 6.22: Average Elastic Moduli (Es) for Subgrade Layer in both pavement types

Pavement type	Chainage (m)	Corrected Back Calculated modulus for subgrade (Es) in Mpa		
	3.00×10^{3} m	56.22		
Existing	3.01×10^{3} m	56.22		
subgrade	3.02×10^{3} m	56.22		
	3.03×10^{3} m	56.22		
Avera	ge E _{eps}	56.22		
Scrap tyre	0.00m	151.11		
modified	10.00m	151.11		
subgrade	20.00m	151.11		
pavement	30.00m	151.11		
Avera	ge E _{mps}	151.11		

6.4 SUMMARY

This chapter has presented the comprehensive field studies conducted to evaluate the performance of pavement subgrades modified with scrap tyres. A detailed traffic census and axle load survey have been conducted to gather essential data for pavement design. The chapter also discusses the structural performance assessment using Falling Weight Deflectometer (FWD) tests on both the existing and tyre-modified subgrades. The FWD tests have been indicated a significant increase in the stiffness and load-bearing capacity of the tyre-modified subgrade, demonstrating its effectiveness in improving pavement performance. These values of Elastic Modulus of subgrade have been used in numerical analysis. The analysis has been done by PLAXIS 3D to simulate FWD test. The numerical findings have corroborated the deflections acquired during FWD tests. The details of the analysis have been presented in the next chapter, Chapter 7.

CHAPTER 7 PLAXIS MODELLING

7.1 OVERVIEW

In this study, the main goal is to obtain a simplified numerical model and evaluate the results in FWD using experimental data. For the determination of the deflection bowl in the FWD test's 3D dynamic FE modelling, analytical data from the static back analysis has been used. It needs to be mentioned that the goal of this research is to create numerical models for determining deflection bowls for varying pavement thickness and soil subgrade parameters using the FWD peak falling load (40 kN). A comparison between measured deflection bowl, obtained from the in situ FWD test and the calculated deflection bowl from the FE simulation, may help to validate the back-analysed data. Another goal is to determine the deflection values of various layers of the pavement, as obtained during the FWD test.

A three-dimensional dynamic FE simulation of the test has been executed in this study to check and validate the results of the FWD back analysis technique using PLAXIS 3D.

In situ measurements from two types of soil subgrade pavement—one for existing soil condition and the other for modified soil subgrade condition, as well as the outcomes of their back analyses are utilized as input for the FE simulation.

7.2 PLAXIS 3D ANALYSIS ON MODEL PAVEMENT:

The load impact of the FWD test is simulated using PLAXIS 3D(V20) on the top surface of a 4-layered pavement, having a subgrade of 3.36% CBR and 8.90% CBR. To simulate a typical FWD load pulse, a dispersed load with a radius of 0.15 m is employed. To imitate a typical falling weight, a dispersed load with a radius of 0.15 m is employed. A dynamic surface load of 565 kPa has been applied on a circular contact surface with a 0.30 m diameter to instigate

Chapter 7 PLAXIS Modelling

the actual force because of a 40 kN single-axle wheel load. A typical FWD load pulse is exhibited assuming an impulse duration of 25ms (h et al. and Skels et al.2019). The current model works by utilising a transient load that is placed at a fixed spatial location, presumably to simulate traffic when the FWD load pulse occurs. Moreover, it is acknowledged that stationary pulses are not enough to provide a clear explanation of stress waves produced when a wheel leads forward and eventually exits the region of interest (Howard and Warren (2009), Skels et al. 2019; Loizos and Scarpas 2005). A typical FWD load pulse has been exhibited assuming an impulse duration of 25ms. Fig. 7.1 shows the FWD load pulse, and the chosen load configuration is appropriate for the scope of work.

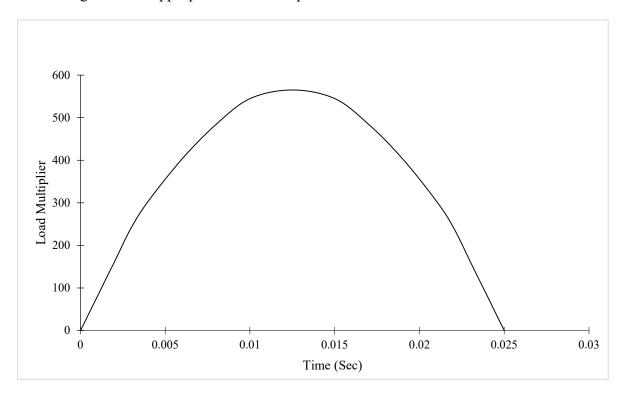


Fig. 7.1: The model of FWD test pulse load

The thickness of each layer of flexible pavement has been estimated for a traffic intensity of 13.74 MSA and subgrade CBR of 3.36% and 8.90%, respectively, using the templates, provided in IRC 37:2018.

When determining the limit pressure on the soil from different loads and types of impact, the Mohr–Coulomb criterion is frequently utilized in problem-solving techniques involving the limiting equilibrium of the soil (Hambleton and Drescher, 2007, Korolev, 2014). It is frequently used to simulate soil deformation behaviour and shear strength. Laboratory data can be more easily correlated with numerical modelling when using the Mohr-Coulomb model since it is compatible with the results of triaxial and direct shear laboratory tests (Smith et al, 2013). The Mohr-Coulomb method has been utilized in PLAXIS 3D to represent the subgrade of soil. The layers which make up the pavement crust—BC, DBM, WMM and GSB—have been modelled using the linear elastic method (Pai et al,2020). The linear elastic model for pavement crust is based on Burmister's elastic layered theory, which states that both horizontal tensile strain at the bottom of the asphalt layer and vertical compressive strain on top of the subgrade is limited (Huang, 2004). Fine meshing has been done to eliminate any calculation errors. Viscous boundary conditions have been used in the X-direction, Y-direction and as well as in the bottom of Z-direction of the model in the software to simulate the dynamic analysis. The top of the Z-direction remains free so that deflection can be obtained which is the actual case during in situ FWD testing. The typical pavement Finite Element model is displayed in Fig. 7.2.

Fig. 7.2: FE model of flexible pavement with meshing

7.2.1 Input Parameters for PLAXIS Modelling

The material characteristics used for the numerical studies of the pavement reactions have been estimated using the findings from FWD tests. Back calculated modulus for different pavement layers from FWD test data has been used (Skels et al.). For soil subgrade, unit weight and shear parameters are obtained by testing the normal soil and scrap tyre-modified soil and used in this analysis.

Parameters adopted for FE analysis have been shown in Table 7.1 and Table 7.2.

Table 7.1: Parameters used for finite element analyses of normal soil subgrade pavement

Material	Model type	Unit weight (kN/m³)	C (KN/m²)	ф	E(MPa)	v	Thickness(mm)
Subgrade	Mohr- Columb	20.20	25.00	2	56.22	0.40	500
GSB	Elastic	21.00	-	-	102.04	0.40	200
WMM	Elastic	22.30	-	-	102.04	0.40	250
DBM	Elastic	24.00	-	-	2065.87	0.50	80
ВС	Elastic	25.00	-	-	2065.87	0.50	40

Table 7.2: Parameters used for finite element analyses of scrap tyre modified subgrade pavement

Material	Model type	Unit weight (kN/m³)	C (kN/m ²)	ф	E(Mpa)	v	Thickness(mm)
Subgrade	Mohr- Columb	19.70	45.00	8	151.10	0.40	500
GSB	Elastic	21.00	-	-	170.37	0.40	150
WMM	Elastic	22.30	-	-	170.37	0.40	250
DBM	Elastic	24.00	-	-	2301.24	0.50	50
ВС	Elastic	25.00	-	-	2301.24	0.50	30

7.2.2 Output from PLAXIS 3D Analysis

Simulating FWD test in PLAXIS, vertical deflection for normal soil subgrade pavement and scrap tyre modified pavement have been obtained.

7.2.2.1 Vertical Deflections from PLAXIS:

Fig. 7.3 and Fig. 7.4 represent examples of vertical deflection of pavement surface and layered boundaries with time for normal soil (CBR=3.36%) and scrap tyre-modified soil (CBR=8.90%). A single response versus time curve was able to accurately depict the vertical deflection curve due to their geometry, and layer thicknesses. Vertical deflections obtained from PLAXIS 3D, at the top of BC at the centre of the loading are 0.593 mm and 0.451 mm respectively for two cases. These values are relatively closer to the values required from the FWD test. In both graphs, the coordinate (0,0,0) represents the centre of loading, at the top of BC. In Fig. 7.3, coordinates (0,0, -0.040), (0,0, -0.120), (0,0, -0.370) and (0,0, -0.570) represent top DBM, top of WMM, top of GSB and top of subgrade respectively for deflection calculation. Whereas the same layers are represented by coordinates (0,0, -0.030), (0,0, -0.033) and (0,0, -0.48) for modified pavement, as shown in Fig.7.4.

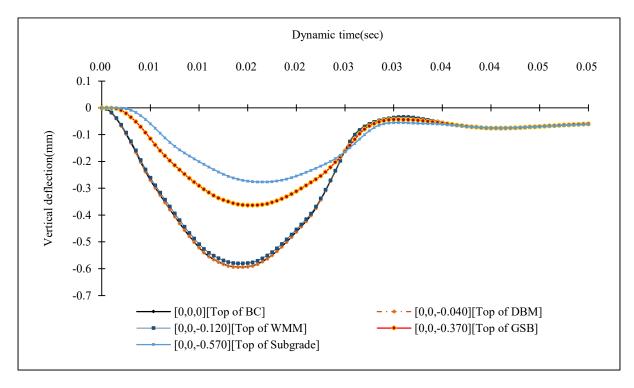


Fig. 7.3: Vertical deformation on the pavement surface and at layer boundaries as a function of dynamic time for normal soil

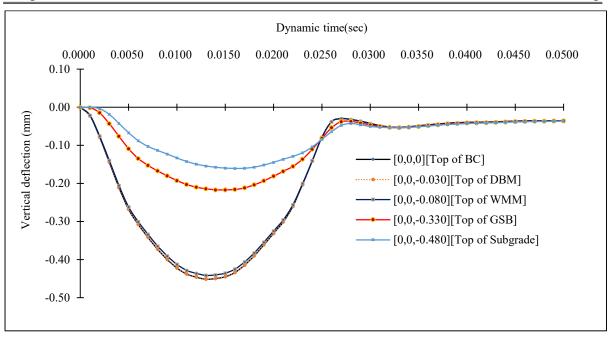
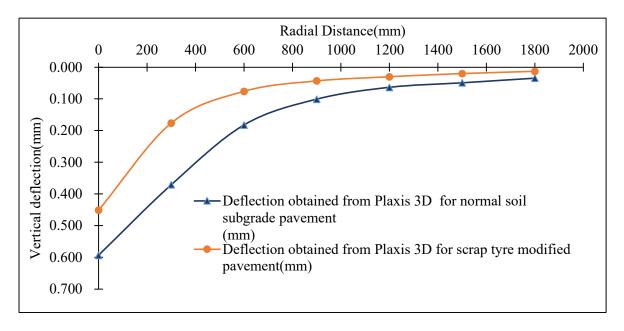


Fig. 7.4: Vertical deformation on the pavement surface and at layer boundaries as a function of dynamic time for scrap tyre modified soil


7.3 RESULTS OF FWD SIMULATION FROM PLAXIS ANALYSIS.

Simulating FWD test in PLAXIS 3D(V20) software, the vertical deflection curves over time for different radial distance from the centre of the loading are also obtained. Vertical deflection responses at different distances are obtained such a way that they are in accordance with the geophones installed during in situ FWD test. Data obtained from these responses are presented in Table 7.3

Table 7.3: vertical deflection data, obtained from FE analysis

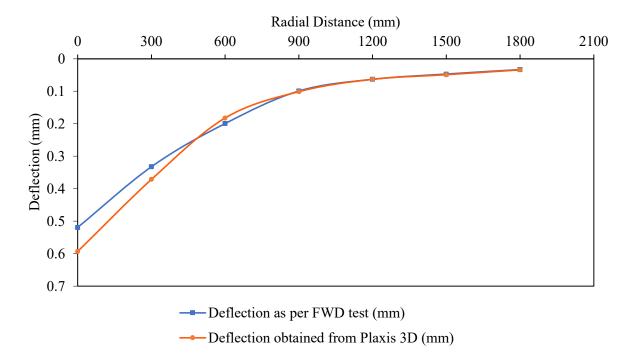
Distance from Load centre(mm)	Deflection obtained from PLAXIS 3D for normal soil subgrade pavement(mm)	Deflection obtained from PLAXIS 3D for scrap tyre modified pavement(mm)
0	0.593	0.451
300	0.370	0.176
600	0.182	0.076
900	0.101	0.043
1200	0.063	0.03
1500	0.049	0.02
1800	0.034	0.013

The variation of deflection bowl can be shown in Fig. 7.5 for normal soil subgrade pavement and scrap tyre modified subgrade pavement, From the deflection bowl it can be said that for same load condition vertical deflection is less for modified soil.

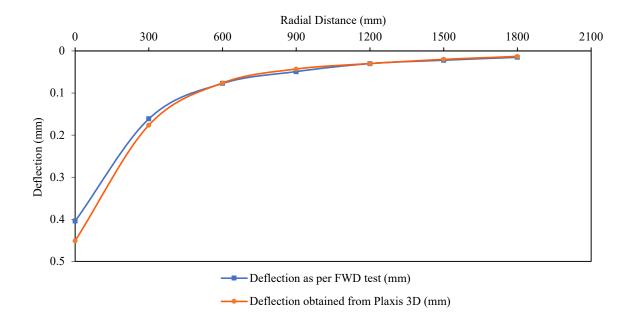
Fig. 7.5: Comparison of vertical deflection bowl for normal soil subgrade pavement and scrap tyre modified soil subgrade pavement

7.4 COMPARISON OF THE RESULTS OBTAINED FROM FWD TEST AND FWD SIMULATION IN PLAXIS 3D:

Deflection bowls obtained from FWD test and PLAXIS analysis, also have been compared. The results indicate an alignment of the measured value and the FE analysis value. Obtained deflection values for two cases have been presented in Table 7.4 and Table 7.5.


Table 7.4: Vertical deflection data, obtained from FWD test and FE analysis for normal soil subgrade pavement

Radial distance(mm)	Deflection as per FWD test (mm)	Deflection obtained from PLAXIS 3D (mm)		
0	0.519	0.593		
300	0.332	0.371		
600	0.199	0.182		
900	0.099	0.101		
1200	0.063	0.063		
1500	0.047	0.049		
1800	0.033	0.034		


Table 7.5: Vertical deflection data, obtained from FWD test and FE analysis for tyre modified soil subgrade pavement

Radial distance(mm)	Deflection as per FWD test (mm)	Deflection obtained from PLAXIS 3D (mm)	
0	0.404	0.451	
300	0.161	0.176	
600	0.077	0.076	
900	0.049	0.043	
1200	0.03	0.03	
1500	0.022	0.02	
1800	0.015	0.013	

Comparison of surface deflection bowl for existing pavement and modified pavement has been shown in Fig. 7.6 and Fig.7.7.

Fig. 7.6: Deflection bowl comparison, obtained from FWD test and FE analysis for existing pavement

Fig. 7.7: Deflection bowl comparison, obtained from FWD test and FE analysis for modified pavement

7.5 SUMMARY

This chapter focuses on the use of PLAXIS 3D software to simulate the response of the pavement under load conditions. The chapter describes the setup of finite element models representing the pavement layers and subgrade, incorporating material properties derived from field tests. The simulations have been aimed to replicate the deflections observed in FWD tests. The results from PLAXIS modelling closely aligned with the empirical data, validating the use of scrap tyres in enhancing subgrade stiffness and providing a reliable method for predicting pavement performance.

CHAPTER 8 REGRESSION ANALYSIS

8.1 OVERVIEW

The aim of this analysis is to find out the correlation between modified soil CBR and parameters like normal soil CBR, scrap tyre size, and percentage of tyre scrap. This regression model will give an idea of how the input variable changes, so that it can predict the modified soil CBR for a variety of input parameters.

8.2 GENERAL:

Regression analysis is one of the statistical tools which can be used to examine the relationship that exists between a response, also known as a dependent variable, and sample measurements made on various factors, also known as independent variables or predictor variables.

To establish a relationship between multiple independent variables and only one dependent variable, generally multiple linear regression is used. It is used to predict the value of one dependent variable using known values for the independent variables. The weight of each predictor value indicates how much influence it has on the final prediction.

Equation 8.1 depicts the general form of the multiple linear regression model, while Equation 8.2 displays the fitted equation of the model.

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + e \dots (8.1)$$

The fitted equation:

$$\hat{Y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k \dots (8.2)$$

Where: Y = Dependent variable,

 $X_k = k^{th}$ independent variable,

 β_k = Regression coefficient of k^{th} population,

e = residuals,

 b_k = estimate of k^{th} population regression coefficient,

 \widehat{Y} = Response of the fitted model.

8.3 TERMINOLOGY USED:

During multiple regression analysis, different terminologies are used for describing the correlation between dependent variables and independent variables.

8.3.1 R², Adjusted R² and Mean Squared Error (MSE), F Value and t-Value:

When determining the relationship between a set of explanatory variables and the dependent variable, R² is regarded as a fundamental and essential tool. R² is often used to demonstrate the variation of the dependent variable which can be predicted by the independent variables. R² typically estimates the linear regression's fit in an optimistic manner. As more effects are incorporated into the model, it always rises. This overestimation is attempted to be corrected for in adjusted R². If a particular effect does not improve the model, adjusted R² may go down. Mean squared error is another term used in statistical analysis. MSE, is a statistical measure of model inaccuracy. The mean squared difference value is evaluated between observed and predicted value. MSE value is zero for a model which has no error. The value of it rises with increasing model inaccuracy. The degree to which a regression model accurately depicts the modelled data is shown by the regression sum of squares. If the data is not sufficiently fitted by the model, regression sum of square shows larger value. The variation of modelling errors is basically measured by the error sum of squares. In a regression analysis, it shows how the variation seen in the dependent variable cannot be explained by the model. Regression model explains the data better when the residual sum of squares has lower value; in contrast, when the residual sum of squares has higher value, the model performs less well.

A prediction model is considered dependable when value of R^2 is high and its MSE has lower value. The better the model matches the data, the greater the R^2 score.

In Analysis of Variance (ANOVA), the F value is utilized. Two mean squares are divided to compute it. This method calculates the ratio between explained variation to unexplained variance. The statistical significance of the test can be determined using t- value. The t-value, which is often referred to as the t-score, is the ratio of the variation between the two sample sets' means to the variance within each sample set. Higher t-score values indicate that the two sample sets differ significantly from one another. As the t-value decreases, the degree of similarity between the two sample sets rises.

8.4 REGRESSION MODEL:

A statistical model has been utilized to investigate potential correlations between the scrap tyres stabilized soil CBR(Soaked) and input variables, such as normal soil CBR(Soaked), scrap tyre size, and the percentage of scrap tyre.

The statistical program MINITAB is utilized to create the regression models for the data. The size of the scrap tyre, scrap tyre percentage in the soil and the normal soil CBR, have been employed as independent variables, and the scrap tyre modified soil CBR has been used as the dependent variable. Thirty samples have been subjected to a regression analysis correlating the soaked CBR value.

Best fit model has been used in MINITAB software to fit all the parameters for regression analysis. Table 8.1 represents regression model summary for prediction of stabilized soil CBR.

8.4.1 Results Obtained from Regression Model:

Table 8.1, Table 8.2 and Table 8.3 depict Regression model summary and different statistical parameters obtained from Regression analysis

Table 8.1: Regression model summary (Analysis of variance)

	Sta	atistical Para	meters	
Model	Degree of freedom	Sum of squares	Adjusted Mean squared	F-value
	(df)	(ss)	(ms)	
Regression	3	43.238	14.4125	40.54
Error of Residual	26	9.244	0.3555	
Total	29	52.481		

 Table 8.2: Regression model summary (Coefficients)

Model	Coefficients	Standard Error (SE)	t
Intercept	36	107	1.36
CBR unstabilized	-7.8	31.9	-0.24
Size of scrap tyre(S)	-0.0724	0.0160	-4.54
Percentage of scrap	-0.1274	0.0129	-9.84
tyre(P)			

Table 8.3: Model summary

Number of variables	Variables	Regression sums of squares	Error sum of squares	Mean squared error (MSE)	\mathbb{R}^2	Adjusted R ²
3	Normal soil CBR, Size of scrap tyre, Percentage of scrap tyre	43.238	9.244	0.596265	82.39 %	80.35 %

The equation obtained from the regression of the above model is presented in Equation 8.3

$$CBR_{Stabilized} = \ 36 - 7.8 CBR_{\ Unstabilized} \ - 0.0724 \ S - 0.1274 P..... \ (8.3)$$

Where, S=Size of the scrap tyre (Length), P= Percentage of scrap tyre used (%).

This can be observed from the Fitted Value as well as Observation Order of the distribution presented in Figure 8.1, the residual values of the model are distributed uniformly and symmetrically around the neutral line.

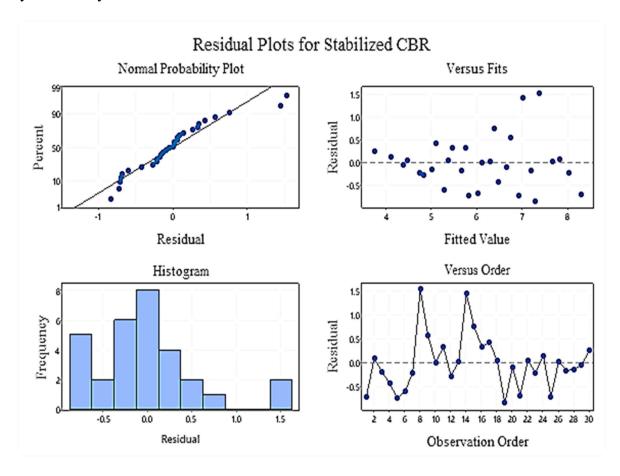


Fig. 8.1: Residual analysis of prediction of stabilized CBR

The extent to which a model captures the experimental data is determined by the model validation assessment. Predicted values have been determined using Equation 8.3, one of the best model equations, and subsequently compared against the total number of samples, to validate the model. As seen in Figure 8.2, experimental results are similarly plotted against the quantity of samples and compared. The experimental results are rather close to the expected values, as seen in Figure 8.2. a similar trend has been observed to that R² trend value from this figure.

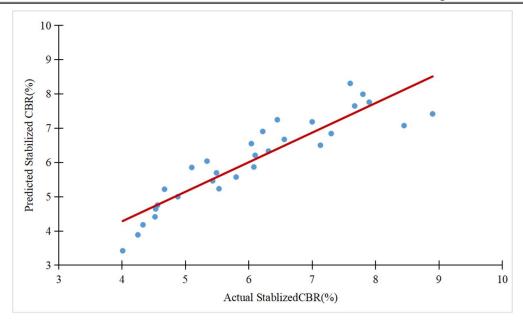


Fig. 8.2: Validation plot of stabilized CBR

Thirty (30) disturbed soil samples stabilized with five to thirty percent scrap tyres of varying sizes are subjected to regression analysis. The size of the scrap tyre, scrap tyre percentage, the normal soil CBR, and the thickness of the pavement are the independent variables, and the stabilized CBR is the dependent variable. The prediction models for the Soaked CBR of the soil transformed by scrap tyres appear to be reasonably accurate in predicting the corresponding real results. Significant correlations ($R^2 = 0.84$, adjusted $R^2 = 0.8163$) have been observed when these variables have been estimated using regression analysis. The model equation developed from this analysis produces a very good response prediction since the equation can be utilized to estimate soaking CBR. The test findings are consistent with the correlation equation established from regression analysis.

8.5 SUMMARY

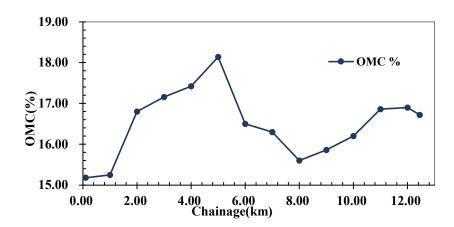
This chapter has presented the results of the regression analysis conducted to establish relationships between various factors influencing the performance of the cohesive subgrade modified with tyre scrap. The chapter has provided a detailed explanation of the statistical models developed, including the choice of independent variables, the regression equations formulated, and the statistical significance of the results. The regression models demonstrated

good predictive capability, with high R-squared values indicating that the models effectively captured the variation in the data. Additionally, the chapter has been discussed the implications of these results in the context of subgrade design, offering insights into how tyre scrap modifications can be optimized for better pavement performance.

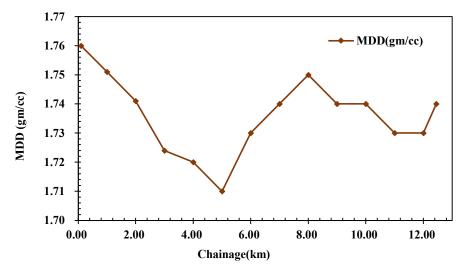
In summary, the chapter has been made a valuable contribution to the research by measuring the connections among tire scrap content, soil characteristics, and subgrade performance.

CHAPTER 9 DISCUSSION

9.1 OVERVIEW


Various observations from laboratory, field test and numerical analysis results have been obtained from the present work, which has been discussed in that section.

9.2 LABORATORY TEST RESULTS


One of the primary goals of the current study is to determine the CBR for both normal soil and soil modified with shredded tyre scraps. In order to do this, modified Proctor tests have been carried out on a variety of samples, resulting in a range of maximum dry density values, during both test phases that focused on compaction properties (i.e., OMC and MDD). Furthermore, CBR tests have been conducted on samples of both normal soils collected from existing road subgrade and soil mixed with shredded tyre material. These CBR tests are used to evaluate the mechanical strength of the road subgrade using a penetration test. The following observations have been derived from the laboratory tests conducted in both cases.

9.2.1 Modified Proctor and CBR Test Results

Figures 9.1, 9.2, and 9.3 show the changes in the Modified Proctor and CBR test results within the chainage range of 0.00 km to 12.45 km based on Table 5.3.

Fig. 9.1: Variations in Optimum moisture content (OMC) test results with respect to road chainage

Fig. 9.2: Variations in Maximum dry density (MDD) test results, with respect to road chainage

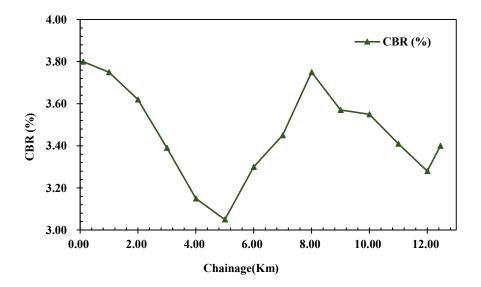
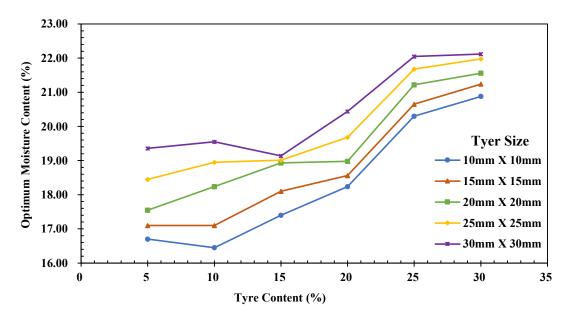
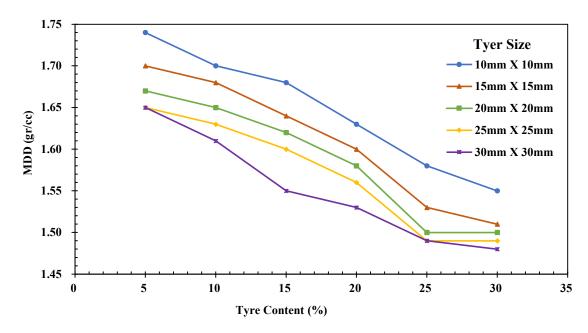



Fig. 9.3: Variations in CBR test results, with respect to existing road chainage


According to Table-5.3 and Figs. 9.1,9.2 and 9.3, the test results show no significant variations across the chainage range. It can be assumed that the soil properties remain relatively consistent over the whole length of the road based on the soil description and other index properties. There are very slight variations in the subgrade soil's CBR value along the length of the pavement.

It has been observed from Table 5.7 that MDD of soil-shredded tyre scrap mixtures have reduced marginally. This reduction is attributed to the lower density of waste tyres compared

to clayey soil. Due to the high absorption capacity of waste tyre scrap mix soil, the OMC increases as the amount of tyre content increases (Md. Zain et al. 2022 and Akbarimehr et al. 2019). The variations in OMC, MDD, and CBR for soil mixed with varying sizes of shredded tyre scrap at different percentages are illustrated in Figures 9.4, 9.5, and 9.6.

Fig. 9.4: Variation in Optimum moisture content (OMC) test results for soil mixed with different sizes of shredded tyre scrap of different percentages

Fig. 9.5: Variation in Maximum dry density (MDD) test results for soil mixed with different sizes of shredded tyre scrap of different percentages

Fig. 9.6: Variation in soaked CBR test results for soil mixed with different sizes of shredded tyre scrap of different percentages

From the above depicted Figs.9.4, Fig.9.5, Fig.9.6 and Table 5.7, it is evident that the optimum value of soaked CBR obtained was 8.90 at 10% of tyre scrap for a size of (15mmX15mm). A significant improvement of about 164% or 2.64 times was observed compared to the soaked CBR value of 3.36 obtained for the normal soil.

The results show that adding the optimum 10% of scrap tyre material with dimensions of 15 mm × 15 mm significantly improves CBR. However, for all rubber size ranges, CBR gradually decreased beyond a certain proportion of tyre scrap. This may be attributed to the high elasticity of tyre scrap, which results in lower penetration resistance compared to soil.

9.3 FIELD TEST RESULTS

9.3.1 Traffic Study

i. A 7-day traffic census was performed to determine CVPD, essential for estimating pavement thickness based on anticipated traffic volumes.

ii. In order to determine the VDF, which measures the effect of varying axle loads on the pavement and permits a design customized for different vehicle types, an axle load test has been conducted.

- iii. Utilizing IIT PAVE software and following IRC 37: 2018 guidelines, the design process integrates CVPD and VDF to assess the pavement's ability to withstand expected traffic loads. iv. The design was applied to two types of subgrades: normal soil and tyre mix soil, with the latter incorporating recycled tyre materials to enhance durability and sustainability.
- v. The methodology included three trial runs for each subgrade type, focusing on analysing vertical strain at the top of the subgrade and tensile strain at the base of the bituminous layer, crucial for assessing the pavement's resistance to deformation and cracking.
- vi. This comprehensive approach ensures the creation of a robust, durable pavement structure tailored to specific traffic demands and grounded in the latest research and standards.

9.3.2 Dynamic Cone Penetration Test (DCPT) Result

Based on Table 6.13, Fig.9.7 shows a comparison bar chart between in-situ CBR and Laboratory CBR.

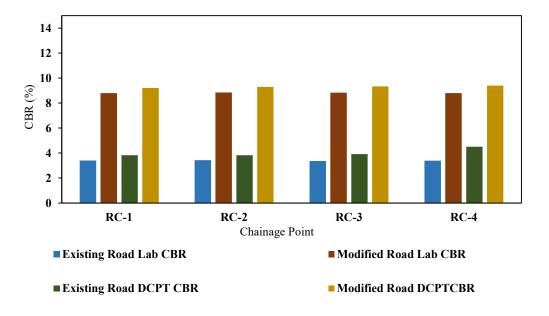


Fig. 9.7: Comparison bar chart between Laboratory CBR and In-situ CBR

It is evident from the data that there is no significant difference between the laboratory values and DCPT oriented in-situ CBR values for existing pavement. This may be due to the presence of nearby water bodies. In general, both laboratory and DCPT CBR values exhibit a consistent trend along the road stretch. In most instances, the DCPT CBR values slightly surpass the laboratory CBR values (Bandyopadhyay and Bhattacharjee,2010). The original minimum insitu CBR value mentioned is 3.82, which is the result of DCPT on the original soil without any modifications. After modifying the subgrade with scrap tyres, the minimum in-situ CBR value improved to 9.21. The improvement stated is about 141%, or 2.41 times the original CBR value, which suggests a significant increase in the strength and likely the load-bearing capacity of the modified subgrade pavement compared to the original soil condition.

9.3.3 FWD Oriented Result

9.3.3.1 Subgrade deflection

In this study LLI serves as a characterization of the subgrade condition and proves valuable in predicting performance and assessing overall condition, as indicated in studies by Horak (2008), Talvik and Aavik (2009), and Solanki et al. (2019). To calculate the LLI, the average deflection values of D1200 and D1500 for both types of pavements have been considered according to Table 6.21. The resulting LLI values are described below-

LLI for existing pavement subgrade=LLI_{eps}=0.016mm

LLI for modified pavement subgrade= LLI_{mps}=0.008mm

This means that the decrease of LLI for modified subgrade with respect to that of the existing subgrade becomes $[(0.016-0.008) \times 100/0.016)]$ %=50 %.

Thus, the obtained data suggests that the improvement, in the form of decrease of LLI, is 50%.

Fig. 9.8 shows the variation of deflection for both pavements

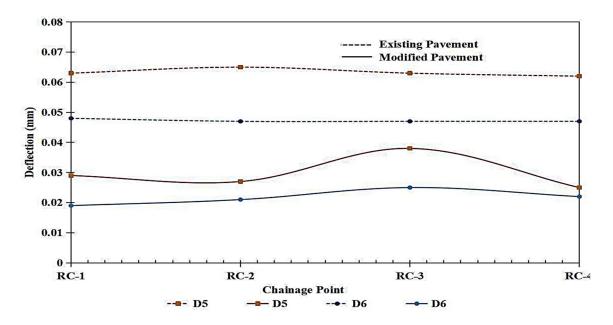
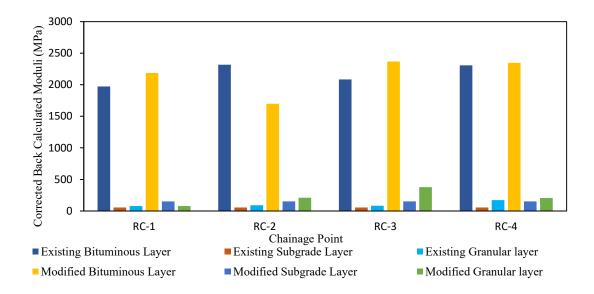


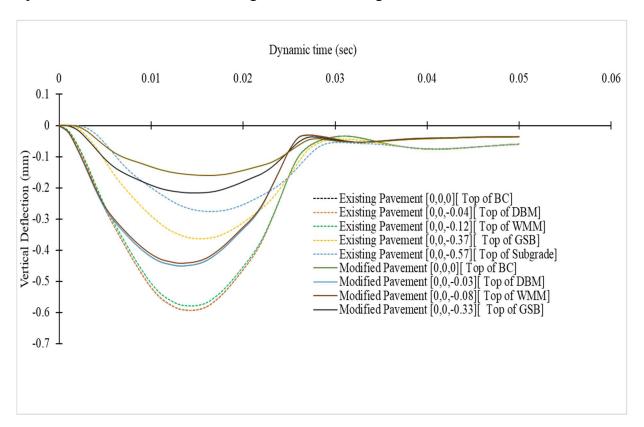
Fig. 9.8: Deflection variation in subgrade for both the pavements

LLI provides a quantitative measure of the subgrade's ability to distribute loads and effectively characterizes the stiffness and load-bearing capacity of the subgrade. The LLI values are indicative of the structural integrity of the subgrade (Horak,2008). This implies that the LLI is exceptionally capable of identifying possible structural issues in the subgrade. A lower LLI value suggests a stiffer subgrade that is better at distributing loads, thus implying a potentially longer lifespan and reduced maintenance needs for the pavement (Fuentes et al. 2022). Here, the LLI of the existing Pavement Subgrade indicates a relatively less stiff subgrade. This could translate to a higher likelihood of deformations under load, leading to potential issues like rutting or cracking in the overlying pavement layers. LLI of modified pavement subgrade suggests a considerable improvement in subgrade stiffness. This could be a result of modifications like the incorporation of materials (e.g., scrap tyres) that enhance the load-bearing capacity. A stiffer subgrade as indicated by this lower LLI value could lead to better load distribution, reduced strain on the pavement layers, and potentially a longer lifespan for the pavement.

9.3.4 Elastic Modulus (Es) of Subgrade

Based on Table 6.18, Fig. 9.9 clearly illustrates that in the case of the scrap tyre-modified subgrade pavement. Comparing the modified pavement to the existing pavement, it has been observed that there has been an increase in the elastic modulus for subgrade.




Fig. 9.9: Corrected back calculated Moduli chart for both the pavements

This study provides crucial insights into the comparative performance of existing pavement and scrap tyre modified subgrade pavement. Utilizing FWD for deflection measurements and the KGP-BACK software for back-calculating moduli values, the analysis aligns with the standards set forth in IRC:115-2014. For the existing pavement, the elastic modulus (E_{eps}) is measured at 56.22 MPa. This value falls within the typical range (20 to 100 MPa) for conventional pavement structures, indicating a standard level of stiffness. Such a modulus level suggests that the pavement is likely to perform adequately under normal traffic conditions (Solanki et al. 2016). However, this also implies potential limitations in its load-bearing capacity, possibly making it more susceptible to wear and degradation over time. In contrast, the modified pavement, characterized by an elastic modulus (E_{mps}) of 151.09 MPa, exhibits a markedly higher stiffness level of 2.68 times with respect to the existing pavement due to the integration of scrap tyre materials. This substantial increase in modulus points to an enhanced load-bearing capacity and overall structural integrity. Consequently, pavements

with such modifications are expected to offer improved durability, resist deformation more effectively, and potentially enjoy a longer service life (Talvik and Aavik 2009). The observation that the scrap tyre modified pavement has a much greater modulus than the existing pavement demonstrates the usefulness of using recycled materials to improve pavement performance.

9.4 NUMERICAL RESULTS

Deflection of different pavement layer with pulse duration for both existing and modified pavement has been illustrated in Fig. 9.10, based on Figs.7.3 and 7.4.

Fig. 9.10: Vertical deformation for both pavements as a function of dynamic time at the layer borders and on the pavement surface

It is evident from Fig. 9.10 that, vertical deflections of different boundary layers for modified pavement are less than that of existing pavement. It is due to the fact that resistance due to load of scrap tyre modified soil subgrade is higher than the existing soil, though the thickness of the pavement is less for modified soil subgrade pavement.

A comparison curve illustrating the surface deflection bowl for both existing and modified pavement is shown in Fig. 9.11, based on data from Table 7.3 and 7.4.

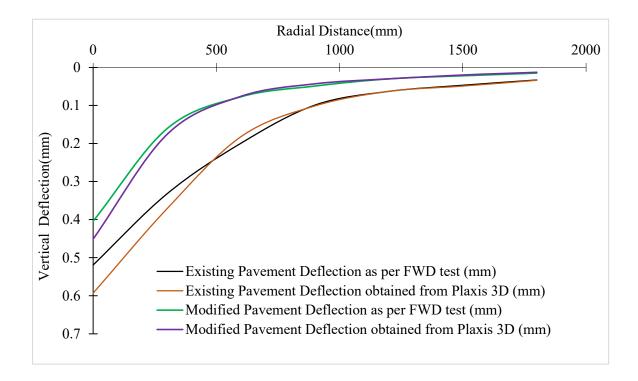


Fig. 9.11: Comparison of vertical deflection bowl for both the pavements

From Fig. 9.11, it is apparent that there is generally good agreement between the measured FWD test values and the PLAXIS 3D simulation results, with variations ranging from -8.54% to +14.26% for existing pavement and variations ranging from -13% to +12% for modified pavement. The discrepancies observed may be attributed to factors such as modelling assumptions, material properties, or boundary conditions. Further analysis and calibration may be needed to refine the numerical model for more accurate predictions.

Overall, the acceptance of dynamic FE analysis as a technique for FWD back analysis verification suggests that the procedure is quite promising. This result implies that this method might also be used to verify the material properties utilized in pavement construction. For instance, the dynamic FE analysis may be utilized to determine the expected deflection bowl.

9.5 EFFECT OF SCRAP TYRE ON SUBGRADE

9.5.1 Discussion on Impact of Thickness of Pavement

i. Based on the pavement thickness analysis presented in section 6.2.3.1, it is evident that the CBR value exerts a substantial impact on pavement design. Higher CBR values indicate stronger subgrade materials that can withstand heavier loads without excessive deformation. In such cases, thinner pavement layers may be required as the subgrade provides better support to the overlying pavement structure.

ii. For normal soil subgrade with a CBR of 3.36, the pavement thickness has been calculated as 570mm. By incorporating 10% shredded rubber tyres, the CBR value increased to 8.90, which allowed for a reduction in pavement thickness to 480mm. This modification resulted in a decrease of 90mm in pavement thickness, amounting to a significant reduction of 18.75%. This highlights the effectiveness of using a tyre-modified subgrade to reduce pavement thickness, as detailed in Table 9.1. The basic design analysis for pavement thickness has been discussed in section 6.2.3.

Table 9.1: Different layer pavement thickness for normal and tyre scrap mixed soil

Category	Layers	Pavement thickness of existing road Subgrade	Pavement thickness for scrap tyre modified subgrade	
Bituminous	BC	40mm	30mm	
Layer	DBM	80mm	50mm	
Caranta a larva	WMM	250mm	250mm	
Granular layer	GSB	200mm	150mm	
Total thickness		570mm	480mm	
Difference in thickness			90mm	

9.5.2 Discussion on Impact of Subgrade Strain (EV)

The analysis and calculations derived from section 6.2.3, indicate important findings about the behaviour of pavement under stress and the impact of modifications on subgrade strain.

i. Maximum Vertical Compressive Strain (ε_{mvc}) Analysis: According to the analysis based on IRC 37:2018, for both kinds of pavements, the maximum vertical compressive strain at the

top of the subgrade is determined to be 0.6276×10^{-3} with a traffic load of 13.74 MSA. This value serves as a reference point for comparing the performance of existing and modified pavements.

ii. Calculated Vertical Compressive Strain ($\varepsilon_{\rm evc}$) from Laboratory CBR: After conducting IIT PAVE analysis using Laboratory CBR values for both pavement types, the $\varepsilon_{\rm evc}$ for existing and modified pavements were found to be 0.6168×10^{-3} and 0.4915×10^{-3} respectively, according to Table 6.5 and Table 6.6. These values are crucial for evaluating the effectiveness of pavement modifications. Fig.9.12 shows the locations of critical strain in a pavement section.

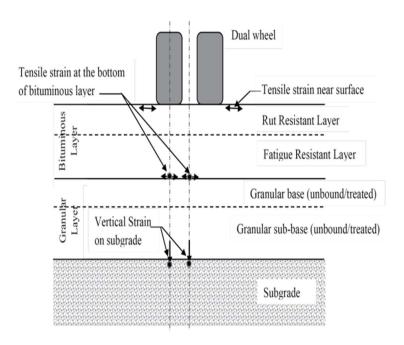
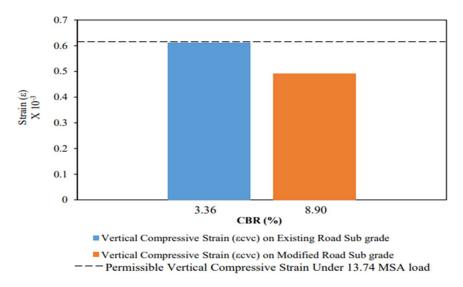



Fig. 9.12: Pavement Section Showing the Locations of Critical Strains. (IRC 37:2018)

iii. Comparison of ε_{cvc} to ε_{mvc} : The analysis reveals that for the normal subgrade, the ε_{cvc} is 1.72% less than the ε_{mvc} . In contrast, for the modified subgrade, ε_{cvc} is 21.68% less compared to ε_{mvc} . This significant reduction in strain for the modified pavement highlights the positive impact of the modifications on reducing subgrade stress. Fig. 9.13 illustrates the comparison chart between $\varepsilon_{cvc}vs.\varepsilon_{mvc}$.

Fig. 9.13: Comparison chart between $\varepsilon_{\rm evc}$ vs. $\varepsilon_{\rm mvc}$

iv. Impact of Modifications on Subgrade Strain: The data indicates a substantial reduction in $\varepsilon_{\rm cvc}$ for the modified subgrade compared to the normal subgrade. Specifically, $\varepsilon_{\rm cvc}$ of the modified subgrade is 20.31% less than that of the normal subgrade. This reduction underscores the effectiveness of using scrap tyres in modifying the subgrade, which leads to a more stable and durable pavement by reducing the strain on subgrade soil.

The analysis showcases the advantages of pavement modifications, particularly the use of scrap tyres, in enhancing the stability and durability of the pavement by lowering the subgrade's vertical compressive strain significantly. This finding is instrumental for pavement engineering, offering a sustainable approach to improving pavement performance and longevity.

9.6 IMPACT OF COSTS ON MODIFIED PAVEMENT CONSTRUCTION

For a pavement of length 1 km, width of 5.5 m, and a subgrade depth of 500 mm, the calculated volume of the subgrade (V) is $(0.500 \times 5.5 \times 1000) = 2750 \text{ m}^3$. The required amount of soil for the modified pavement will be 2705 m^3 and the scrap tyre amount will be 420 ton to achieve the same condition of obtaining a modified CBR of 8.90 from a normal soil CBR of 3.36 and to achieve the subgrade volume of 2750 m^3 . Based on market prices, the costs for subgrade

soil and scrap tyres, including purchase, mobilization, and preparation, are detailed in Table-9.2.

Table 9.2: Quantity and cost analysis of flexible pavement for normal and tyre scrap modified subgrade

Material	Quantity required for per Km of existing pavement subgrade	Quantity required for per Km of modified pavement subgrade	Unit costs (INR) for material, mobilisation, and processing as per local market for pavement subgrade	Costs (INR) for material, mobilisation, and processing as per local market for existing pavement subgrade	Costs (INR) for material, mobilisation, and processing as per local market for modified pavement subgrade
Soil(m³)	2750	2478	630	1732500.00	1561140.00
Tyre Scrap (Ton)	0	420	4600	0.00	1932000.00
		Total costs		1732500.00	3493140.00

It has been observed from the thickness design that there had a thickness reduction in pavement of around 90mm. Due to this reduction a cost cut has been observed with respect to surface, base and subbase layer. According to the study scrap tyre material were mixed with subgrade soil. Hence for proper estimation, cost analysis for scrap tyre material has been made and presented on Table 9.3 by following WB Govt PWD, India, Roads Schedule of rates - 2018 with 10th Corrigendum. Detail cost estimate and rate analysis are attached in Annexure-VI.

Table 9.3: Thickness and costs analysis of flexible pavement for normal and tyre scrap modified subgrade

Pavement component	Layers	Thickness with untreated Soil Subgrade(mm)	Thickness with scrap tyre modified Soil Subgrade(mm)	Per Km costs (INR) for untreated pavement	Per Km costs (INR) for scrap tyre modified pavement
Bituminous	BC	40	30	1888893.60	1416670.20
Layer	DBM	80	50	3454066.36	2158791.23
Consular larvas	WMM	250	250	3821620.00	3821620.00
Granular layer	GSB	200	150	2914021.59	2185515.79
Subgrad	e	500	500	1732500	3493140
			Total costs=	13811101.55	13075737.22
]	Hence cost difference=	735364.33	
Reduction in c	ost percen	tage with respect	to existing pavement	5.30%	

India's 2021 Scrap Vehicle Policy, designed to replace old vehicles with new, environmentally friendly ones, has led to more vehicles and scrap tyres being scrapped. This has caused an increase in scrap tyre supply without a matching demand increase, typically leading to lower prices. With the policy continuing, the current 5.30% price reduction can be expected to grow. This trend aligns with economic principles and the expected ongoing impact of the policy on scrap tyre availability. This cost reduction will influence in case of pavement construction with very large length.

9.7 SUMMARY

The Chapter has presented the results from laboratory tests, field studies, and numerical simulations. The chapter highlights the improvements in subgrade performance due to the addition of scrap tyres, evidenced by increased CBR values and reduced deflections. The discussion also explores the implications of these findings for pavement design, emphasizing the potential for using tyre scrap as a sustainable material in road construction. Furthermore, cost analysis has been shown for untreated pavement and modified pavement with scrapped tyre.

CHAPTER 10 SUMMARY AND CONCLUSIONS

10.1 SUMMARY

To study the performance improvement of clayey subgrade with the addition of scrap tyre admixtures, soil samples were collected at each Km chainage along the Jibantala-Taldi Road, which spans 12.45 km in length and 5.5 m in width. Soil samples have been obtained from each chainage, and several tests have been carried out on them, such as the Modified Proctor Compaction test, CBR test, specific gravity, Atterberg Limits, and grain size distribution. The CBR values from 14 distinct chainage points have been taken into account in determining the design CBR value. Soil samples from chainages such as 3.00 km, 6.00 km, 7.00 km, 11.00 km, 12.00 km, and 12.45 km were collected based on the closest design CBR value, then mixed and retested mainly for UU, Modified Proctor, and CBR. The mixed soil was further combined with different sizes (10mm x 10mm, 15mm x 15mm, 20mm x 20mm, 25mm x 25mm, and 30mm x 30mm) and proportions (5%, 10%, 15%, 20%, 25%, and 30%) of tyre scrap to determine the optimum CBR value and the respective tyre size and proportion, which was found to be 15mm x 15mm and 10%. An axle load test and traffic census were conducted on the existing Jibantala-Taldi Road. Pavement design was carried out using IIT PAVE, considering the design CBR for the existing pavement to determine the actual pavement thickness of 570mm, and another design using the optimum CBR, keeping all conditions the same as the existing road, which resulted in a thickness of 480mm. A new or modified pavement stretch of 30m in length, 5.5m in width, and 480mm in thickness, with a tyre scrapmodified subgrade depth of 500mm, was constructed. DCPT on the modified subgrade and FWD on the pavement were performed to obtain field CBR, FWD-oriented deflection of subgrade in terms of LLI, and Elastic Modulus (Es). PLAXIS 3D Dynamic FE modelling of the FWD test was conducted to create an approximate simplified numerical model and use

experimental data to validate the findings. A regression method using MINITAB statistical software was employed to establish a relationship among modified CBR as the dependent variable and normal soil CBR, size of scrap tyre, percentage of scrap tyre, and pavement thickness as independent variables.

10.2 CONCLUSIONS

Based on the current investigation, the following conclusions can be made:

- a) The existing road subgrade soil properties indicate minimal variation in soil characteristics. Considering the different change values, the design CBR has been determined to be 3.36 from 14 different chainage CBR values.
- b) Soil from various chainages was collected based on the closest design CBR value, then mixed and retested for UU, Proctor and CBR. The CBR of the mixed soil was 3.37, after which it was mixed with tyre scrap for further testing.
- c) The addition of 10% shredded rubber tyre, sized 15mm × 15mm, to normal mixed soil produces a modified CBR value of 8.90, which increases the soaked CBR value from 3.36 by 164%. However, further addition decreases it. Thus, 10% is the optimal amount for soaked conditions.
- d) An effort was made to determine the pavement design by considering both the existing pavement CBR and the optimum CBR. The design was made for both CBR values, based on the condition of the existing Jibantala-Taldi Road. To achieve this, a traffic census and axle load survey were conducted.
- e) The pavement thickness was determined using the IRC method through IIT PAVE software. Incorporating 10% shredded rubber tyre (15mm × 15mm) reduced the pavement thickness by 18.75%, from 570mm to 480mm, which is a 90mm reduction compared to the normal soil subgrade.

- f) A new pavement of stretch 30m, width 5.5m, thickness 480mm and tyre scrap modified subgrade depth 500mm was constructed to test DCPT on the modified subgrade and FWD on the pavement, to get field CBR and FWD oriented deflection in terms of LLI and Elastic Modulus (E_s).
- g) The current study showed that incorporating 10% shredded rubber tyre, sized 15mm × 15mm, into the subgrade soil significantly improved its CBR value for both laboratory and in-situ CBR values determined by DCPT. Specifically, for the modified pavement, the in-situ DCPT-measured CBR increased by 141%, compared to the existing pavement.
- h) The modified subgrade with 50% lower LLI with respect to the existing subgrade, indicates enhanced stiffness and load-bearing capacity, likely due to scrap tyre material, leading to improved load distribution, less strain on layers, and extended pavement lifespan.
- i) The scrap tyre-modified pavement's modulus is 2.68 times higher than the existing pavement, indicating that using recycled tyres improves pavement performance and offers a sustainable solution for more durable roads.
- j) Overall acceptance of dynamic FE analysis suggests promising applications in pavement construction. Resistance due to load in modified soil subgrade results in lower vertical deflections.
- k) Regression analysis on 30 soil samples stabilized with varying scrap tyre percentages and sizes. Strong correlations have been found ($R^2 = 0.84$, Adjusted $R^2 = 0.8163$) between modified soil CBR and input parameters. Model equations demonstrate good response prediction, enabling estimation of soaked CBR

10.3 CONTRIBUTION OF PRESENT INVESTIGATION TO THE EXISTING KNOWHOW IN LITERATURE

The present investigation significantly contributes to the existing body of knowledge on the use of waste materials, specifically tyre scrap, in civil engineering applications, particularly

in the stabilization of subgrade soils for flexible pavements. The key contributions are as follows:

- a) Enhanced Understanding of Soil-Tyre Interaction: This study provides a detailed analysis on influence of different sizes and proportions of tyre scrap on the mechanical properties of cohesive subgrade.
- b) Validation through Field and Laboratory Studies: By conducting both laboratory tests and field studies, the research bridges the gap between controlled experimental conditions and real-world applications. This dual approach validates the effectiveness of tyre scrap in improving subgrade performance.
- c) Innovative Use of PLAXIS 3D for Subgrade Analysis: The study introduces the use of PLAXIS 3D modelling to simulate and analyse the performance of tyre-modified subgrades under dynamic loading conditions. This application of advanced numerical methods enhances the predictive capabilities of pavement design and offers a novel approach for future research in geotechnical engineering.
- d) **Sustainable Engineering Practices**: The research advocates for sustainable construction practices by demonstrating the feasibility of repurposing waste materials in infrastructure projects. It provides a practical solution to the growing environmental issue of tyre waste, thus contributing to the development of more sustainable and eco-friendly civil engineering methodologies.
- e) Comprehensive Comparative Analysis: The research provides a strong foundation for assessing the advantages and drawbacks of utilizing tire waste in pavement construction through its comparative analysis of traditional and tyre-modified subgrades, which is backed by empirical data and regression analysis.

10.4 LIMITATION AND SCOPE OF THE FURTHER RESEARCH

10.4.1 Limitations of the Study

- a) Cohesive Subgrade Focus: The study's applicability is limited to cohesive subgrades. This limitation implies that the findings may not be directly transferable to non-cohesive subgrades, such as sandy or gravelly soils, which behave differently under load due to their lack of cohesion.
- b) Impulse Load Consideration: The research exclusively examines the effects of impulse loads. This focus excludes dynamic loads, such as those caused by moving vehicles, which can induce different stresses and deformations in road materials.
- c) Long-Term Performance: The study primarily focuses on short-term performance improvements. However, the long-term durability and behavior of the modified subgrade, particularly under continuous traffic loading and environmental exposure, remain uncertain and require further investigation.
- d) Single Road Stretch Analysis: The investigation was conducted on a singular stretch of road. Different road stretches, even within the same region, can have varying conditions such as soil type, traffic patterns, and maintenance history, which might influence the study's applicability to other contexts.

These limitations highlight the specific context in which the study's findings are valid and point towards areas for future research, such as expanding the scope to include non-cohesive subgrades, considering dynamic loads, and analysing multiple road stretches for broader applicability.

10.4.2 Scope of Future Research

- a) The study may be extended for granular Subgrade.
- b) The study may be extended for cyclic load simulating some traffic load with relevant soil properties under cyclic loading.

- c) the long-term durability and behaviour of the modified subgrade, particularly under continuous traffic loading and environmental exposure require further investigation
- d) The study may be extended with collection of real-life data for both cohesive and non-cohesive Subgrade and analysis by Artificial intelligence (AI) and Machine Learning (ML) for predicting performance in terms of variation of E of Subgrade with soil and scrapped tyre parameters.
- e) Design of a high-capacity batching plant and uniform mixer for efficient scrap tyre cutting and mixing, which may be done as interdisciplinary work with Mechanical Engineering.
- f) The investigation into subgrade performance with scrap tyre material through uniform mixing in different zones, such as the first 150 mm of the subgrade, the middle 150 mm, or the last 200 mm layer, will be conducted. The results from this type of mixing will be analysed, and the findings could prove to be economical.

REFERENCES:

- 1. Adigopula, V. K. (2022). A Simplified Empirical Approach for Prediction of Pavement Layer Moduli Values Using Lightweight Deflectometer Data. International Journal of Pavement Research and Technology, 15(3), 751–763. https://doi.org/10.1007/s42947-021-00050-0.
- 2. Akbarimehr, D., Aflaki, E., & Eslami, A. (2019). Experimental investigation of the densification properties of clay soil mixes with tire waste. Civil Engineering Journal, 5(2), 363–372.
- 3. Akshatha B A, Abhijith Jain, & Zaheer Ahmed. (2018). Stabilization Of Laterite Soil with Waste Tire Rubber. International Journal of Engineering Sciences & Research Technology (A Peer Reviewed Online Journal) Impact, 181–187. https://doi.org/10.5281/zenodo.2294960.
- 4. Alam*, Mohd., Nazim, M., & Singh, Dr. S. K. (2020). Deterioration Pattern of Flexible Pavement with the Help of Falling Weight Deflectometer. International Journal of Innovative Technology and Exploring Engineering, 9(8), 737–744. https://doi.org/10.35940/ijitee.H6755.069820.
- 5. Al-Neami, M. A. (2018). Stabilization of sandy soil using recycle waste tire chips. International Journal of GEOMATE, 15(48), 175–180. https://doi.org/10.21660/2018.48.180228.
- 6. Amin, H., Khan, B. J., Ahmad, M., Hakamy, A., Sikandar, M. A., Sabri, M. M. (2023). Evaluation of shear strength parameters of sustainable utilization of scrap tires derived geo-materials for civil engineering applications. Frontiers in Earth Science, 11. https://doi.org/10.3389/feart.2023.1116169.
- 7. Apriyono, A., Sumiyanto, Gusmawan, D. D. (2017). Application of woven tires waste as soft clay subgrade reinforcement for preventing highway structural failure. AIP Conference Proceedings, 1818. https://doi.org/10.1063/1.4976868
- 8. Bai, J., Zhang, Y., & Wu, S. (2020). Review Study of Physical and Mechanical Characteristics on Mixed Soil with Scrap Tire Rubber Particles. In Jordan Journal of Mechanical and Industrial Engineering (Vol. 14, Issue 1).
- 9. Bandyopadhyay, K., & Bhattacharjee, S. (2010). Comparative Study Between Laboratory and Field CBR by DCP and IS Method. Indian Geotechnical Conference, IGS Mumbai Chapter, 1011–1014.
- 10. Chai, G. W., Argadiba, S., Stephenson, G., Condric, I., Oh, E. Y., & Manoharan, S. P. (2013). Prediction of subgrade CBR using FWD for thin bituminous pavements. International Journal of Pavement Research and Technology, 6(4), 280–286. https://doi.org/10.6135/ijprt.org.tw/2013.6(4).280.

- 11. Chaudhary, P. M., Chaudhary, P. B., Desai, B. H., & Deshmukh, R. (2021). Design and Performance of Highway Pavement Reinforced with Geosynthetic. In S. Patel, C. H. Solanki, K. R. Reddy, & S. K. Shukla (Eds.), Proceedings of the Indian Geotechnical Conference 2019 (pp. 351–363). Springer Singapore.
- 12. Coonse, J. (1999), Estimating California Bearing Ratio of COHESIVE piedmont Residual Soil using the Scala Dynamic Cone Penetrometor, Master's thesis, North Carolina State University, Raleigh, N
- 13. Dargay, J. (2007). Worldwide: 1960-2030 Article in The Energy Journal. Vehicle Ownership and Income Growth. https://doi.org/10.2307/41323125
- 14. Dhorajiya Pradip, Mayank Kanani, Yashwantsinh Zala. (2019). Utilization of Waste Rubber Tyre as Reinforcement in Flexible Pavement. Journal of Emerging Technologies and Innovative Research (JETIR), 6(4). www.jetir.org
- 15. Díaz Flores, R., Aminbaghai, M., Eberhardsteiner, L., Blab, R., Buchta, M., & Pichler, B. L. A. (2023). Multi-directional Falling Weight Deflectometer (FWD) testing and quantification of the effective modulus of subgrade reaction for concrete roads. International Journal of Pavement Engineering, 24(1). https://doi.org/10.1080/10298436.2021.2006651
- 16. Ese, Dag, Myre, Jostein, Nos, Per Magne, and Vaernes, Einar. (1994), the Use of Dynamic Cone Penetrometer (DCP) for road strengthening design in Norway, Proc., Int. Conf. on Bearing Capacity of Rd. and Airfield. pp3-22
- 17. Farhana Tabasum, S. D., Laharipriya, M., Saranya, V., Jyothsna, Y., Dharani, D., Lakshmi, M. V. An Experimental Study on Stabilization of Soil by using Shredded Rubber Tyre. www.ijfmr.com
- 18. Fuentes, L., Taborda, K., Hu, X., Horak, E., Bai, T., & Walubita, L. F. (2022). A probabilistic approach to detect structural problems in flexible pavement sections at network level assessment. International Journal of Pavement Engineering, 23(6), 1867–1880. https://doi.org/10.1080/10298436.2020.1828586
- 19. Gabr, M. A., Hopkins, K., Coonse, J., & Hearne, T. (2000). DCP criteria for performance evaluation of pavement layers. Journal of Performance of Constructed Facilities, 14(4), 141–148.
- 20. Garga, V. K., & O'shaughnessy, V. (2000). Tire-reinforced earthfill. Part 1: Construction of a test fill, performance, and retaining wall design.
- 21. Goutami, K., Murthy, K., Sandhya Rani, D., Tech Student, M., & Guide, P. (2017). Flexible Pavement Design and Comparison of Alternative Pavements using IRC 37-2012 IITPAVE. In IJSRD-International Journal for Scientific Research & Development (Vol. 5). www.ijsrd.com
- 22. Government of India (2021), Union Budget, Ministry of Finance, New Delhi.
- 23. Hambleton, J. P., & Drescher, A. (2009). Modelling wheel-induced rutting in soils: Rolling. Journal of Terra mechanics, 46(2), 35–47.
- 24. Harish G. R. (2017). Analysis of Flexible Pavements using IIT Pave. Imperial Journal of Interdisciplinary Research (IJIR) Vol-3, Issue-6, 2017 ISSN: 2454-1362.
- 25. Harison, J. A. (1987). Correlation Between California Bearing Ratio and Dynamic Cone Penetrometer Strength Measurement of Soils. Technical Note 463. Proceedings of the Institution of Civil Engineers, 83(4), 833–844.

- 26. Horak E. (2008). Benchmarking the structural condition of flexible pavements with deflection bowl parameters. Journal of the South African Institution of Civil Engineering, 50(2), 2–9.
- 27. Howard, I. L., & Warren, K. A. (2009). Finite-element modelling of instrumented flexible pavements under stationary transient loading. Journal of Transportation Engineering, 135(2), 53–61.
- 28. HUANG, Y. H. (2004). Pavement Analysis and Design. America.
- 29. Hussainbhi Binginapalli, Sridhar K, Naidu V Mahalakshmi, & Mahalakshmi Naidu, V. (2021). An Analytical study on flexible pavement and rigid pavement design of a Road. International Journal of Research in Engineering and Science (IJRES) ISSN, 09(10), 81–88. www.ijres.org
- 30. Ibrahim, & Osinubi, K. J. (2022). Stabilization of Lateritic Soil with Scrap Tyre Crumb Rubber.
- 31. IRC: 37-2018 "Guidelines for the Design of Flexible Pavements", New Delhi, 2018.
- 32. IRC 115. (2014). 'Guidelines For Structural Evaluation and Strengthening of Flexible Road Pavements Using Falling Weight Deflectometer (Fwd.) Technique', New Delhi.
- 33. IS 2720 (Part II) (1973):"Determination of water content". Bureau of Indian Standards, New Delhi.
- 34. IS 2720 (Part III) (1980): "Determination of Specific gravity" Bureau of Indian Standards, New Delhi.
- 35. IS 2720 (Part IV) (1985): "Determination of Grain Size" Bureau of Indian Standards, New Delhi.
- 36. IS 2720 (Part V) (1985): "Determination of Liquid and Plastic limit" Bureau of Indian Standards, New Delhi.
- 37. IS 2720 (PART VIII) (1983): 'Determination of water content-dry density relation using heavy compaction' Bureau of Indian Standards, New Delhi.
- 38. IS 2720 (Part XI) (1993): 'Determination of the shear strength parameters of a specimen tested in unconsolidated undrained triaxial compression without the measurement of pore water pressure'. Bureau of Indian Standards, New Delhi.
- 39. IS 2720 (Part XVI) (1987): "Determination of California Bearing Ratio "Bureau of Indian Standards, New Delhi.
- 40. Jastrzębska, M. (2019). Strength characteristics of clay-rubber waste mixtures in UU triaxial tests. Geosciences (Switzerland), 9(8). https://doi.org/10.3390/geosciences9080352
- 41. Johns, D., Deepakraja, T. G., & Karthiga Devi, M. (2017). Use Of Waste Tyre as Subgrade in Flexible Pavement. International Research Journal of Engineering and Technology.
- 42. Juliana, I., Fatin, A. R., Rozaini, R., Masyitah, M. N., Khairul, A. H., & Nur Shafieza, A. (2020). Effectiveness of crumb rubber for subgrade soil stabilization. IOP Conference Series: Materials Science and Engineering, 849(1). https://doi.org/10.1088/1757-899X/849/1/012029
- 43. Kleyn, E. G. (1975). The use of the dynamic cone penetrometer (DCP). Transvaal Provincial Administration.
- 44. Kleyn, E. G., & Savage, P. F. (1982). Application of the pavement DCP to determine the bearing properties and performance of road pavements.

- 45. Korolev, K. V. (2014). Intermediate bearing capacity of saturated bed of strip foundation. Soil Mechanics and Foundation Engineering, 51(1), 1–8.
- 46. Kumar Mohan A N, & Kumar Praveen P. (2020). Analysis of Flexible Pavement using IITPAVE Software and Economic Analysis of the Project using HDM-4 Software. International Journal for Research in Applied Science and Engineering Technology, 8(5), 2651–2657. https://doi.org/10.22214/ijraset.2020.5443.
- 47. Lee, J. S., Kim, S. Y., Hong, W. T., & Byun, Y. H. (2019). Assessing subgrade strength using an instrumented dynamic cone penetrometer. Soils and Foundations, 59(4), 930–941. https://doi.org/10.1016/j.sandf.2019.03.005.
- 48. Li, S., & Li, D. (2018). Mechanical Properties of Scrap Tire Crumbs-Clayey Soil Mixtures Determined by Laboratory Tests. Advances in Materials Science and Engineering, 2018. https://doi.org/10.1155/2018/1742676.
- 49. Livneh, M. (1987), the Use of Dynamic Cone Penetrometer in Determining the Strength of Existing Pavements and Subgrade, Proc. 9th Southeast Asia Geotechnical Conference, Bangkok, Thailand.
- 50. Livneh, M. (1989), Validation of Correlations between a number of Penetration Tests and in situ California Bearing Ratio Tests, Transportation Research Record 1219, pp56-67.
- 51. Livneh M, Ishai I, Livneh. (1994). Effect of vertical confinement on dynamic cone penetrometer strength values in pavement and subgrade evaluations. Transportation Research Record 1473, 1–8.
- 52. Loizos, A., Al-Qadi, I. L., & Scarpas, T. (n.d.). Bearing capacity of roads, railways and airfields: proceedings of the 10th International Conference on the Bearing Capacity of Roads, Railways and Airfields (BCRRA 2017), June 28-30, 2017, Athens, Greece.
- 53. Loizos, A., & Scarpas, A. (2005). Verification of falling weight deflectometer back analysis using a dynamic finite elements simulation. International Journal of Pavement Engineering, 6(2), 115–123. https://doi.org/10.1080/10298430500141030.
- 54. Mangi Naeem, & Sarki Faisal Ahmed. (2021). Improvement of subgrade soil by blending tyre driven aggregate (TDA). International Journal of Emerging Trends in Engineering Research, 9(6), 612–616. https://doi.org/10.30534/ijeter/2021/01962021.
- 55. Maree J. H., & Bellekens R. J. L. (1991). The effect of asphalt overlays on the resilient deflection bowl response of typical pavement structures. RP90/102. Chief Directorate National Roads, Pretoria, South Africa, 1991.
- 56. Maree J H, & Jooste F. (1999). Structural classification of pavements through the use of IDM deflection basin parameters. RDAC Report PR 91/325.
- 57. Marefat V, & Soltani-Jigheh H. (2011). Laboratory behavior of clay-tire mixtures. World Applied Sciences Journal, 13(5), 1035–1041.
- 58. Mashiri, M. S., Vinod, J. S., Sheikh, M. N., & Tsang, H. H. (2015). Shear strength and dilatancy behaviour of sand-tyre chip mixtures. Soils and Foundations, 55(3), 517–528. https://doi.org/10.1016/j.sandf.2015.04.004.
- 59. Mehta, A., Mishra, A., Nikumbh, K., Ponkshe, T., Graduate Student, U., Professor, A., & Shah, A. (2021). Design of Flexible Pavement as per IRC:37-2018 and using IIT-Pave Department of Civil Engineering. In IJSRD-International Journal for Scientific Research & Development (Vol. 9).

- 60. Momin, K. A., & Hamim, O. F. (2022). Pavement Management System Using Deflection Prediction Model of Flexible Pavements in Bangladesh. Lecture Notes in Civil Engineering, 184, 363–370. https://doi.org/10.1007/978-981-16-5547-0 34
- 61. Munnoli, P. M., Sheikh, S., Mir, T., Kesavan, V., & Jha, R. (2013). Utilization of rubber tyre waste in subgrade soil. C2013 IEEE Global Humanitarian Technology Conference: South Asia Satellite, GHTC-SAS 2013, 330–333. https://doi.org/10.1109/GHTC-SAS.2013.6629940
- 62. Murana, A. A., Uruaka, A. C. D., Chukwuma, O. (2019). in Axle Load Distribution and Failure Pattern on Highways in Nigeria: A Case Study of The Traffic Analysis on Jebba-Mokwa-Bokani Road in Niger State, Nigeria Axle Load Distribution and Failure Pattern on Highways in Nigeria: A Case Study of The Traffic Analysis on Jebba-Mokwa-Bokani Road in Niger State, Nigeria. In International Journal of Advances in Mechanical and Civil Engineering (Issue 6). http://iraj.
- 63. Nega, A., Nikraz, H., & Al-Qadi, I. L. (2016). Dynamic analysis of falling weight deflectometer. Journal of Traffic and Transportation Engineering (English Edition), 3(5), 427–437. https://doi.org/10.1016/j.jtte.2016.09.010
- 64. Nwanya, A. C., & Okeke, O. C. (2018). Using Dynamic Cone Penetrometer Tester to Determine CBR and Bearing Pressures of Subsurface Soils in Parts of Owerri, Southeastern Nigeria. European Journal of Engineering and Technology Research, 3(12), 1–7.
- 65. Pai, R. R., Patel, S., & Bakare, M. D. (2020). Applicability of Utilizing Stabilized Native Soil as a Subbase Course in Flexible Pavement. Indian Geotechnical Journal, 50(2), 289–299. https://doi.org/10.1007/s40098-020-00432-4
- 66. Pandey, A., Vanshaj, K., Singh, G., Yadav, S., & Srivastav, J. B. (2022). Design of flexible pavement using experimental and software approach. International Research Journal of Engineering and Technology.
- 67. Peddaiah S, & Suresh K. (2017). Experimental Study on Effect of Tyre Chips and Lime in Improvement of Strength Properties of Expansive Soils. International Journal of Civil Engineering and Technology (IJCIET), 8(10), 425–434.
- 68. Pradeep, A. (n.d.). Engineering Strength characteristics of soil partially replaced with waste paper sludge ash and scrap tyre rubber.
- 69. Promputthangkoon, P., & Karnchanachetanee, B. (2013). Geomaterial Prepared from Waste Tyres, Soil and Cement. Procedia Social and Behavioral Sciences, 91, 421–428. https://doi.org/10.1016/j.sbspro.2013.08.439
- 70. Rabbi, M. F., & Mishra, D. (2021). Using FWD deflection basin parameters for network-level assessment of flexible pavements. International Journal of Pavement Engineering, 22(2), 147–161. https://doi.org/10.1080/10298436.2019.1580366
- 71. Ravichandran, P. T., Prasad, A. S., Krishnan, K. D., & Rajkumar, P. R. K. (2016). Effect of Addition of Waste Tyre Crumb Rubber on Weak Soil Stabilisation. Indian Journal of Science and Technology, 9(5). https://doi.org/10.17485/ijst/2016/v9i5/87259
- 72. Razali, M., Mahmood, N. A. C., Hashim, K. A., Mansor, S., & Zainuddin, N. I. (2018). The falling weight deflectometer (FWD) for characterization bonding state of subgrade. AIP Conference Proceedings, 2020. https://doi.org/10.1063/1.5062648

- 73. Rokade S, & Azad, M. (2012). Use of Waste Plastic and Waste Rubber Tyres in Flexible Highway Pavements. International Conference on Future Environment and Energy (IPCBEE), 28.
- 74. Sahoo, P. K., & Reddy, K. S. (2009). Evaluation of subgrade soils using dynamic cone penetrometer. International Journal of Earth Sciences and Engineering, 2(4), 384–388.
- 75. Scala AJ. (1956). Simple method of flexible pavement design using cone penetrometers. 2nd Australian and New Zealand Conference on Soil Mechanics and Foundation Engineering, 73–83.
- 76. Singh Jagtar, & Sonthwal Vinod Kumar. (2017). Improvement of Engineering Properties of clayey soil using shredded rubber tyre. International Journal of Theoretical & Applied Sciences, 1–6. www.researchtrend.net
- 77. Singh, Y. K., Ray, D. S., & Student, P. G. (2019). Analysis of Vehicle Damage Factor in Overloading for Different Types of Loading. In International Journal of Engineering Science and Computing. http://ijesc.org/.
- 78. Skels, P., Zariņš, A., Bondars, K., Haritonovs, V. (2017). Analytical and numerical design approaches for stabilized road pavement base layers. https://doi.org/10.1201/9781315100333-167.
- 79. Smith, I. M., Griffiths, D. V., & Margetts, L. (2013). Programming the finite element method. John Wiley & Sons.
- 80. Solanki, U., Gundaliya, P., Barasara, M. (2016). Structural evaluation of flexible pavement using Falling Weight Deflectometer. In Multi-disciplinary Sustainable Engineering: Current and Future Trends (pp. 141–146). CRC Press. https://doi.org/10.1201/b20013-23.
- 81. Solanki, U., Gundaliya, P., & Barasara, M. (2019). A Study on FWD Deflection Bowl Parameters for Structural Evaluation of Flexible Pavement.
- 82. Solanki Ujjval J. Solanki, Gundalia Pradip J., Barasara Mansukh D. (2014). A Review on Structural Evaluation of Flexible Pavements using Falling Weight Deflectometer. STM Journal, 2(1), 1–10.
- 83. Sousa, F. D. B. de. (2017). Devulcanization of Elastomers and Applications. In N. Cankaya (Ed.), Elastomers (p. Ch. 10). IntechOpen. https://doi.org/10.5772/intechopen.68585
- 84. Tahami, S. A., Mirhosseini, A. F., Dessouky, S., Mork, H., & Kavussi, A. (2019). The use of high content of fine crumb rubber in asphalt mixes using dry process. Construction and Building Materials, 222, 643–653.
- 85. Talvik, O., & Aavik, A. (2009). Use of FWD deflection basin parameters (SCI, BDI, BCI) for pavement condition assessment. Baltic Journal of Road and Bridge Engineering, 4(4), 196–202. https://doi.org/10.3846/1822-427X.2009.4.196-202
- 86. Teja, S. S., & Sidhhartha, P. (2015). Stabilization of subgrade soil of highway pavement using waste tyre pieces. International Journal of Innovative Research in Science, Engineering Technology, 4(5), 3265-3272. https://doi.org/10.15680/ijirset.2015.0405045
- 87. The National Green Tribunal (NGT) SOUTHERN ZONE, CHENNAI September 19, 2019.
- 88. Vakili, A. H., Salimi, M., & Shamsi, M. (2021). Application of the dynamic cone penetrometer test for determining the geotechnical characteristics of marl soils treated by lime. Heliyon, 7(9).

- 89. Van Vuuren D. (1969). Rapid determination of CBR with the portable dynamic cone penetrometer.
- 90. Walubita, L. F., Das, G., Espinoza, E., Oh, J., Scullion, T., Lee, S. I., Garibay, J. L., Nazarian, S., & Abdallah, I. (2011). TEXAS FLEXIBLE PAVEMENTS AND OVERLAYS: YEAR 1 REPORT-TEST SECTIONS, DATA COLLECTION, ANALYSES, AND DATA STORAGE SYSTEM 5. Report Date Project 0-6658 13. Type of Report and Period Covered Project performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration. Project Title: Collection of Materials and Performance Data for Texas Flexible Pavements and Overlays Unclassified.
- 91. Wangmo, P., Selden, D., Wangmo, R., Choki, S., Phuntsho, S., Tobgyel, T., Dema, S. (2020). IMPROVEMENT OF ROAD SUBGRADE USING WASTE TYRES. In Zorig Melong: A Technical Journal (Vol. 4).
- 92. Yang, Z., Zhang, Q., Shi, W., Lv, J., Lu, Z., & Ling, X. (2020). Advances in properties of rubber reinforced soil. In Advances in Civil Engineering (Vol. 2020). Hindawi Limited. https://doi.org/10.1155/2020/6629757.
- 93. Zain, N. H. M., Salim, N. A. M., Bahri, I. S. S., & Yusof, Z. M. (2022). Experimental study using recycled waste tyre as sustainable clay soil stabilisation. International Journal of Integrated Engineering, 14(5), 122–129.
- 94. Zornberg J.G, Costa, Y. D., & Vollenweider, B. (2004, January). Mechanical Performance of a Prototype Embankment Backfill Built with Tire Shreds and Cohesive Soil. 83rd Annual Meeting of the Transportation Research Board, Washington, D.C

ANNEXURE- I

PERMISSION LETTER FROM PWD, GOVT.OF WEST BENGAL

GOVERNMENT OF WEST BENGAL
OFFICE OF THE EXECUTIVE ENGINEER
SOUTH 24 PARGANAS DIVISION
PUBLIC WORKS DIRECTORATE
76, DR. DEODAR RAHAMAN ROAD
(3RD FLOOR)
KOLKATA - 700 033
Phone (Office):

Phone (Office): -2422-0365 & 2422-0366

E-mail:- eessdivn1@gmail.com

পশ্চিমবঙ্গ সরকার নির্বাহী বাস্তুকার দক্ষিন ২৪ পরগনা ভূক্তি, পূর্ত দপ্তর ৭৬, ড: দেওদার রহমান রোড, চতুর্থ তল কোলকাতা - ৭০০ ০৩৩

দুরাভাষ (কার্য্যালয় ও ফ্যাল্গ)-(০৩৩) ২৪২২-০৩৬৫ এবং ২৪২২-০৩৬৬ ই-মেল :- eessdivn1@gmail.com

Memo No.: 1274

Date, the Kolkata 06-06-201

To
Dr. Sumit Kumar Biswas
Associate Professor
Department of Civil Engineering
Jadavpur University
Kolkata – 700 032

Sub.: - Permission to use P.W.D. Road for Ph. D Thesis work.

Ref.: - Your Memo No. JUCE/SKB/19-20/09 Dated 03-06-2019.

Sir,

I am pleased to inform you that the road named <u>— Jibantala to Taldi Bazar from Ch. 0.00 Kmp to 12.45 under South 24 Parganas Division, P.W.D., Government of West Bengal</u> may be used for Ph. D. wo Mr. Sujoy Sarkar (Registration No. 1021703004 of 2017-2018) residing at 1 No. Bijoy Nagar, Na North 24 Parganas.

In this context Mr. Sarkar is permitted to do all the necessary job, related to Soil Test, Traffic Survey and allied works as per his requirement.

This is for your kind information and necessary action please.

Thanking you,

South 2.4 Par Minister (P.N.O.)

Executive Engineer

South 24 Parganas Division P.W. L

Executive Engineer, P.W.D.

South 24 Parganas Division

ANNEXURE- II

LABORATORY TEST RESULTS FOR SCRAP TYRE, MIX SOIL SND TYRE MIX SOIL

A Govt. Regd. Test House =

www.omegaconsultantservices.com

Laboratory Accredited By : NABL, A constituent Board of Quality Council of India, Govt. of India An ISO 9001-2015 Certified Company

HEAD OFFICE & LABORATORY

256A, M. G. Road, Purbasan, Thakurpukur, Kol.- 63 Phone: (033) 2497 1903, 2438 1677, M. 9830020628 / 9432219707 e-mail: omegalabinfo@gmail.com, omegalabinfo98@gmail.com

TEST REPORT

JOB ID No.	TC- OCSK/19/04D - 0000025	Date: 18.04.2019	Page 1 of 1
Ref. No.	: Jucon/OCS/PhD/testing/01 Date: 04.04.2019	Product Specification	: Nil
Issued to	Mr.Sujoy Sarkar 1 No. Bijoy Nagar Boropukur Par, Naihati Dist- north 24 Parganas PIN-743165	Test Specification	: Tabulated Below
Description ofsample(s)	: 2nos. of Scrap Tyre sample for the following tests.	Seal / Stamp / Mark (if any)	Marked
	Sub.: Testing of scrap tyre samples for research job (PhD)		
Test Parameter	: Density, Melting point, Specific gravity, Water absorption & Elastic Modulus	Sample received on Sample tested on	: 04.04.2019 : 04.04.2019 to 18.04.2019

This is to certify that the above sample (S) has/have been tested with the following results:

TEST RESULT

CHARACTERISTICS	FIND	INGS	METHOD OF TEST
CHARACTERISTICS	Sample-1	Sample-2	METHOD OF TEST
1. Density (gm/cc)	1.11	1.13	IS: 4511 (Part-2) 1986 Reaf. 2019
2. Melting Point (⁰ c)	232	236	IS: 5762 - 1970
3. Specific Gravity	1.13	1.15	IS: 4511 (Part-2) 1986 Reaf. 2019
4. Water absorption (%)	Nil	Nil	IS: 13630 (Part-2) 2019
5. Elastic Modulus (Mpa)	1.01	1.03	IS: 16388 - 2013

Remarks: The above submitted samples were duly tested as per relevant specification.

Prepared by

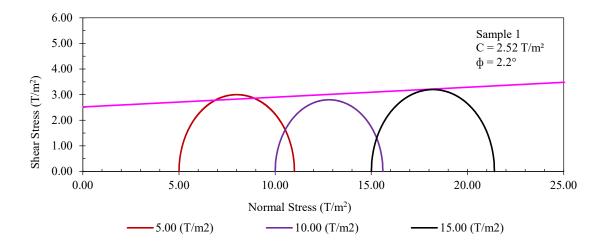
A. PATRACOAS)
QUALITY MANAGER
(AUTHORISED SIGNATORY)

- Note:

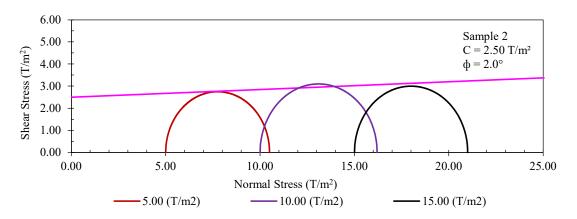
 ★ Analysed as on received basis and test results relate to the sample(s) only.

 ★ Liability for return of sample(s) ceases after fifteen days.

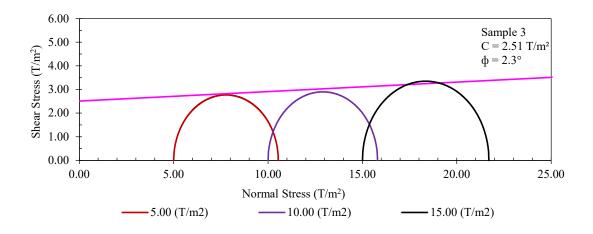
 ★ The reproduction of the report except in full is invalid without written approval of the laboratory.

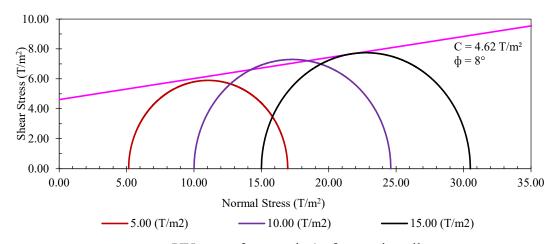

 ★ The test results referred in certificate are based on observations & measurements under the stated environmental conditions.

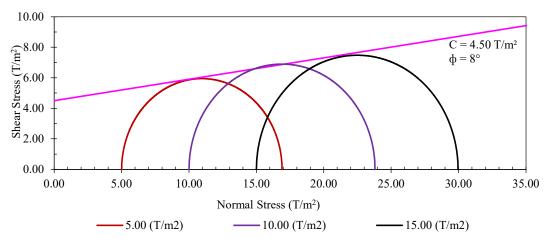
 ★ The Test Report without EMBOSSING is Invalid.

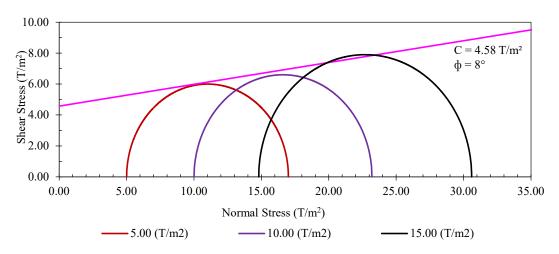

Campus - II: 996, M. G. Road, Purbasan, Thakurpukur, Kolkata - 700 063.

ANNEXURE-III


LABORATORY TEST FOR MIX SOIL SND TYRE MIX SOIL


UU curve for sample 1 of mix soil.


UU curve for sample 2 of mix soil


UU curve for sample 3 of mix soil

UU curve for sample 1 of tyre mix soil

UU curve for sample 2 of tyre mix soil

UU curve for sample 3 of tyre mix soil

ANNEXURE- IV

24/7 TRAFFIC STUDY DATA

TRAFFIC DATA ANALYSIS

(Daily Sheet)

Road: Jibantala Bazar to Taldi bazar Road 9-Jun-19 -to- 10-Jun-19

Chainage: 11+50 km Location: Taldi Day of Work:

								M	otorise	ed Veh	icle																		Non-mo	otorise	d Vehi	cles									
me Period					Fast I	Passen	ger									F	ast Go	ods					Slow (Goods			То	4al	Ai	J /							Total	Non-			
					Auto		Car/.	Jeep/v	Moto	orized		Bus					Trucl	ζ.					Agricu	lture		ulture	Moto		Anima Hane	- 1	Cycle		Cycle		Other	·s	motor		Total F	Iourly V	Vehicles
From	To)	Two-W	heeler		shaw	an/T		Van		Mini RTVs		Stand	ard	LCV		2-Axle		3-Axle	e	MAV		Tracto		Tracto Tra	or with tiler	Veh	icles	Draw	'n			Ricks	naw			Vehicl	es			
			Up	Down	Up	Down	ı Up	Dow	ı Up	Down	n Up	Down	Up	Down	ı Up	Down	Up	Down	Up	Down	ı Up	Down	Up	Down	Up	Down	Up	Down	Up I	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up+Dn
8		9	8	25	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	1	10	27	0	0	6	8	0	0	0	0	6	8	16	35	51
9		10	24	31	2	1	4	3	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15	15	45	52	0	0	9	5	1	1	0	0	10	6	55	58	113
10		11	33	11	1	2	2	6	1	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	2	39	23	0	0	8	5	1	1	0	0	9	6	48	29	77
11		12	47	55	2	1	5	2	2	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	2	2	59	61	0	0	11	15	1	1	0	0	12	16	71	77	148
12		13	53	30	2	1	20	22	0	0	0	0	0	0	2	1	0	3	0	0	0	0	1	3	1	2	79	62	0	0	18	16	1	2	0	0	19	18	98	80	178
13		14	22	25	2	2	25	31	1	0	0	0	0	0	3	3	0	1	0	0	0	0	1	2	1	16	55	80	0	0	15	11	1	2	0	0	16	13	71	93	164
14		15	25	25	2	1	20	30	0	1	0	0	0	0	6	6	2	1	2	0	0	0	1	0	2	3	60	67	0	0	10	12	2	1	0	0	12	13	72	80	152
15		16	24	25	2	1	27	17	1	2	0	0	0	0	6	1	9	1	0	0	0	0	1	0	0	8	70	55	0	0	11	15	1	1	0	0	12	16	82	71	153
16		17	24	22	1	1	21	20	0	0	0	0	0	0	3	2	8	3	0	0	0	0	0	1	3	10	60	59	0	0	12	10	1	1	0	0	13	11	73	70	143
17		18	65	47	1	1	25	26	1	1	0	0	0	0	5	4	8	5	0	0	1	0	0	0	1	5	107	89	0	0	11	12	1	1	0	0	12	13	119	102	221
18		19	36	52	1	2	31	31	1	1	0	0	0	0	4	1	1	9	0	0	0	0	1	0	1	2	76	98	0	0	10	11	1	1	0	0	11	12	87	110	197
19		20	52	61	1	1	8	16	0	0	0	0	0	0	3	3	8	8	0	0	0	0	0	0	13	10	85	99	0	0	9	8	2	2	0	0	11	10	96	109	205
20		21	22	23	1	1	16	25	0	0	0	0	0	0	3	5	3	9	0	0	0	0	1	0	3	3	49	65	0	0	8	7	0	0	0	0	8	7	57	72	129
21		22	35	25	0	0	8	9	0	0	0	0	0	0	2	1	4	3	1	1	0	2	0	5	3	0	53	46	0	0	2	1	0	0	0	0	2	1	55	47	102
22		23	14	10	0	0	0	0	1	0	0	0	0	0	5	4	9	1	0	0	0	0	5	0	0	3	34	18	0	0	0	0	0	0	0	0	0	0	34	18	52
23		0	0	0	0	0	0	0	0	0	0	0	0	0	9	3	8	2	1	9	0	0	5	5	1	1	24	20	0	0	0	0	0	0	0	0	0	0	24	20	44
0		1	0	0	0	0	0	0	0	0	0	0	0	0	2	2	3	6	9	1	2	2	0	5	9	9	2	25	0	0	0	0	0	0	0	0	0	0	2	25	27
1		2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	6	3	0	0	0	0	0	5	3	2	9	11	0	0	0	0	0	0	0	0	0	0	9	11	20
2		3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6	2	1	1	0	0	5	5	3	3	2	11	0	0	0	0	0	0	0	0	0	0	2	11	13
3		4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	9	8	9	2	2	5	6	3	3	27	29	0	0	0	0	0	0	0	0	0	0	27	29	56
4		5	0	0	0	0	2	2	0	0	0	0	0	0	0	0	6	4	9	2	0	0	5	0	3	2	2	10	0	0	0	0	0	0	0	0	0	0	2	10	12
5		6	9	8	2	1	8	8	2	2	0	0	0	0	0	0	2	6	1	3	0	2	5	0	3	20	32	50	0	0	0	0	0	0	0	0	0	0	32	50	82
6		7	8	7	2	1	12	5	1	1	0	0	0	0	0	0	5	2	0	3	0	0	0	1	4	22	32	42	0	0	4	1	5	4	0	0	9	5	41	47	88
7		8	6	3	3	2	15	9	1	2	0	0	0	0	0	0	3	1	3	0	0	0	0	1	2	1	33	19	0	0	4	5	6	6	0	0	10	11	43	30	73
aily Total			507	485	25	19	249	262	12	14	0	0	0	0	53	37	103	81	35	29	5	8	36	39	78	145	1044	1118	0	0	148	142	24	24	0	0	172	166		1201	
otal Vehicle (l	Up+	·Dn)	992		44	ı	51	1	26	5		0		0	90		184		64		13		7	5	2:	23	21	162	0		290		48			0	338		1216	1284	2500
quivalency Fa	actor	r	0.5		1.0	0	1.6	0	1.0	0	1.5		3.0		1.5		3.0		3.0		4.5		1	.5	4	.5			6.0		0.5		2.0		4.5						
aily PCU			254	243	25	19	249	262	12	14	0	0	0	0	80	56	309	243	105	87	23	36	54	59	351	653	1462	1672	0	0	74	71	48	48	0	0	122	119	1504	1701	2255
otal PCU (Up	.⊥Do	wn)	497	•	44		51	1	26			0	i .)	136		552		192		59			13	- 1	004	2.	134	0		145	•	96			0	241		1584	1791	3375

10-Jun-19 -to- 11-Jun-19

Date of Work:

Day-2

TRAFFIC DATA ANALYSIS

(Daily Sheet)

Road: Jibantala Bazar to Taldi bazar Road

Chainage: 11+50 km Location : Taldi

Dir	ection of Traffic :	Up	From: Jibanta	ala		To: Taldi		Down	From: Taldi				To: Jibant	tala			
				N	Motorised Veh	icle					Non-motoris	sed Vehicles					
	Time Period		Fast Passen	ger			Fast Goods	Slow Goods		T-4-1	A				T.4.1 N.	_	
						_				Total	Animal /		Croals		Total No	n- Total Hourly	/ Vehi

							I	Motoris	sed Ve	hicle																		Non-n	otoris	ed Vel	hicles									
Time Perio	d			Fast	Passe	nger									F	ast Go	ods					Slow (Goods			т.	4-1		-1/							T.4-1	N			
				Auto		Con /	Loon	Moto	ui a a d	I	Bus					Truck						Agricu	ltumo	Agric	ulture	To Moto		Anin Hai		Cycle		Cycle		Othe	rs	notor	Non- ised	Total F	fourly V	Vehicles
From	To	Two V	Vheeler	Ricks	haw	Van	эеср /	Van	rizeu	Mini / RTVs		Standa	ard	LCV		2-Axle	;	3-Axle	è	MAV		Tracto			or with niler	i .	icles	Dra				Ricks	haw			Vehic				
		Up	Down	Up	Down	n Up	Down	n Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up		Up	Down	Up	Down	Up	Down	Up	Down	Up+Dn
8	9	18	12	0	1	3	7	1	1	0	0	0	0	1	3	5	8	0	0	0	0	0	0	0	0	28	32	0	0	10	9	0	0	0	0	10	9	38	41	79
9	10	22	15	1	0	12	15	1	1	0	0	0	0	1	5	0	0	0	0	0	0	0	0	0	1	37	37	0	0	8	12	0	0	0	0	8	12	45	49	94
10	11	27	19	1	2	21	18	2	2	0	0	0	0	0	1	1	3	0	0	0	0	0	0	1	1	53	46	0	0	21	14	7	0	0	0	28	14	81	60	141
11	12	51	47	3	1	40	25	1	2	0	0	0	0	7	5	1	8	0	0	0	0	1	2	0	2	104	92	0	0	15	14	0	5	0	0	15	19	119	111	230
12	13	32	25	5	5	41	25	3	2	0	0	0	0	9	1	1	9	0	0	0	0	0	1	1	12	92	80	0	0	10	15	1	12	0	0	11	27	103	107	210
13	14	25	54	2	3	15	12	0	0	0	0	0	0	0	1	5	7	0	0	0	0	0	0	1	22	48	99	0	0	11	12	0	1	0	0	11	13	59	112	171
14	15	22	26	3	0	30	21	0	0	0	0	0	0	5	4	1	7	0	0	0	0	0	1	10	2	71	61	0	0	8	11	2	0	0	0	10	11	81	72	153
15	16	63	22	0	1	23	21	0	0	0	0	0	0	3	6	8	0	0	0	0	0	0	0	10	0	107	50	0	0	15	18	4	0	0	0	19	18	126	68	194
16	17	45	55	7	6	27	32	0	0	0	0	0	0	7	5	9	5	0	0	0	0	0	1	1	0	96	104	0	0	5	22	1	1	0	0	6	23	102	127	229
17	18	22	25	0	2	24	26	0	0	0	0	0	0	1	3	1	0	0	0	0	0	0	0	15	1	63	57	0	0	12	13	1	1	0	0	13	14	76	71	147
18	19	25	25	2	1	22	12	0	0	0	0	0	0	6	6	9	0	1	2	0	0	0	1	2	3	67	50	0	0	10	11	0	0	0	0	10	11	77	61	138
19	20	25	26	0	4	11	15	0	0	0	0	0	0	2	2	7	0	0	0	0	0	6	6	1	25	52	78	0	0	5	8	0	0	0	0	5	8	57	86	143
20	21	44	45	1	1	12	21	0	0	0	0	0	0	1	6	8	8	1	0	0	0	0	0	0	21	67	101	0	0	3	7	0	0	0	0	3	7	70	108	178
21	22	31	21	5	0	7	8	0	0	0	0	0	0	0	2	1	9	0	0	0	0	6	1	0	3	50	48	0	0	2	6	0	0	0	0	2	6	52	54	106
22	23	21	24	0	4	0	0	0	0	0	0	0	0	2	0	0	1	0	0	0	0	6	0	3	10	32	39	0	0	1	2	0	0	0	0	1	2	33	41	74
23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	1	10	0	0	0	0	6	6	3	11	10	32	0	0	0	0	0	0	0	0	0	0	10	32	42
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	9	1	2	0	0	0	0	3	3	5	14	0	0	0	0	0	0	0	0	0	0	5	14	19
1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	8	2	0	0	3	6	6	3	3	12	20	0	0	0	0	0	0	0	0	0	0	12	20	32
2	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8	5	9	2	0	2	0	6	3	3	20	18	0	0	0	0	0	0	0	0	0	0	20	18	38
3	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	9	3	3	0	0	0	6	3	3	7	21	0	0	0	0	0	0	0	0	0	0	7	21	28
4	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	5	3	3	2	0	0	6	3	3	9	17	0	0	0	0	0	0	0	0	0	0	9	17	26
5	6	9	9	0	0	2	7	2	2	0	0	0	0	0	0	9	5	3	3	0	0	6	0	3	1	34	27	0	0	5	9	2	1	0	0	7	10	41	37	78
6	7	8	2	0	0	2	5	1	1	0	0	0	0	0	0	9	1	8	0	0	0	6	0	1	1	35	10	0	0	5	1	1	1	0	0	6	2	41	12	53
7	8	7	6	0	0	7	4	1	1	0	0	0	0	0	0	1	0	0	0	0	0	8	0	2	2	26	13	0	0	2	2	5	1	0	0	7	3	33	16	49
Daily Total		497	458	30	31	299	274	12	12	0	0	0	0	45	55	89	117	31	15	2	5	51	43	69	133	1125	1146	0	0	148	186	24	23	0	0	172	209	1207	1255	2652
Total Veh	icle (Up+Dn)	955		61		573	3	24		()	()	10	00	20	6	40	6		7	9	4	20	02	22	271	()	33	34	4	7		0	3	81	1297	1355	2652
Equivalency	Factor	0.5		1.0		1.0		1.0		1.5		3.0)	1.	5	3.)	3.	0	4.5		1	.5	4	.5			6.0)	0.5	5	2.	.0	4	4.5					
Daily PCU		249	229	30	31	299	274	12	12	0	0	0	0	68	83	267	351	93	45	9	23	77	65	311	599	1415	1712	0	0	74	93	48	46	0	0	122	139	1537	1851	3388
Total PCU (Up+Down)	478		61		573	3	24		()	()	15	51	61	8	13	8	32		14	42	9:	10	3127		()	167		9.	4		0	2	61	1337	1031	3300

TRAFFIC DATA ANALYSIS

(Daily Sheet)

Road: Jibantala Bazar to Taldi bazar Road

Date of Work: 11-Jun-19 -to- 12-Jun-19

Chainage: 11+50 km Location: Taldi Day of Work:

								Mot	orised	Vehi	cle																		Non-ı	notoris	sed Veh	icles							T		
Time Period	l			Fast	Passe	enger										Fa	ast Goo	ds					Slow	Goods			Tot	e al	Anin	aal /							Total	Non	1		
				Auto		Car	· / Ioo	n/A	Aotoriz	has	I	Bus					Truck						Agric	ultur	Agricu	ulture	Motor		Ha		Cvcle		Cycle		Other	rs	motor	rised	Total !	Hourly	Vehicles
From	To	Two W	heeler	Ricks	haw	Var			/an		Mini / RTVs		Standa	ard	LCV		2-Axle	,	3-Axle		MAV		ee Tra		Tracto Tra	r with iler	Vehi	cles	Dra	wn			Ricks	shaw			Vehic	les			
		Up	Down	Up	Dow	n Uj	n Do	own U	Jp I	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	ı Up	Down	Up+Dn
8	9	21	12	0	0	12	i	11	1	1	0	0	0	0	1	1	5	7	1	0	0	0	0	0	0	0	41	32	0	0	5	6	2	2	0	0	7	8	48	40	88
9	10	15	22	0	0	13	i	11	2	4	0	0	0	0	1	3	1	4	0	0	0	0	0	0	1	1	33	45	0	0	12	15	1	2	0	0	13	17	46	62	108
10	11	20	28	0	0	11	1	18	2	3	0	0	0	0	4	2	1	9	0	0	0	0	0	0	5	3	43	63	0	0	11	10	1	1	0	0	12	11	55	74	129
11	12	60	65	0	2	10	2	25	2	2	0	0	0	0	1	1	1	3	0	0	0	0	0	0	1	1	75	99	0	0	12	15	3	1	0	0	15	16	90	115	205
12	13	52	54	0	0	22	2	25	0	0	0	0	0	0	1	1	8	1	0	0	0	0	1	0	3	5	87	86	0	0	11	15	2	4	0	0	13	19	100	105	205
13	14	22	25	1	5	35	4	41	0	0	0	0	0	0	1	4	7	9	0	0	0	0	0	0	1	3	67	87	0	0	15	6	4	1	0	0	19	7	86	94	180
14	15	24	52	2	1	10	4	45	0	0	0	0	0	0	3	1	1	1	0	0	0	0	0	0	1	0	41	100	0	0	12	8	2	2	0	0	14	10	55	110	165
15	16	55	24	11	0	20	3	38	0	0	0	0	0	0	1	3	2	9	0	0	0	0	0	0	1	1	90	75	0	0	8	9	2	3	0	0	10	12	100	87	187
16	17	61	65	0	0	24	2	23	0	0	0	0	0	0	3	1	7	2	0	1	0	0	1	0	0	0	96	92	0	0	9	11	2	1	0	0	11	12	107	104	211
17	18	12	21	23	0	30	3	34	0	0	0	0	0	0	4	0	9	9	0	0	0	0	0	0	0	8	78	72	0	0	10	16	0	0	0	0	10	16	88	88	176
18	19	24	44	0	0	9		8	0	0	0	0	0	0	4	2	8	8	0	0	0	2	6	6	10	5	61	75	0	0	14	10	0	0	0	0	14	10	75	85	160
19	20	11	45	1	3	21	1	10	0	0	0	0	0	0	1	1	2	5	2	2	0	0	6	0	5	6	49	72	0	0	9	11	0	0	0	0	9	11	58	83	141
20	21	11	15	0	0	8		9	0	0	0	0	0	0	1	2	9	1	0	0	0	0	0	6	6	5	35	40	0	0	7	8	0	0	0	0	7	8	42	48	90
21	22	9	10	1	2	12	1	11	0	0	0	0	0	0	2	3	0	9	2	2	0	0	6	0	4	6	36	41	0	0	6	5	0	0	0	0	6	5	42	46	88
22	23	9	11	4	0	8		4	0	0	0	0	0	0	2	2	4	9	9	9	0	0	0	0	5	4	41	39	0	0	2	1	0	0	0	0	2	1	43	40	83
23	0	0	0	11	6	4		1	0	0	0	0	0	0	1	1	2	1	9	2	0	2	0	6	6	8	33	27	0	0	0	0	0	0	0	0	0	0	33	27	60
0	1	0	0	1	0	0		0	0	0	0	0	0	0	1	2	9	9	1	0	2	0	6	6	2	9	22	26	0	0	0	0	0	0	0	0	0	0	22	26	48
1	2	0	0	0	0	0		0	0	0	0	0	0	0	3	0	2	1	2	0	0	0	0	0	3	3	10	4	0	0	0	0	0	0	0	0	0	0	10	4	14
2	3	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	6	0	4	3	10	6	0	0	0	0	0	0	0	0	0	0	10	6	16
3	4	0	0	0	0	0		0	0	0	0	0	0	0	0	0	7	1	3	3	0	0	0	6	2	9	12	19	0	0	0	0	0	0	0	0	0	0	12	19	31
4	5	0	0	0	0	0		0	4	4	0	0	0	0	2	1	2	2	3	3	0	0	6	0	3	3	20	13	0	0	0	0	0	0	0	0	0	0	20	13	33
5	6	9	8	0	0	4		7	3	3	0	0	0	0	4	1	8	1	3	3	0	0	1	0	3	3	35	26	0	0	1	2	0	0	0	0	1	2	36	28	64
6	7	7	8	0	0	8		9	1	1	0	0	0	0	7	1	1	2	3	3	0	0	2	0	3	3	32	27	0	0	2	5	1	2	0	0	3	7	35	34	69
7	8	5	9	7	11	11	1	10	1	1	0	0	0	0	3	1	1	2	0	0	0	0	1	5	2	5	31	44	0	0	3	6	3	3	0	0	6	9	37	53	90
Daily Total		427	518	62	30	272	2 3	40	16	19	0	0	0	0	51	34	97	108	38	28	2	4	42	35	71	94	1078	1210	0	0	149	159	23	22	0	0	172	181	1250	1201	2641
Total Vehic	cle (Up+Dn)	945		92		6	12	1	35		()	()	85		205		66			6	77		16	65	2288	3		0	308		4	5		0	3	53	1250	1391	2641
Equivaler	ncy Factor	0.5		1.0		1	.0		1.0		1.5		3.0		1.5		3.0		3.0		4.5		1.5		4.	.5			6.	0	0.5		2	.0	4	1.5					
Daily PCU		214	259	62	30	27	2 3	40 1	6	19	0	0	0	0	77	51	291	324	114	84	9	18	63	53	320	423	1438	1601	0	0	75	80	46	44	0	0	121	124	1559	1725	3284
Total PCU (U	Jp+Down)	473		92		6	12		35		()	()	128		615		198		27		116		74	13	3039)		0	155		9	0		0	2	45	1339	1/23	5404

TRAFFIC DATA ANALYSIS

(Daily Sheet)

Road: Jibantala Bazar to Taldi bazar Road

Date of Work: 12-Jun-19 -to- 13-Jun-19

Chainage: 11+50 km Location: Taldii Day of Work:

							N	Motoris	sed V	ehicle																		Non-r	notori	sed Ve	hicles									
Time Period				Fast I	Passen	ger									I	ast Go	ods					Slow (Goods			no.		١	.,							T . 1	N.	1		
				Auto		Con /	Loon	/ Moto	uda a d	. 1	Bus					Truc	k					A contact	ılture	Agric	culture		otal orised	Anir Ha		Cvcle		Cycle		Other	rs	motor	Non- rised	Total F	Iourly V	ehicles
From	То	Two-W	heeler	Ricks	haw	Van	эсср /	Van	i izeu	Mini / RTVs		Stand	ard	LCV		2-Axl	le	3-Axlo	e	MAV		Tracto			or with ailer	1	icles	Dra				Ricksl	haw			Vehic				
		Up	Down	Up	Down	Up	Down	n Up	Do	wn Up	Down	Up	Down	Up	Down	ı Up	Down	ı Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up.	Down	Up	Down	Up+Dn
8	9	16	24	0	1	7	13	0	0	0	0	0	0	3	1	3	5	1	0	0	0	0	0	1	2	31	46	0	0	4	7	1	0	0	0	5	7	36	53	89
9	10	25	18	1	0	12	20	0	0	0	0	0	0	0	2	2	12	0	0	0	0	0	0	2	5	42	57	0	0	14	11	1	1	0	0	15	12	57	69	126
10	11	45	49	0	0	17	11	0	1	0	0	0	0	0	0	4	6	0	0	0	0	0	0	3	1	69	68	0	0	5	12	2	2	0	0	7	14	76	82	158
11	12	70	62	2	0	20	15	1	1	0	0	0	0	5	1	6	3	2	0	0	0	1	3	1	1	108	86	0	0	11	14	4	1	0	0	15	15	123	101	224
12	13	45	44	0	1	17	11	0	2	0	0	0	0	1	2	6	0	0	0	0	0	2	0	1	1	72	61	0	0	15	10	3	3	0	0	18	13	90	74	164
13	14	12	11	1	3	25	12	0	0	0	0	0	0	9	2	2	0	0	2	0	0	4	0	2	1	55	31	0	0	8	11	2	2	0	0	10	13	65	44	109
14	15	61	52	1	1	34	22	1	1	0	0	0	0	4	0	5	3	0	0	0	0	2	0	0	8	108	87	0	0	9	15	3	1	0	0	12	16	120	103	223
15	16	24	22	5	9	16	34	1	2	0	0	0	0	1	2	6	3	2	2	0	0	0	0	10	9	65	83	0	0	15	14	1	1	0	0	16	15	81	98	179
16	17	71	22	2	0	31	18	0	0	0	0	0	0	1	6	1	2	1	0	0	0	1	0	2	8	110	56	0	0	11	13	0	0	0	0	11	13	121	69	190
17	18	11	12	5	9	21	15	1	0	0	0	0	0	1	0	0	1	2	0	0	0	5	0	5	3	51	40	0	0	12	11	0	0	0	0	12	11	63	51	114
18	19	24	51	7	1	10	34	2	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	6	9	54	95	0	0	10	12	0	0	0	0	10	12	64	107	171
19	20	24	25	1	1	20	36	0	2	0	0	0	0	3	3	0	9	2	1	0	0	5	6	2	3	57	86	0	0	11	10	0	0	0	0	11	10	68	96	164
20	21	22	25	4	9	23	19	3	1	0	0	0	0	5	3	0	3	0	0	0	2	1	0	3	8	61	61	0	0	9	9	0	0	0	0	9	9	70	70	140
21	22	55	15	0	0	11	12	1	1	0	0	0	0	3	2	7	8	2	0	0	0	0	6	3	3	82	47	0	0	8	5	0	0	0	0	8	5	90	52	142
22	23	14	11	0	0	9	7	1	0	0	0	0	0	2	5	3	9	1	2	2	2	5	0	10	9	47	45	0	0	4	1	0	0	0	0	4	1	51	46	97
23	0	0	0	0	0	0	0	0	2	0	0	0	0	1	3	10	5	0	0	0	0	0	6	3	3	14	19	0	0	0	0	0	0	0	0	0	0	14	19	33
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	1	0	1	0	0	5	0	0	3	10	5	0	0	0	0	0	0	0	0	0	0	10	5	15
1	2	0	0	0	0	0	0	0	0	0	0	0	0	1	0	10	9	2	1	0	3	5	0	3	0	21	13	0	0	0	0	0	0	0	0	0	0	21	13	34
2	3	0	0	0	0	0	0	0	0	0	0	0	0	2	1	10	9	2	0	0	0	5	0	10	3	29	13	0	0	0	0	0	0	0	0	0	0	29	13	42
3	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	5	0	3	0	10	1	0	0	0	0	0	0	0	0	0	0	10	1	11
4	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	9	3	1	0	0	0	6	3	3	16	19	0	0	0	0	0	0	0	0	0	0	16	19	35
5	6	9	9	0	0	5	6	2	1	0	0	0	0	2	2	6	1	3	3	0	0	5	0	3	0	35	22	0	0	1	2	4	5	0	0	5	7	40	29	69
6	7	1	2	0	0	8	7	1	2	0	0	0	0	2	1	10	0	0	3	0	0	0	2	1	1	23	18	0	0	4	3	2	5	0	0	6	8	29	26	55
7	8	11	3	0	0	9	7	1	1	0	0	0	0	3	4	1	1	3	0	0	0	1	0	1	1	30	17	0	0	5	7	4	1	0	0	9	8	39	25	64
Daily Total		540	457	29	35	295	299	15	17	0	0	0	0	54	40	108	100	27	16	2	7	52	29	78	85	1200	1076	0	0	156	167	27	22	0	0	183	189	4202		25.40
Total Vehic	cle (Up+Dn)	997		64	•	594		32		,)	(0	9	4	2	08	4.	3		9	8	31	1	.63	2:	276		0	32	23	49	9		0	3	72	1383	1265	2648
Equivalen	ncy Factor	0.5		1.0		1.0		1.0)	1.5		3.0	0	1.	.5	3	.0	3.	0	4.5		1	.5	4	1.5			6.	0	0.	5	2.	.0	4	.5					
Daily PCU		270	229	29	35	295	299	15	1'	7 0	0	0	0	81	60	324	300	81	48	9	32	78	44	351	383	1533	1447	0	0	78	84	54	44	0	0	132	128	1665	1575	3240
Total PCU (U	p+Down)	499		64		594		32		()	(0	14	41	6	24	12	:9	41		1	22	7	34	2980			0	162		98	8		0	2	60	1005	15/5	5240

TRAFFIC DATA ANALYSIS

(Daily Sheet)

Road: Jibantala Bazar to Taldii bazar Road Date of Work: 13-Jun-19 -to- 14-Jun-19

Chainage: 11+50 km Location: Taldi Day of Work:

								Mot	orised '	Vehic	le																	Non-n	notoriz	zed Ve	hicles									
Time Period				Fa	st Pas	senger									F	ast Go	ods					Slow (Goods			To	otal	Anin	nal /							Total	Non-			
From	To	Two- Whee	ler	Auto Ricks		Car / Van	Jeep /	Moto Van	rized	Mini		Stand	ard	LCV		Truc		3-Axl	e	MAV		Agricu Tracto	ılture or	Tracto		Moto	orised nicles	Hai Dra	nd	Cycle		Cycle Ricksl		Other	rs	motori Vehicl	ised	I otal F	1ourly	Vehicles
7011	10		Б		Б		l n		D	RTV					Ь								l n	with T			n		l n		Б		l n		ь		n		_ n	Tr. D
8	9	Up	Down 21	<i>Up</i>	Down 2	ı Up	Down 8	0	Down 0	0 <i>Up</i>	Down 0	0	Down 0	Up ,	Down 3	Up 2	Down 4	Up 0	Down 0	Up	Down 0	<i>Up</i>	Down 0	Up,	Down 2	23	Down 40	0 p	Down 0	Up 11	Down 15	<i>Up</i> 2	Down 3	Up	Down 0	<i>Up</i>	Down 18	<i>Up</i> 36	Down 58	Up+Dn 94
9	10	15	22	1	2	15	11	2	1	0	0	0	0	1	2	5	3	0	0	0	0	0	0	2	5	41	46	0	0	12	11	2	2	0	0	14	13	55	59	114
10	11	31	51	2	1	17	13	1	1	0	0	0	0	2	1	2	2	0	0	0	0	2	0	7	0	64	69	0	0	22	27	2	2	0	0	24	29	88	98	186
11	12	32	51	5	0	19	19	3	0	0	0	0	0	2	2	3	2	1	0	0	0	1	2	8	8	74	84	0	0	17	20	2	1	0	0	19	21	93	105	198
12	13	12	21	,	1	15	17	3	2	0	0	0	0	2	2	5	5	0	0	0	0	1	0	9	9	48	57	0	0	12	10	1	3	0	0	13	13	61	70	131
13	14	22	21	1	1	12	22	2	0	0	0	0	0	6	5	4	1	0	0	0	0	2	0	5	5	54	55	0	0	11	11	2	2	0	0	13	13	67	68	135
14	15	68	61	1	1	21	12		2	0	0	0	0	2	3	1	0	0	0	0	0	2	0	10	6	107	85	0	0	10	10	2	2	0	0	12	12	119	97	216
15	16	65	44	1	1	37	14	1	1	0	0	0	0	0	1	6	0	2	2	0	0	0	0	2	1	114	64	0	0	17	11	0	1	0	0	17	12	131	76	207
16	17	25	45	3	7	15	11	0	1	0	0	0	0	1	0	9	1	0	0	0	0	2	0	2	4	57	69	0	0	12	5	5	2	0	0	17	7	74	76	150
17	18	22	25	7	5	25	23	3	0	0	0	0	0	1	1	0	0	2	2	0	0	0	0	3	1	63	57	0	0	11	9	2	3	0	0	13	12	76	69	145
18	19	14	15	0	1	29	25	2	3	0	0	0	0	5	1	8	1	0	2	0	0	0	0	2	0	60	48	0	0	11	6	2	2	0	0	13	8	73	56	129
19	20	14	15	0	0	11	12	0	2	0	0	0	0	0	3	9	1	0	0	0	0	2	0	5	5	41	38	0	0	11	1	0	1	0	0	11	2	52	40	92
20	21	71	17	0	0	9	10	1	1	0	0	0	0	0	.5	3	2	2	0	2	0	1	0	3	2	92	37	0	0	6	2	0	0	0	0	6	2	98	39	137
21	22	15	12	0	0	8	8	2	2	0	0	0	0	3	2	7	1	0	2	0	0	0	2	1	3	36	32	0	0	9	9	0	0	0	0	9	9	45	41	86
22	23	0	0	0	0	9	10	2	3	0	0	0	0	3	2	3	1	0	0	0	0	2	0	2	6	21	22	0	0	2	8	0	0	0	0	2	8	23	30	53
23	0	0	0	0	0	0	0	0	1	0	0	0	0	4	3	1	5	2	0	0	2	6	2	5	6	18	19	0	0	0	0	0	0	0	0	0	0	18	19	37
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8	9	9	9	2	0	6	6	7	7	32	31	0	0	0	0	0	0	0	0	0	0	32	31	63
1	2	0	0	0	0	0	0	0	0	0	0	0	0	1	0	9	9	2	1	2	0	2	6	5	5	21	21	0	0	0	0	0	0	0	0	0	0	21	21	42
2	3	0	0	0	0	0	0	0	0	0	0	0	0	1	4	8	2	0	2	0	0	0	2	5	5	14	15	0	0	0	0	0	0	0	0	0	0	14	15	29
3	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	1	2	2	0	0	2	0	1	2	14	5	0	0	0	0	0	0	0	0	0	0	14	5	19
4	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	10	4	2	0	0	6	2	1	1	12	15	0	0	0	0	0	0	0	0	0	0	12	15	27
5	6	9	9	0	0	2	1	0	0	0	0	0	0	2	0	10	8	3	1	0	0	2	0	1	7	29	26	0	0	6	1	0	0	0	0	6	1	35	27	62
6	7	1	2	0	0	2	3	0	0	0	0	0	0	0	1	1	9	3	3	0	0	0	2	1	1	8	21	0	0	5	2	2	1	0	0	7	3	15	24	39
7	8	10	5	0	0	4	8	1	0	0	0	0	0	1	1	5	2	3	2	0	0	1	0	10	1	35	19	0	0	1	2	1	2	0	0	2	4	37	23	60
aily Total		437	437	24	22	256	227	25	20	0	0	0	0	38	42	119	79	35	30	6	2	40	24	98	92	1078	975	0	0	186	160	25	27	0	0	211	187	1200		
otal Vehicle	(Up+Dn)	87	4	4	6	48	33		15		0		0	8	0	19	98	6	5		8	64		190		2	2053	-	0	34	6	52	2		0	398		1289	1162	2451
Quivalency F	actor	0.	5	1.	.0	1.	.0	1	.0	1	1.5	3.	0	1.	5	3.	0	3.	0	4.5		1.5		4.5				6.0	0	0.5	5	2.0	0	4.	.5					
Daily PCU		219	219	24	22	256	227	25	20	0	0	0	0	57	63	357	237	105	90	27	9	60	36	441	414	1571	1337	0	0	93	80	50	54	0	0	143	134	1714	1471	3185
Total PCU (U	n±Down)	43	Q	4	6	45	33		15		0		0	12	20	59	14	19	15	36		96		855		2908			0	17.	3	10	4		0	277		1714	14/1	3163

TRAFFIC DATA ANALYSIS

(Daily Sheet)

Road: Jibantala Bazar to Taldi bazar Road def Work: 14-Jun-19 -to- 15-Jun-19

Chainage: 11+50 km Location: Taldi Day of Work:

	·							Mot	orised	Vehicle	e																	Non-i	notori	zed Ve	hicles									
Time Period	I			Fa	st Pas	senge	r								F	ast Go	ods					Slow (Goods			To	ıtal	Anir	nal /							Total	Non-			
		Two-		Auto		Car	/ Jeep	/ Mot	orized		Bus					Truc	k					Agric	ılture	Agricu			rised	Ha		Cycle		Cycle Ricks		Othe	rs	motor		Total I	lourly \	Vehicles
From	To	Whee	ler	Rick	shaw	Van	•	Van		Mini A		Stand	ard	LCV		2-Axl	e	3-Ax	e	MAV		Tracte	or	Tracto with T		Veh	icles	Dra	wn			KICKS	naw			Vehic	les			
		Up	Down	Up	Down	n Up	Down	n Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	n Up	Down	Up	Down	Up+Dn
8	9	10	23	1	1	6	5	0	0	0	0	0	0	2	2	2	4	0	0	0	0	0	0	1	2	22	37	0	0	10	9	2	3	0	0	12	12	34	49	83
9	10	20	21	1	2	11	25	1	1	0	0	0	0	2	0	1	3	0	2	0	0	0	0	2	10	38	64	0	0	11	11	2	2	0	0	13	13	51	77	128
10	11	40	55	0	1	15	12	1	1	0	0	0	0	2	1	2	2	2	0	0	0	0	0	0	1	62	73	0	0	12	17	2	2	0	0	14	19	76	92	168
11	12	22	23	6	9	20	21	1	3	0	0	0	0	3	4	3	2	0	0	0	0	1	2	1	2	57	66	0	0	15	10	3	1	0	0	18	11	75	77	152
12	13	21	22	1	1	21	11	3	2	0	0	0	0	2	2	1	1	0	2	0	0	1	0	2	1	52	42	0	0	10	11	1	3	0	0	11	14	63	56	119
13	14	24	32	1	1	11	14	2	0	0	0	0	0	7	0	4	9	1	0	0	0	2	0	0	1	52	57	0	0	12	15	2	2	0	0	14	17	66	74	140
14	15	65	55	1	1	12	25	2	2	0	0	0	0	2	0	8	4	0	0	0	0	3	0	2	0	95	87	0	0	13	11	3	3	0	0	16	14	111	101	212
15	16	65	75	7	1	11	21	1	1	0	0	0	0	8	2	5	4	2	0	0	0	0	0	0	1	99	105	0	0	17	12	0	1	0	0	17	13	116	118	234
16	17	71	55	3	0	15	24	0	1	0	0	0	0	0	0	7	5	0	2	0	0	1	0	0	0	97	87	0	0	8	7	1	2	0	0	9	9	106	96	202
17	18	21	21	5	5	10	21	3	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	1	40	49	0	0	9	4	1	1	0	0	10	5	50	54	104
18	19	42	11	8	1	12	14	2	3	0	0	0	0	5	8	1	5	0	1	0	0	0	5	4	2	74	50	0	0	10	11	1	2	0	0	11	13	85	63	148
19	20	14	12	1	1	17	12	0	2	0	0	0	0	3	3	1	1	0	0	0	0	0	0	5	8	41	39	0	0	11	15	0	1	0	0	11	16	52	55	107
20	21	17	18	0	0	11	10	1	1	0	0	0	0	5	4	1	2	0	0	0	0	1	6	6	6	42	47	0	0	10	9	1	1	0	0	11	10	53	57	110
21	22	14	15	0	0	21	18	1	1	0	0	0	0	4	2	1	1	0	0	0	0	0	0	5	5	46	42	0	0	8	9	0	1	0	0	8	10	54	52	106
22	23	0	0	0	0	10	9	2	3	0	0	0	0	1	2	9	1	2	0	0	0	0	5	6	6	30	26	0	0	9	10	0	0	0	0	9	10	39	36	75
23	0	0	0	0	0	0	0	0	4	0	0	0	0	5	3	1	9	0	0	0	0	0	0	4	5	10	21	0	0	0	0	0	0	0	0	0	0	10	21	31
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	3	2	0	0	0	0	0	8	2	11	5	0	0	0	0	0	0	0	0	0	0	11	5	16
1	2	0	0	0	0	0	0	0	0	0	0	0	0	1	0	10	10	10	1	0	0	0	0	8	3	29	14	0	0	0	0	0	0	0	0	0	0	29	14	43
2	3	0	0	0	0	0	0	0	0	0	0	0	0	1	4	1	1	2	2	0	0	0	0	9	4	13	11	0	0	0	0	0	0	0	0	0	0	13	11	24
3	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8	9	2	2	0	0	5	5	9	4	24	20	0	0	0	0	0	0	0	0	0	0	24	20	44
4	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	2	2	0	1	5	0	4	4	12	8	0	0	0	0	0	0	0	0	0	0	12	8	20
5	6	7	8	0	0	9	10	0	0	0	0	0	0	2	0	9	7	5	3	2	2	0	0	4	4	38	34	0	0	2	1	0	0	0	0	2	1	40	35	75
6	7	9	2	0	0	8	8	0	0	0	0	0	0	0	1	9	1	0	3	2	2	5	2	2	3	35	22	0	0	1	2	2	1	0	0	3	3	38	25	63
7	8	9	3	0	0	9	9	1	1	0	0	0	0	1	2	1	2	3	0	0	0	1	0	4	1	29	18	0	0	2	4	1	1	0	0	3	5	32	23	55
Daily Total		471	451	35	24	229	269	21	26	0	0	0	0	56	40	88	88	33	20	4	5	25	25	86	76	1048	1024	0	0	170	168	22	27	0	0	192	195			
Total Vehicle	(Up+Dn)	92	22	:	59	4	198		47		0	,	0	9	6	17	76	5	3		9	50		162		20	072		0	33	8	49)		0	387		1240	1219	2459
Equivalency I	Factor	0.	5	1	.0		1.0		1.0	1.	.5	3.0	0	1.	5	3.	.0	3	0	4.5		1.5		4.5				6.	0	0.5	5	2.0)	4	1.5					
Daily PCU		236	226	35	24	229	269	21	26	0	0	0	0	84	60	264	264	99	60	18	23	38	38	387	342	1411	1332	0	0	85	84	44	54	0	0	129	138	1540	1470	3010
Fotal PCU (U	p+Down)	46	52		59	4	198		47		0		0	14	4	52	28	1:	59	41		76		729		2743			0	16	9	98	3		0	267	,	1540	14/0	3010

TRAFFIC DATA ANALYSIS (Daily Sheet)

Date of Work: Road: Jibantala Bazar to Taldi bazar Road 15-Jun-19 -to- 16-Jun-19

Chainage: 11+50 km Location: Taldi Day of Work:

								Moto	orized	Vehicl	e																	Non-r	notori	zed Ve	hicles									
Time Period				Fa	st Pas	senger									F	ast Go	ods					Slow	Goods				4.1		1./							T. 4.1	NT.			
		Two-		Auto		Car/	Jeep /	Mote	rized		Bus					Truc	k					Agric	ulture	Agricu	ulture		otal orized	Anin Ha		Cycle		Cycle		Othe	rs	motor	Non- ized	Total I	Hourly V	Vehicles
From	To	Whee	ler	Ricks		Van	осер /	Van	71 IZCU	Mini RTV:		Stand	ard	LCV		2-Axl	e	3-Ах	le	MAV	7	Trac		Tracto		Veh	icles	Dra	wn			Ricks	haw			Vehic				
		Up	Down	Up	Down	ı Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Dow	n Up	Dow	n Up	Dou	vn Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	ı Up	Down	Up	Down	Up	Down	Up+Dn
8	9	15	23	0	1	6	5	0	0	0	0	0	0	2	2	2	4	0	0	0	0	0	0	8	2	33	37	0	0	8	10	0	1	0	0	8	11	41	48	89
9	10	24	20	1	1	15	22	1	0	0	0	0	0	1	1	2	0	0	0	0	0	0	0	2	9	46	53	0	0	10	15	2	2	0	0	12	17	58	70	128
10	11	42	50	0	0	15	12	1	1	0	0	0	0	2	1	4	4	0	0	0	0	0	0	3	1	67	69	0	0	13	14	2	2	0	0	15	16	82	85	167
11	12	25	62	5	1	19	25	5	1	0	0	0	0	3	1	2	11	0	0	0	0	1	1	1	1	61	103	0	0	11	10	1	1	0	0	12	11	73	114	187
12	13	25	22	1	1	10	22	3	2	0	0	0	0	2	2	3	10	0	0	0	0	2	0	1	2	47	61	0	0	10	10	1	1	0	0	11	11	58	72	130
13	14	22	24	1	1	10	10	2	0	0	0	0	0	9	2	2	1	1	0	0	0	2	0	2	5	51	43	0	0	12	12	2	2	0	0	14	14	65	57	122
14	15	61	52	1	1	11	15	3	1	0	0	0	0	2	0	1	3	0	0	0	0	2	0	2	2	83	74	0	0	11	15	1	1	0	0	12	16	95	90	185
15	16	22	24	5	9	12	11	1	1	0	0	0	0	8	2	0	0	0	2	0	0	0	0	1	1	49	50	0	0	13	10	2	1	0	0	15	11	64	61	125
16	17	24	55	2	0	14	21	1	1	0	0	0	0	9	6	10	2	0	0	0	0	1	6	8	6	69	97	0	0	12	9	1	2	0	0	13	11	82	108	190
17	18	25	25	4	6	15	14	4	0	0	0	0	0	6	8	1	1	3	2	0	0	0	6	1	2	59	64	0	0	11	12	3	2	0	0	14	14	73	78	151
18	19	17	17	8	1	24	15	2	0	0	0	0	0	5	8	2	2	9	1	0	0	6	0	1	0	74	44	0	0	12	11	1	2	0	0	13	13	87	57	144
19	20	17	18	0	0	11	14	0	2	0	0	0	0	3	3	9	9	2	9	2	0	0	6	4	0	48	61	0	0	8	7	2	1	0	0	10	8	58	69	127
20	21	14	14	0	0	16	22	1	1	0	0	0	0	0	3	2	1	0	2	0	0	1	0	0	8	34	51	0	0	7	8	3	3	0	0	10	11	44	62	106
21	22	15	41	0	0	22	8	1	4	0	0	0	0	3	2	2	1	2	0	0	1	0	0	8	4	53	61	0	0	6	5	2	1	0	0	8	6	61	67	128
22	23	14	12	0	0	10	9	2	3	0	0	0	0	2	0	3	0	2	0	0	0	0	5	5	8	38	37	0	0	1	2	0	0	0	0	1	2	39	39	78
23	0	0	0	0	0	0	0	0	2	0	0	0	0	0	3	7	5	0	0	0	0	5	0	2	5	14	15	0	0	0	0	0	0	0	0	0	0	14	15	29
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	10	2	2	0	0	0	6	6	6	13	24	0	0	0	0	0	0	0	0	0	0	13	24	37
1	2	0	0	0	0	0	0	0	0	0	0	0	0	1	0	10	5	2	1	2	0	5	0	8	7	28	13	0	0	0	0	0	0	0	0	0	0	28	13	41
2	3	0	0	0	0	0	0	0	0	0	0	0	0	1	0	2	2	0	0	0	2	0	0	5	5	8	9	0	0	0	0	0	0	0	0	0	0	8	9	17
3	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	2	2	2	2	2	0	0	6	6	20	12	0	0	0	0	0	0	0	0	0	0	20	12	32
4	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8	1	0	0	0	0	0	0	2	9	10	10	0	0	0	0	0	0	0	0	0	0	10	10	20
5	6	9	9	0	0	9	11	0	0	0	0	0	0	2	0	9	9	1	3	0	0	0	0	2	5	32	37	0	0	2	1	0	0	0	0	2	1	34	38	72
6	7	8	9	0	0	8	12	0	0	0	0	0	0	0	1	1	8	3	2	0	0	5	2	2	4	27	38	0	0	5	2	2	3	0	0	7	5	34	43	77
7	8	11	3	0	0	10	13	1	0	0	0	0	0	0	0	1	2	2	3	0	0	1	0	1	1	27	22	0	0	8	9	2	1	0	0	10	10	37	32	69
Daily Total		390	480	28	22	237	261	28	19	0	0	0	0	61	45	98	93	31	29	6	5	31	32	81	99	991	1085	0	0	160	162	27	26	0	0	187	188	1170	1272	2451
Total Vehic	ele (Up+Dn)	87	70	5	0	49	98	4	1 7		0		0	10	16	19	91	(50	11	ı	6.	3	180		2	076		0	32	22	5.	3		0	375		1178	1273	2451
Equivalen	cy Factor	0.	5	1.	.0	1.	.0	1	.0	1.	.5	3.0	0	1.	5	3.	.0	3	.0	4.:	5	1.:	5	4.5				6.	0	0.:	5	2.	0	4	.5					
Daily PCU		195	240	28	22	237	261	28	19	0	0	0	0	92	68	294	279	93	87	27	23	47	48	365	446	1406	1493	0	0	80	81	54	52	0	0	134	133	1540	1626	3166
Total PCU	(Up+Down)	43	35	5	0	49	98	-	1 7		0	(0	16	60	57	73	1	80	50)	95	5	811		2	899		0	16	51	10)6		0	267		1340	1020	3100

ANNEXURE- V AXLE LOAD DATA COLLECTION

Axle Load Test Result

: LCV (Up & Down)

		Wheel Load	[Ton]			Axle Load []	KN]			Damaging E	ffect	
		Front Axle	Rear	r Axle		Front Axle	Rear Axle		Gross	Front Axle	Rear Axle	Total
Sl.	TIME	_	Single Axle	_	Tandem Axle	_	_	Single Axle	Vehicle		Group	
No.		_	with Single		with Dual	_	with Single		Weight			
		Wheel (A1)	Wheel (A1)	Wheel (A2)		Wheel (A1)	Wheel (A1)	Wheel (A2)	(Ton)			
					(A3)							
Direc		Up		From: JIBA	NTALA		To: TALDI					
1	6.25	1.54	4.50			30.21	88.26		12.08	0.0467	3.3994	3.4461
2	7.40	1.65	4.03			32.36	79.04		11.36	0.0614	2.1864	2.2478
3	8.24	1.81	4.52			35.50	88.66		12.66	0.089	3.4614	3.5504
4	9.17	1.75	3.99			34.32	78.26		11.48	0.0777	2.1014	2.1791
5	11.36	1.54	4.27			30.21	83.75		11.62	0.0467	2.756	2.8027
6	13.37	1.63	3.95			31.97	77.48		11.16	0.0585	2.0189	2.0774
7	15.21	1.72	3.78			33.74	74.14		11.00	0.0726	1.6926	1.7652
8	16.28	1.97	4.05			38.64	79.44		12.04	0.1249	2.231	2.3559
9	18.42	1.65	4.11			32.36	80.61		11.52	0.0614	2.3654	2.4268
10	20.12	1.87	4.01			36.68	78.69		11.76	0.1014	2.148	2.2494
										0.7403	24.3605	25.1008
							Total Dar	naging Effect	for LCV (Up)	25.10	800	
								Total No. o	of LCV (Up):	10)	
	_	_	_	_			Vehicle Da	mage Facor (VDF) for LCV	2.5	10	_

Road: JIBANTALA TALDI ROAD Location: TALDI

Axle Load Test Result : LCV (Up & Down)

Road: JIBANTALA TALDI ROAD Location: TALDI

		Wheel Load	[Ton]			Axle Load [KNJ			Damaging E	ffect	
		Front Axle		r Axle		Front Axle			Gross	Front Axle	Rear Axle	Total
Sl.	TIME			Single Axle				Single Axle	Vehicle		Group	
No.			with Single		with Dual		with Single		Weight			
		Wheel (A1)	Wheel (A1)	Wheel (A2)		Wheel (A1)	Wheel (A1)	Wheel (A2)	(Tonne)			
					(A3)							
		Wheel Load	[Ton]			Axle Load [KNJ			Damaging E	ffect	
G.		Front Axle	Rea	r Axle		Front Axle	Rear Axle		Gross	Front Axle	Rear Axle	Total
SI.	TIME	Single Axle	Single Axle	Single Axle	Tandem Axle	Single Axle	Single Axle	Single Axle	Vehicle		Group	
No.		with Single	with Single	with Dual	with Dual	with Single	with Single	with Dual	Weight (Ton)			
		Wheel (A1)	Wheel (A1)	Wheel (A2)		Wheel (A1)	Wheel (A1)	Wheel (A2)	(1011)			
					(A3)							
Direc		Down	1	From: TAL	.DI	•	To: JIBAN	ΓALA		1	1	
1	6.32	1.45	3.93			28.44	77.08		10.76	0.0366		
2	7.21	1.25	4.12			24.52	80.81		10.74	0.0203	2.3889	2.4092
3	9.42	1.39	4.54			27.26	89.05		11.86	0.0309	3.5228	3.5537
4	10.53	1.25	3.97			24.52	77.87		10.44	0.0203	2.0598	2.0801
5	11.23	1.53	4.32			30.01	84.73		11.70	0.0454	2.8873	2.9327
6	13.32	1.75	4.11			34.32	80.61		11.72	0.0777	2.3654	2.4431
7	14.11	1.49	3.87			29.22	75.91		10.72	0.0408	1.8601	1.9009
8	15.52	1.23	3.98			24.13	78.06		10.42	0.019	2.08	2.099
9	16.23	1.41	4.01			27.66	78.65		10.84	0.0328	2.1436	2.1764
10	17.15	1.35	4.19			26.48	82.11		11.07	0.0275	2.5464	2.5739
										0.3513	23.8318	24.1831
							Total Dama	ging Effect fo	r LCV (Down	24.1	831	
								Total No. of	LCV (down):	10	0	
							Vehicle Da	mage Factor (VDF) for LCV	2.4	18	

Axle Load Test Result: TRAILER (Up & Down)

Road: JIBANTALA TALDI ROAD Location: TALDI

		Wheel Lo				Axle Load				Damaging	Effect		
SI.		Front Axle	Rear	· Axle		Front Axle	Rear Axle	;	Gross	Front	Rear	Rear	Total
No.	TIME	Single Axlewith Single Wheel (A1)	Single Axlewith Single Wheel (A1)	Single	Tandem Axlewith Dual Wheel (A3)	Single	Single Axlewith Single Wheel (A1)	Single Axlewith Single Wheel (A1)	Vehicle Weight (Tonne)	Axle	l	Axle Group	
Dire	ction:	Up	(111)		BANTALA	(111)	To: TAL		<u> </u>	<u> </u>			
1	07:30	0.69	1.94	4.43		13.53	38.05	86.89	14.12	0.0019	0.1174	3.1932	3.3125
2	08:15	0.65	1.65	4.25		12.75	32.36	83.36	13.10	0.0015	0.0614	2.7051	2.768
3	16:20	0.78	1.73	3.67		15.30	33.93	71.98	12.36	0.0031	0.0742	1.5038	1.5811
4	17:30	0.35	1.78	4.33		6.86	34.91	84.93	12.92	0.0001	0.0832	2.9147	2.998
5	18:06	0.79	1.75	4.24		15.50	34.32	83.16	13.56	0.0032	I	2.6792	2.7601
6	19:20	1.12	1.84	4.04		21.97	36.09	79.24	14.00	0.0131		2.2086	2.3167
7	19:30	0.85	1.68	3.43		16.67	32.95	67.28	11.92	0.0043	1	1.1479	
8	20:15	1.03	1.96	4.05		20.20	38.44	79.44	14.08	0.0093	l	2.231	2.3626
9	20:20	0.78	1.77	4.67		15.30	34.72	91.60	14.44	0.0031		3.9439	
10	20:30	0.74	1.81	3.33		14.51	35.50	65.31	11.76	0.0025		1.0192	1.1107
11	21:06	0.67	1.62	4.04	12.66	0.0017		2.2086	2.2674				
12	21:20	1.12	1.84	4.54		21.97	36.09	89.05	15.00	0.0131	l	3.5228	3.6309
13	21:30	0.49	1.75	3.95		9.61	34.32	77.42	12.37	0.0005		2.0126	
14	22:06	0.74	1.92	4.60		14.51	37.66	90.22	14.52	0.0025		3.7116	
15	22:20	0.96	1.71	4.30		18.83	33.54	84.34	13.94	0.007	I	2.8345	2.9124
16	22:30	0.84	1.51	3.40		16.48	29.62	66.69	11.50	0.0041		1.1081	1.1553
17	22:40	1.19	1.62	3.60		23.34	31.77	70.61	12.82	0.0166		1.3926	1.4663
18	22:45	0.93	1.68	4.30		18.24	32.95	84.34	13.82	0.0062		2.8345	
19	22:55	1.02	1.65	4.30		20.01	32.36	84.34	13.94	0.009	1		
20 23:00 0.91 1.74 4.20 17.85 34.13 82.38 13.70 0.005												2.5801	2.6618
										0.1085		48.5865	50.2796
	Total Damaging Effect for Trailer (Up): 50.2796												
								No. of Tra			20		
						Vehicle D	amage Fac	ctor (VDF)	for Trailer	2	2.514		

Axle Load Test Result: TRAILER (Up & Down)

Road: JIBANTALA TALDI ROAD Location: TALDI

<u> </u>	0-00-20	Wheel Loa	d [Ton]			Axle Load	IKNI			Damaging 1	Effect		
		Front		Axle			Rear Axle		Gross		Rear Axle	Rear Avle	Total
Sl.		Axle				Axle			Vehicle	1	l	Group	Total
No.	TIME	Single	Single	Single	Tandem	Single	Single	Single	Weight		Стоир	Огоцр	
		Axlewith	Axlewith	Axlewith	Axlewith	Axlewith	Axlewith	Axlewith	(Tonne)				
		Single Wheel	Single Wheel	Single Wheel	Dual Wheel	Single Wheel	Single Wheel	Single Wheel					
		(A1)	(A1)	(A1)	(A3)	(A1)	(A1)	(A1)					
		Wheel Loa		(A1)		Axle Load		(A1)		Damaging 1	L Effect		
		Front		Axle			Rear Axle		1 ~			Rear Axle	Total
CI		Axle	Ktai	AAIC		Axle	IXCAI AXIC		Gross		l	Group	lotai
Sl. No.	TIME	Single	Single	Single	Tandem	Single	Single	Single	Vehicle		Group	Group	
110.		Axlewith	Axlewith	Axlewith	Axlewith	Axlewith	Axlewith	Axlewith	Weight				
		Single	Single	Single	Dual Wheel	Single	Single	Single	(Tonne)				
		Wheel	Wheel	Wheel	(A3)	Wheel	Wheel	Wheel					
		(A1)	(A1)	(A1)	, ,	(A1)	(A1)	(A1)					
Direc	ction:	Down	, ,	From: TAl	L DI		To: JIBAN	TALA					
1	03:16	0.71	1.52	3.37		34.00	29.81	66.10	11.20	0.0749	0.0442	1.0694	1.1885
2	04:12	0.98	1.98	3.65		19.28	38.84	71.59	13.23	0.0077	0.1275	1.4715	1.6067
3	05:31	0.91	1.67	3.14		17.85	32.76	61.59	47.14	0.0057	0.0645	0.8061	0.8763
4	06:55	0.87	1.27	3.78		17.06	24.91	74.14	11.84	0.0047	0.0216	1.6926	1.7189
5	07:20	0.58	1.12	3.45		11.38	21.97	67.67	10.30	0.0009	0.0131	1.1747	1.1887
6	08:16	0.89	1.56	3.36		34.00	30.60	65.90	11.62	0.0749	0.0491	1.0565	1.1805
7	08:22	0.81	1.58	3.64		15.89	30.99	71.39	12.06	0.0036	0.0517	1.4551	1.5104
8	08:31	0.92	1.45	3.15		18.04	28.44	61.78	47.12	0.0059	0.0366	0.8161	0.8586
9	08:55	1.02	1.27	3.79		20.01	24.91	74.34	12.16	0.009	0.0216	1.7109	1.7415
10	09:20	0.97	1.85	3.70		19.03	36.29	72.57	13.04	0.0073	0.0972	1.5537	1.6582
11	09:31	0.98	1.25	3.60		19.22	24.52	70.61	50.10	0.0076	0.0203	1.3926	1.4205
12	09:55	0.87	1.27	3.81		17.06	24.91	74.73	11.90	0.0047			1.7734
13	10:20	0.89	1.55	4.05		17.46	30.40	79.44	12.98	0.0052			2.284
14	10:16	0.51	1.21	3.39		34.00	23.73	66.49	10.22	0.0749			1.1876
15	10:16	0.55	1.31	3.35		34.00	25.69	65.71	10.42	0.0749	0.0244	1.0444	1.1437
16	11:12	0.56	1.52	3.64		10.98	29.81	71.41	11.44	0.0008			1.5017
17	11:31	0.82	1.32	3.71		16.08	25.89	72.77	43.86	0.0037	0.0252	1.5709	1.5998
18	11:55	0.85	1.02	3.98		16.67	20.01	78.06	11.70	0.0043			
19	12:20	0.58	1.12	3.95		11.38	21.97	77.48	11.30	0.0009		2.0189	
20													
	-		·					·	<u> </u>	0.377	0.7591	29.2643	30.4004
Total	otal Damaging Effect for Trailer (Down) 30.4004												
								No. of Traile			20		
						Vehic	le Damage I	actor (VDF) for Trailer	1	1.520		

Axle Load Test Result: 2 - Axle Truck (Medium Truck) (Up & Down)

Road: JIBANTALA TALDI ROAD Location: TALDI

		,	Wheel Loa	ıd [Ton]			A	xle Load	[KN]				Damaging	Effect	
SI.	TIME	Front Axle	F	Rear Axle			Front Axle	Ro	ear Axle			Gross Vehicle	1	Rear Axle	Total
No.	IIIVIE	Single Axlewith Single Wheel (A1)	Single Axlewith Single Wheel (A1)	Single Axlewith Dual Wheel (A2)	Tandem Axle with Dual Wheel (A3)	Tridem Axle with Dual Wheel (A4)	Single Axlewith Single Wheel (A1)	Single Axlewith Single Wheel (A1)	Single Axle with Dual Wheel (A2)	Tandem Axle with Dual Wheel (A3)	Tridem Axlewith Dual Wheel (A4)	Weight (Ton)		Group	
Dire	ection:	Up		From: JII	BANTALA			To: TALI	Ι						
1	13.32	3.89		5.26			76.30		103.17			18.30	1.8986		
2	14.23	3.25		5.59			63.75		109.64			17.68	0.9253		
3	15.55	2.93		4.36			57.47		85.52			14.58	0.6111	1.3059	1
4	16.22	2.68		4.08			52.57		80.03			13.52	0.4279	1.0015	
5	16.53	2.23		4.02			43.74		78.85			12.50	0.2051	0.9437	1.1488
6	17.02	4.14		6.23			81.20		122.20			20.74	2.4354	5.4441	7.8795
7	17.35	5.32		7.63			104.35		149.65			25.90	6.6423	12.2447	18.887
8	17.55	2.91		4.38			57.08		85.91			14.58	0.5947	1.3299	
9	18.22	2.7		5.28			52.96		103.56			15.96	0.4407	2.8081	3.2488
10	18.53	3.25		7.22			63.75		141.61			20.94	0.9253	9.8178	1
11	19.02	4.1		5.29			80.42		103.76			18.78	2.3432	2.8298	
12	19.32	5.08		7.06			99.64		138.47			24.28	5.5218	8.9756	
13	19.58	4.06		5.76			79.63		112.98			19.64	2.2524	3.9778	
14	16.22	2.06		4.28			40.40		83.95			12.68	0.1492	1.2126	
15	16.53	2.3		4.72			45.11		92.58			14.04	0.232	1.7935	
16	17.02	4.1		5.34			80.42		104.64			18.87	2.3432	2.9271	5.2703
17	17.35	5.2		6.66			101.99		130.63			23.72	6.0615	7.1091	13.1706
18	17.55	3.02		6.36			59.23		124.75			18.76	0.6895	5.9129	
19	18.22	2.85		5.19			55.90		101.80			16.08	0.547	2.622	3.169
20	20 18.53 5.23 7.89 102.58 154.75											26.24	6.2029		20.204
													41.4491	92.5511	134.0002
								Tota			r 2-Axle (Up)	1	34.0002		
											2-Axle (Up) :		20		
								Vehicl	e Damage	Factor (VI	F) for 2-Axle		6.700		

			Wheel Loa	nd [Ton]				Axle Load [KNJ				Damaging E	ffect	
SI.		Front Axle		Rear Axle			Front Axle	F	Rear Axle			Gross Vehicle	1	Rear Axle Group	Total
No.	TIME	with Single	Single Axle with Single Wheel (A1)	with Dual	Tandem Axle with Dual Wheel (A3)	Tridem Axle with Dual Wheel (A4)	with Single	Single Axle with Single Wheel (A1)	with Dual	Tandem Axle with Dual Wheel (A3)	Tridem Axle with Dual Wheel (A4)	Weight (Tonne)		Ciroup	
			Wheel Loa	nd [Ton]				Axle Load [KNJ				Damaging E	ffect	
		Front Axle		Rear Axle			Front Axle	F	Rear Axle			Gross	I		Total
SI. No.	ТІМЕ	with Single	Single Axle with Single Wheel (A1)	with Dual	Tandem Axle with Dual Wheel (A3)		with Single	Single Axle with Single Wheel (A1)	with Dual	Tandem Axle with Dual Wheel (A3)	Tridem Axle with Dual Wheel (A4)	Vehicle Weight (Ton)		Group	
Dire	tion:	Down		From: TAL	DI			To: JIBANT	ALA			-	•		
1	8.23	2.27		3.95			44.52		77.48			12.44	0.2201	0.8798	1.09
2	8.54	1.56		3.65			30.60		71.59			10.42	0.0491	0.6413	0.69
3	9.11	2.86		4.85			56.10		95.13			15.42	0.5549	1.9994	2.5
4	9.33	2.56		4.53			50.21		88.85			14.18	0.356	1.5215	1.8
5	11.56	4.26		7.58			83.56		148.67			23.68	2.7311	11.9271	14.6
6	13.37	3.87		5.56			75.91		109.05			18.86	1.8601	3.4526	5.3
7	14.15	2.98		4.89			58.45		95.91			15.74	0.6539	2.0658	2.7
8	14.49	3.84		6.96			75.32		136.51			21.60	1.803	8.4781	10.28
9	15.54	4.56		6.65			89.44		130.43			22.42	3.5849	7.0656	10.65
10	16.11	2.8		4.87			54.92		95.52			15.34	0.5096	2.0324	2.5
11	16.33	2.5		5.12			49.04		100.42			15.24	0.324		2.80
12	17.56	4.2		5.88			82.38		115.33			20.16	2.5801	4.3193	6.89
13	18.37	3.8		7.56			74.53		148.28			22.72	1.7285		13.53
14	19.15	2.9		4.89			56.88		95.91			15.58	0.5864		2.65
15	19.49	3.8		4.96			74.53		97.29			17.52	1.7285		3.9
16	20.33	2.56		5.29			50.21		103.76			15.70	0.356		3.18
17	21.56	4.2		5.58			82.38		109.45			19.56	2.5801	3.5035	6.08
18	22:00	3.75		4.56			73.55		89.44			16.62	1.6394		3.20
	22.15	2.28		4.99			44.72		97.87			14.54	0.2241		2.40
20	22.49	3.14		5.96			61.59		116.96			18.21	0.8061	4.5687	5.31
									Total Dama	iging Effect fo	or 2-Axle (Down		24.8759 102.5013	77.6254	102.50
									- Cui Duine		2-Axle (Down) :		20		
									Vehicle Da		(VDF) for 2-Axle	9	5.125		

Axle Load Test Result: 3 - Axle Truck (Up & Down)

Road: JIBANTALA TALDI ROAD Location: TALDI

		,	Wheel Loa	d [Ton]			A	xle Load []	KNJ				Damaging	Effect		
Sl.	TIM	Front Axle	R	ear Axle			Front Axle	Re	ar Axle			i v cilicie				Total
110.	E	Single Axlewith	Single Axlewith	Single Axlewith	Tandem Axle	Tridem Axle with	Single Axlewith	Single Axlewith	Single Axlewith	Tandem Axle	Tridem Axle with	weight			Axle Group	
		Single Wheel	Single Wheel	Dual Wheel	with Dual Wheel(A3)	Dual Wheel	Single Wheel	Single Wheel	Dual Wheel	with Dual	Dual Wheel)				
		(A1)	(A1)	(A2)		(A4)	(A1)	(A1)	(A2)	Wheel	(A4)					
Dir	ection:			From: JII	BANTALA			To: TALD	I							
1	7.02	3.26		5.62	9.95		63.94		110.23	195.16		37.66	0.9363	3.6045		7.5643
2	8.43	3.45			9.75		67.67		102.97	191.24		36.90	1.1747	2.7446		6.7071
3	9.11	3.53		5.64	10.82		69.24		110.62	212.22		39.98	1.2876	3.6557	4.2276	9.1709
4	19.15	3.85		5.42	10.75		75.51		106.31	210.85		40.04	1.8212	3.1184		9.0591
5	20.32	3.36			9.95		65.90		100.42	195.16		36.86	1.0565	2.4827	3.0235	6.5627
6	21.23	3.29		5.02	10.85		64.53		98.46	212.81		38.32	0.9714	2.2945		7.5408
7	22.23	3.39		5.31	10.90		66.49		104.15	213.79		39.20	1.0949	2.8726		8.3216
8	23.23	3.99		5.1	10.76		78.26		100.03	210.95		39.69	2.1014	2.4443		8.673
	10.444 23.2173 29.9382 63.5995															
		To	otal Damag	ging Effect	for 3-Axle (Up))							63.5995			
			Total	No. of 3-A	xle (Up):									8		
		Vel	nicle Dama	ge Factor	(VDF) for 3-Ax	le							7.950			

			Wheel Loa	d [Ton]				Axle Load [k	(N)				Damaging E	ffect		
Sl. No.	TIME	Front Axle Single Axle with Single Wheel (A1)	Single Axle with Single		l andem Axie		with Single		with Dual	Axle with	Tridem Axle with Dual Wheel(A4)	Gross Vehicle Weight (Ton)	1	Rear Axle Group	Rear Axle Group	Total
			Wheel Loa	d [Ton]				Axle Load [k	(N)				Damaging E	ffect		
Sl. No.	TIME		Single Axle with Dual		with Dual Wheel	with Dual	with Single	Single Axle	with Dual	Axle with	Tridem Axle with Dual Wheel(A4)	Gross Vehicle Weight (Ton)	1	Rear Axle Group	Rear Axle Group	Total
Dire	ction:	Down		From: TAL	DI		-	To: JIBANT	ALA							
1	6.44	3.56		5.25	10.10		69.83		102.97	198.10		37.82	1.332	2.7446	3.2099	7.2865
2	7.12	3.96		5.05	9.65		77.67		99.05	189.28		37.32	2.0387	2.3499	2.6753	7.0639
3	8.34	3.12		4.52	9.80		61.20		88.66	192.22		34.88	0.7859	1.5085	2.8454	5.1398
4	19.26	3.06		5.21	11.20		60.02		102.19	219.68		38.94	0.727	2.6624	4.8542	8.2436
5	20.23	3.64		5.62	9.60		71.39		110.23	188.29		37.72	1.455	3.6045	2.6198	7.6794
6	21.54	3.68		5.23	9.23		72.18		102.58	181.10		36.29	1.5200	2.7033	2.242	6.4659
7	22.42	3.08		6.89	9.30		60.41		135.14	182.41		38.54	0.746	8.1428	2.3075	11.1964
	8.6054 23.716 20.7541 53.0755															
			Total Dama	ging Effect fo	or 3-Axle (Down)								53.0755			
				No. of 3-Axl										7		
			Vehicle Da	mage Factor ((VDF) for 3-Axle								7.582			

Axle Load Test Result: MAV (Up & Down)

Road: JIBANTALA TALDI ROAD Location: TALDI

				Wheel Load	d [Ton]				Axle Load [F	(N)				Damaging E	ffect		
		İ	Front Axle]	Rear Axle			Front Axle	R	ear Axle			Gross	Front Axle	Rear Axle	Rear Axle	Total
SI. No	. T		with Single	with Single	Single Axle with Dual Wheel (A2)	Tandem Axle		with Single	Single Axle with Single Wheel (A1)	with Dual	Axle with	Tridem Axle with Dual Wheel (A4)	Vehicle Weight (Ton)		Group	Group	
Direction: Up From: JIBANTALA To: TALDI																	
1	- [7.02	4.26		5.55	9.5	11.20	83.56		108.86	186.33	219.68	61.02	2.731	5.941	0.9251	9.5972
2	: :	8.43	3.45		5.42	9.8	12.10	67.67		106.31	192.22	237.33	61.54	1.174	5.9638	1.2601	8.3986
3	9	9.11	3.53		6.51	8.5	12.80	69.24		127.63	166.72	251.06	62.67	1.287	8.0885	1.578	10.9541
														5.193	19.9933	3.7632	28.9499
Total Damaging Effect for MAV (Up) 28.949											28.9499	•					
			•	Tota	al No. of MA	V (Up):				•				•	3		
				Vehicle Da	mage Factor (VDF) for MAV								9.650			

			Wheel Load	d [Ton]				Axle Load [k	(N)				Damaging E	ffect		
		Front Axle]	Rear Axle			Front Axle	Re	ear Axle			Gross	Front Axle	Rear Axle	Rear Axle	Total
SI. No.	TIME	Single Axle with Single Wheel (A1)	with Dual	with Dual	with Dual Wheel	Axle with	with Single	Single Axle with Dual Wheel (A2)	with Dual	Axle with	Tridem Axle with Dual Wheel (A4)	Vehicle Weight (Ton)		Group	Group	
Dire	rection: Down From: TALDI							To: JIBANT	ALA							
1	6.44	3.56		6.8	9	11.20	69.83		133.38	176.53	219.68	61.12	1.332	9.751	0.9251	12.0081
4	7.15	3.84		5.6	8.7	11.50	75.26		109.84	170.64	225.56	59.27	1.7972	5.3209	1.0281	8.1462
2	8.12	3.26		4.2	9.5	11.30	63.94		82.38	186.33	221.64	56.52	0.9363	3.6368	0.9585	5.5316
													4.065	18.7087	2.9117	25.6859
Total Damaging Effect for MAV (Down)													25.6859			
			Total	No. of MAV	(Down):									3		
	Total No. of MAV (Down) : Vehicle Damage Factor (VDF) for MAV												8.562			

ANNEXURE- VI

ESTIMATION

				1.COST	OF PAKU	R VARIET	Y STONE 1	MATERIAI	LS AT SITE	THROUGH	BALLYG	UNGE RAI	LWAY SIDIN	IGS Rs/m3				
	Distance from Ballyg	unge to	site =	38.3 km		Middle	e distance o	of site =	6.225 km		<u>To</u>	otal distance	from Ballygu	nge Railway Y	Yard=	44.525 km	=	45 km
	Size Of Metals & Chips	Unit	Boulder 30/45 Kg	Grade -I	Grade -II	37.5 mm	26.5 mm	22.4mm	13.2mm	11.2mm	5.6mm	stone grit	stone dust mixed with grit	Screening Type-A	Screening Type-B	40 mm nominal size	20 mm nominal size	10 mm nominal size
,	Cost of Materials at Ballygunge Railway Siding (VP-225, Tab-2 of SOR 2018)	M³	1201.00	1399.00	1421.00	1417.00	1476.00	1491.00	1514.00	1375.00	1122.00	1022.00	1008.00	1204.00	1010.00	1439.00	1430.00	1299.00
2	Cost of Road Transport for a lead of 45km.	M ³	517.00	517.00	517.00	517.00	517.00	517.00	517.00	517.00	517.00	517.00	517.00	517.00	517.00	517.00	517.00	517.00
3	Add Loading & Unloading without Stacking.75% of Rs83.00, 75% of Rs 77.00 & 75% of Rs 62.00	M^3	62.25	62.25	62.25	57.75	57.75	57.75	57.75	57.75	57.75	57.75	46.50	57.75	57.75	62.25	57.75	57.75
4	Cost Of Materials at Site for HMP works or Concrete works without stacking	M^3	1780.25	1978.25	2000.25	1991.75	2050.75	2065.75	2088.75	1949.75	1696.75	1596.75	1571.50	1778.75	1584.75	2018.25	2004.75	1873.75

2. COST OF LAT	ERITE & MOORUM AT WORK SITE Rs/m3			
Size Of Metals &	t Chips	Unit	Moorum	(Local)
Cost Of Material	s at Quarry	M^3	117	
Add Loading Un	loading	M^3	62	
Cost of Road Tra	ansport for a lead of 172Km from Sandhipur	M^3	1553.3	
Cost of Materials	s at work site for general works including stacking = 1+2+3	M^3	1732.3	

JIBANTALA BAZAR TO TALDI BAZAR ROAD FROM CH. 0.00 KMP TO 12.45 KMP – STRENGTHENING WORK UNDER SOUTH 24 PARGANAS DIVISION IN THE DISTRICT OF SOUTH 24 PARGANAS.

Analysis Of Rate of Bitumen of Different Grades supplied by Contractor., of SOR 2018)

- A. Carriage of 60/70 Bulk Bitumen (VG-30) from Haldia to site = 168 Km
- C. Carriage of Bitumen Emulsion from Haldia to site = 168 km
- B. Carriage of 10/20 Packed Bitumen Emulsion from Dhulagarh to site = 90 km

As per schedule of rate of PW(Roads) DEPT. Wef. 30.08.2018 & 9TH ADDENDA & CORRIGENDA

ITEM DESCRIPTION	Bulk Bitumen 60/70 (VG-30) (From Haldia)	Packed Bitumen 10/20 (From Dhulagarh)	Bitumen Emulsion Bulk (from Haldia)
Carriage of Bulk Bitumen 60/70 grade from Haldia to Site	1014.90	0.00	0.00
Carriage of Bitumen Emulsion (bulk) from Haldia to Site	0.00	0.00	1014.90
Carriage of 10/20 Bitumen (Packed) from Dhulagarh to site.	0.00	787.00	0.00
Cost of Loading, Unloading	0.00	42.00	0.00
Total	1014.90	829.00	1014.90

To arrive Cost of Bitumen at Site Supplied by Contractor (FORMAT-B)

		Bulk Bitumen 60/70 (VG-30) (From Haldia)	Packed Bitumen 10/20 (From Dhulagarh)	Bitumen Emulsion Bulk (from Haldia)
(A) Cost of materials including of all taxes at the nearest source of manufacturer.	Rs	26780.00	33400.00	22170.00
(B) Add overhead charges 5% of A	Rs	1339.00	1670.00	1108.50
(C) Add contractor profit 10% of (A+B)	Rs	2811.90	3507.00	2327.85
(D) Carriage from stackyard to site for	Rs	1014.90	829.00	1014.90
(E) Deduct Cost of container	Rs	0.00	1000.00	0.00
F. Rate of material at site (Rs Per MT)	Rs	31945.80	38406.00	26621.25
G. Rate of material at site (Rs Per Kg)	Rs	31.95	38.41	26.62

			QUANT	TTY OF ROA	AD WORKS					
Sl No	Description of Item	No	L (m)	B(m)	D(m)		Quantity	Unit	Rate (Rs./Unit)	Amount (Rs.)
1	Construction of granular sub-base by providing graded made layers with Motor grader on prepared surface in proper graded guarding, barricading, including cost of all materials, made & Bridge Works of MoRT&H (5th Revision).(v) Grading	ade and c hinery, to	amber, compaction and plants an	ng with vibrate d cost of qual	ory power rolle ity control com	r to achie plete as p	eve the desired den	sity, inc	luding lighting,	
	GSB	1	1000	5.5	0.200	=	1100.00	m ³		
					Total	=	1100.00	m ³	2649.11	Rs. 2914021.5896
2	premixing the material with water at OMC in Wet Mix Pla on well-prepared surface and compacting with Vibratory R incidental costs for lighting, guarding, barricading, mak Specifications for Road & Bridge Works of MoRT&H (5th	oller to ac	chieve the desired en bundh to prot	density, included	ling supply of al including cost	ll materia of quali	ls, machinery, fuel	and lub	ricants, including	
	WMM	1	1000	5.50	0.25	=	1375.00	m ³		
	Providing and laying dense bituminous macadam with Ho	t Mix Pla	ant producing an a	average output	Total of 75 tonnes pe	er hour u	1375.00 sing coarse aggreg	m ³ gate, fine	2779.36 e aggregate, filler	Rs. 3821620
3	Providing and laying dense bituminous macadam with Ho and bituminous binder as per design Job Mix Formula conf and quality mix in Hot Mix Plant and ensuring a homoger work site, laying the mixed materials at specified laying to over prepared surface coated with tack coat, rolling with the desired density of at least 98% of that of Laboratory M coarse and fine aggregates and filler materials and hire cloperational staff complete as per Clause 505 of Specificat of minimum capacity 100-120 TPH. It No5.05(b) & Ps	forming Managements of the Management of the Management of the Management of the Management of Manag	Marshall Method a k, in which all partice with a hydrost rheeled, vibratory pecimen, hand partice machinery and e Road & Bridge W	as per specifical rticles of the natice paver finition and tandem recking and piniquipment for	of 75 tonnes pution, including nineral aggregates sher with senso ollers for break ning to give an econstruction and	screening tes are control or control down, in even surf d quality	sing coarse aggreg g, cleaning of chips pated uniformly, tra to the required grater-mediate and fif face including cost control, fuels and	gate, fine s and pre ansportinade, lev nished in and car	e aggregate, filler eparing a uniform ng the hot mix to el and alignment colling to achieve riage of bitumen, nts and wages of	Rs. 3821620
3	and bituminous binder as per design Job Mix Formula contand quality mix in Hot Mix Plant and ensuring a homoger work site, laying the mixed materials at specified laying to over prepared surface coated with tack coat, rolling with the desired density of at least 98% of that of Laboratory M coarse and fine aggregates and filler materials and hire cloperational staff complete as per Clause 505 of Specificat	forming Managements of the Management of the Management of the Management of the Management of Manag	Marshall Method a k, in which all partice with a hydrost rheeled, vibratory pecimen, hand partice machinery and e Road & Bridge W	as per specifical rticles of the natice paver finition and tandem recking and piniquipment for	of 75 tonnes pution, including nineral aggregates sher with senso ollers for break ning to give an econstruction and	screening tes are control or control down, in even surf d quality	sing coarse aggreg g, cleaning of chips pated uniformly, tra to the required grater-mediate and fif face including cost control, fuels and	gate, fine s and pre ansportinade, lev nished in and car	e aggregate, filler eparing a uniform ng the hot mix to el and alignment colling to achieve riage of bitumen, nts and wages of	Rs. 3821620
3	and bituminous binder as per design Job Mix Formula confund quality mix in Hot Mix Plant and ensuring a homoger work site, laying the mixed materials at specified laying to over prepared surface coated with tack coat, rolling with the desired density of at least 98% of that of Laboratory M coarse and fine aggregates and filler materials and hire of operational staff complete as per Clause 505 of Specificat of minimum capacity 100-120 TPH. It No5.05(b) & Pg DBM	forming National Nati	Marshall Method a c, in which all paure with a hydrost heeled, vibratory pecimen, hand pa machinery and e Road & Bridge W Ol-III)	as per specificarticles of the natic paver fini and tandem reking and pini quipment for forks of MoRT	of 75 tonnes pution, including nineral aggregates her with senso collers for break ning to give an econstruction and 2-4 (5th Revision 10.08).	screening tes are control down, in even sured quality ion). B. I	sing coarse aggreg g, cleaning of chips pated uniformly, tra to the required grater-mediate and fiface including cost control, fuels and For Grading 2(i) U	tate, fines and present ansporting and car lubrica Using B	e aggregate, filler eparing a uniform ing the hot mix to el and alignment colling to achieve riage of bitumen, ints and wages of atch Type HMP	Rs. 3821620 Rs. 3454066.36
3	and bituminous binder as per design Job Mix Formula confund quality mix in Hot Mix Plant and ensuring a homoger work site, laying the mixed materials at specified laying to over prepared surface coated with tack coat, rolling with the desired density of at least 98% of that of Laboratory M coarse and fine aggregates and filler materials and hire cloperational staff complete as per Clause 505 of Specificat of minimum capacity 100-120 TPH. It No5.05(b) & Pg	orming Meous mixemperatus mooth was arshall sparages of ions for Fag 252 (Value of the desire of	Marshall Method a c, in which all par gre with a hydrost cheeled, vibratory pecimen, hand pa machinery and e coad & Bridge W vol-III) 1000 g coarse aggregate quality mix in Ho tite, laying the mix pared surface coal ed density of at le harges of machin Specifications for	as per specificarticles of the netatic paver fini and tandem recking and pini quipment for orks of MoRT 5.50 es, fine aggreg t Mix Plant and teed materials a teed with tack of the tery and equipment and equipment for Road & F	of 75 tonnes pution, including nineral aggregat sher with senso collers for break ning to give an econstruction and &H (5th Revision 1988) Total ates, filler mated ensuring a host specified laying toat, rolling with at of Laborator ment for construction of the cons	screening tes are coor control down, in even sured quality ion). B. I arrials and mogeneous temperature of MoF	sing coarse aggregg, cleaning of chips ated uniformly, trait to the required grater-mediate and fiface including cost control, fuels and For Grading 2(i) I 440.00 440.00 bituminous binder out mix, in which a rature with a hydron wheeled, vibraton all specimen, including quality control, tack (5th Revise).	gate, fines and present and care lubrica Using B m³ m³ of requested present and care lubrica to the maximum m² m³ of requested present and care present and care present and care present and constant	e aggregate, filler eparing a uniform ng the hot mix to el and alignment colling to achieve riage of bitumen, nts and wages of atch Type HMP 7850.15 irred specification les of the mineral aver finisher with andem rollers for st and carriage of ad lubricants and	
	and bituminous binder as per design Job Mix Formula confund quality mix in Hot Mix Plant and ensuring a homoger work site, laying the mixed materials at specified laying to over prepared surface coated with tack coat, rolling with a the desired density of at least 98% of that of Laboratory M coarse and fine aggregates and filler materials and hire of operational staff complete as per Clause 505 of Specificat of minimum capacity 100-120 TPH. It No5.05(b) & Pg DBM Providing and laying bituminous concrete with Hot Mix P including screening, cleaning of chips and preparing a unit aggregates are coated uniformly, transporting the hot mix to sensor control to the required grade, level and alignment break down, inter-mediate and finished rolling to achieve bitumen, coarse and fine aggregates and filler materials a wages of operational staff complete as per Clause	orming Meous mixemperatus mooth was arshall sparages of ions for Fag 252 (Value of the desire of	Marshall Method a c, in which all par gre with a hydrost cheeled, vibratory pecimen, hand pa machinery and e coad & Bridge W vol-III) 1000 g coarse aggregate quality mix in Ho tite, laying the mix pared surface coal ed density of at le harges of machin Specifications for	as per specificarticles of the netatic paver fini and tandem recking and pini quipment for orks of MoRT 5.50 es, fine aggreg t Mix Plant and teed materials a teed with tack of the tery and equipment and equipment for Road & F	of 75 tonnes pution, including nineral aggregat sher with senso collers for break ning to give an econstruction and &H (5th Revision 1988) Total ates, filler mated ensuring a host specified laying toat, rolling with at of Laborator ment for construction of the cons	screening tes are coor control down, in even sured quality ion). B. I arrials and mogeneous temperature of MoF	sing coarse aggregg, cleaning of chips ated uniformly, trait to the required grater-mediate and fiface including cost control, fuels and For Grading 2(i) I 440.00 440.00 bituminous binder out mix, in which a rature with a hydron wheeled, vibraton all specimen, including quality control, tack (5th Revise).	gate, fines and present and care lubrica Using B m³ m³ of requested present and care lubrica to the maximum m² m³ of requested present and care present and care present and care present and constant	e aggregate, filler eparing a uniform ng the hot mix to el and alignment colling to achieve riage of bitumen, nts and wages of atch Type HMP 7850.15 irred specification les of the mineral aver finisher with andem rollers for st and carriage of ad lubricants and	

			QUANT	TITY OF ROA	D WORKS					
Sl No	Description of Item	No	L (m)	B(m)	D(m)		Quantity	Unit	Rate (Rs. /Unit)	Amount (Rs.)
	Construction of granular sub-base by providing gra layers with Motor grader on prepared surface in pro guarding, barricading, including cost of all materials Bridge Works of MoRT&H (5th Revision).(v) Grad	per grade and on, machinery, to	camber, compact	ing with vibrated cost of quali	ory power rolle ty control comp	er to achi lete as p	eve the desired de	nsity, in	cluding lighting,	
1	GSB	1	1000	5.5	0.150	II	825.00	m^3		
					Total	=	825.00	m ³	2649.11	Rs. 2185515.7896
2	on well-prepared surface and compacting with Vibrat incidental costs for lighting, guarding, barricading, Specifications for Road & Bridge Works of MoRT& WMM	, making earth	en bundh to pro	tect the edges	including cost	of quali				
	Providing and laying dense bituminous macadam wi									Rs. 3821620
3	and bituminous binder as per design Job Mix Formula and quality mix in Hot Mix Plant and ensuring a hor work site, laying the mixed materials at specified la over prepared surface coated with tack coat, rolling the desired density of at least 98% of that of Laborat coarse and fine aggregates and filler materials and hoperational staff complete as per Clause 50:	a conforming Namogeneous mix- ying temperatu with smooth watery Marshall spaces of 5 of Specific	Marshall Method at in which all part with a hydros heeled, vibratory pecimen, hand part machinery and exations for Rose	as per specifical rticles of the mattaic paver finity and tandem reacking and pinitequipment for a d & Bridge	of 75 tonnes principal including the sensor of the sensor	er hour u screening es are co or control down, in even surf d quality	sing coarse aggreg g, cleaning of chip pated uniformly, tr to the required grater-mediate and fi face including cost control, fuels and	gate, fine s and pre ansporting rade, lev inished r and carre	aggregate, filler paring a uniform ing the hot mix to el and alignment olling to achieve riage of bitumen, its and wages of	Rs. 3821620
3	and bituminous binder as per design Job Mix Formula and quality mix in Hot Mix Plant and ensuring a hor work site, laying the mixed materials at specified last over prepared surface coated with tack coat, rolling the desired density of at least 98% of that of Laborat coarse and fine aggregates and filler materials and be operational staff complete as per Clause 505 (i) Using Batch Type HMP of minimum capacity	a conforming N mogeneous mix ying temperatu with smooth w tory Marshall sp hire charges off 5 of Specific 100-120 TPH.	Marshall Method at in which all pare with a hydros heeled, vibratory pecimen, hand parachinery and eations for Roal It No5.05(b) &	as per specifica rticles of the n tatic paver fini v and tandem reacking and pinr equipment for a ad & Bridge 2 Pg 252 (Vol	of 75 tonnes potention, including nineral aggregates her with senso collers for break ning to give an econstruction and works of -III)	er hour uscreening es are control down, in even surfid quality MoRT&	sing coarse aggreg g, cleaning of chip: ated uniformly, tr to the required gr ater-mediate and fif ace including cost control, fuels and H (5th Revision	gate, fine s and pre ansporting rade, lev inished r and carr l lubricar n).B. F	aggregate, filler paring a uniform ing the hot mix to el and alignment olling to achieve riage of bitumen, its and wages of	Rs. 3821620
3	and bituminous binder as per design Job Mix Formula and quality mix in Hot Mix Plant and ensuring a hor work site, laying the mixed materials at specified la over prepared surface coated with tack coat, rolling the desired density of at least 98% of that of Laborat coarse and fine aggregates and filler materials and hoperational staff complete as per Clause 50:	a conforming Namogeneous mix- ying temperatu with smooth watery Marshall spaces of 5 of Specific	Marshall Method at in which all part with a hydros heeled, vibratory pecimen, hand part machinery and exations for Rose	as per specifical rticles of the mattaic paver finity and tandem reacking and pinitequipment for a d & Bridge	of 75 tonnes prition, including inneral aggregates her with sensor ollers for break ining to give an econstruction and Works of -III)	er hour u screening es are co r control down, in even surf d quality MoRT&	sing coarse aggreg g, cleaning of chips ated uniformly, tracted uniformly, tracted to the required grater-mediate and finance including cost control, fuels and H (5th Revision	gate, fines s and pre ansporting rade, levinished r and carrillubrican. B. F	aggregate, filler paring a uniform ng the hot mix to el and alignment olling to achieve riage of bitumen, nts and wages of or Grading 2	
3	and bituminous binder as per design Job Mix Formula and quality mix in Hot Mix Plant and ensuring a hor work site, laying the mixed materials at specified last over prepared surface coated with tack coat, rolling the desired density of at least 98% of that of Laborat coarse and fine aggregates and filler materials and be operational staff complete as per Clause 505 (i) Using Batch Type HMP of minimum capacity	a conforming N mogeneous mix ying temperatu with smooth w tory Marshall sp hire charges off 5 of Specific 100-120 TPH.	Marshall Method at in which all pare with a hydros heeled, vibratory pecimen, hand parachinery and eations for Roal It No5.05(b) &	as per specifica rticles of the n tatic paver fini v and tandem reacking and pinr equipment for a ad & Bridge 2 Pg 252 (Vol	of 75 tonnes potention, including nineral aggregates her with senso collers for break ning to give an econstruction and works of -III)	er hour uscreening es are control down, in even surfid quality MoRT&	sing coarse aggreg g, cleaning of chip: ated uniformly, tr to the required gr ater-mediate and fif ace including cost control, fuels and H (5th Revision	gate, fine s and pre ansporting rade, lev inished r and carr l lubricar n).B. F	aggregate, filler paring a uniform ing the hot mix to el and alignment olling to achieve riage of bitumen, its and wages of	Rs. 3821620
3	and bituminous binder as per design Job Mix Formula and quality mix in Hot Mix Plant and ensuring a hor work site, laying the mixed materials at specified last over prepared surface coated with tack coat, rolling the desired density of at least 98% of that of Laborat coarse and fine aggregates and filler materials and be operational staff complete as per Clause 505 (i) Using Batch Type HMP of minimum capacity	a conforming N mogeneous mix ying temperatu with smooth w tory Marshall s hire charges off 5 of Specific 100-120 TPH. I Mix Plant using a uniform and t mix to work si ment over prep hieve the desir rials and hire c ause 507 of	Marshall Method at a minimum machinery and exations for Ros It No5.05(b) & 1000 g coarse aggregate quality mix in Hotel, laying the mixed surface coal density of at 1 harges of machinery for the processing of the surface coal density of at 1 harges of machinery for the surface for the processing of the surface coal density of at 1 harges of machinery for the surface for the surface coal density of at 1 harges of machinery for the surface coal density of at 1 harges of machinery for the surface coal density of at 1 harges of machinery for the surface coal density of at 1 harges of machinery for the surface coal density of at 1 harges of machinery for the surface coal density of at 1 harges of machinery for the surface coal density of at 1 harges of machinery for the surface coal density of at 1 harges of machinery for the surface coal density of at 1 harges of machinery for the surface coal density of at 1 harges of machinery for the surface coal density of at 1 harges of machinery for the surface coal density of at 1 harges of machinery for the surface coal density of at 1 harges of machinery for the surface coal density of at 1 harges of machinery for the surface coal density of at 1 harges of machinery for the surface coal density of at 1 harges of machinery for the surface coal density of at 1 harges of machinery for the surface coal density of the surface coal density of at 1 harges of machinery for the surface coal density of	as per specifica rticles of the m tatic paver fini v and tandem re tacking and pinn equipment for c ad & Bridge t Pg 252 (Vol 5.50 es, fine aggrege tot Mix Plant an acd materials a ted with tack c east 98% of th hery and equip or Road & E	of 75 tonnes per titon, including mineral aggregates her with sense collers for break aing to give an econstruction and with the works of the works	er hour user hour user hour user hour user her control down, in even surf d quality MoRT& = = = = = = = = = = = = = = = = = = =	sing coarse aggreg g, cleaning of chip pated uniformly, tr to the required gr ater-mediate and fr ace including cost control, fuels and H (5th Revision 275.00 275.00 bituminous binder us mix, in which a rature with a hydro n wheeled, vibrato ull specimen, inclu nd quality control, tT&H (5th Revision	gate, fines and present ansporting ade, leven in the desired and carried and carried and carried and carried and carried and and carried and and and and and and and and arried and arried and the desired arrivation and the desired arrivation and the desired arrivation and the desired arrivation and arrivation arrivation arrivation arrivation and arrivation	raggregate, filler paring a uniform ag the hot mix to el and alignment olling to achieve riage of bitumen, nts and wages of or Grading 2 7850.15 red specification es of the mineral over finisher with undem rollers for t and carriage of ad lubricants and	

ANALYSIS OF RATES JIBANTALA BAZAR TO TALDI BAZAR ROAD FROM CH. 0.00 KMP TO 12.45 KMP - STRENGTHENING WORK UNDER SOUTH 24 PARGANAS DIVISION IN THE DISTRICT OF SOUTH 24 PARGANAS. ROAD PORTION Rate of GSB: Grading - V (By Plant Mix Method:) Cost of 37.5 mm chips 1991.75 509.89 0.2560 m3 @ Rs Rs Cost of 22.4 mm chips 0.2560 2065.75 528.83 m3 @ RsRsCost of 11.2 mm chips 0.1920 1949.75 374.35 m3 @. RsRsCost of 5.6 mm chips <u>54</u>2.96 0.3200 (a) 1696.75 Rs m3 Rs Cost of Medium Sand 0.2560 (a) 1180.00 302.08 m3 Rs RsLabour + T&P [P - 246 / It - 4.08 /a/v)] 391.00 Rs Total Rs2649.11 Per 2649.11 Say Rs \mathbf{m}^3 2.0 Rate of Wet Mix Macadam /M³, By Mechanised unit fully computerised (Pakur variety) Cost of 26.5mm chips 0.3960 2050.75 812.10 m3 a. Rs Rs Cost of 13.2mm chips 0.2640 (a) Rs 2088.75 551.43 m3 Rs Cost of 5.6mm chips 0.3564m3 (a) Rs 1696.75 Rs 604.72 Cost of S/dust 0.3036 477.11 1571.50 m3 (a)Rs Rs Labour + T&P [P- 249/It - 4.12] Rs 334.00 Total 2779.36 Say Rs 2779.36 Per M³ Rate of Dense Bituminous Macadam, Grading 2,(50-75 mm thick.). Cost of 26.5 mm chips 0.2197 450.55 Rs 2050.75 m3 (a). RsCost of 22.4mm 0.2197 (a) Rs 2065.75 453.85 m3 Cost of 11.2mm 0.3662m3 (a) Rs 1949.75 Rs 714.00 Cost of 5.6mm 0.21971696.75 372.78 m3 (a) RsRs Cost of S/dust with grit 0.4394 Rs 1571.50 690.52 m3(a) Rs kg Cost of Lime 44 Rs (a) 7.50 330.00 Rs Cost of Bitumen 111.00 kg (a) Rs 31.95 3546.45 Rs Labours [P-253/It.-5.05(b(i)] 1292.00 7850.15 Rs Say Rs 7850.15 | Per M³ Rate of Bituminous Concrete using Viscosity grade Paving Bitumen. **Using Batch Mix Type HMP** 100-120 TPH Cost of 13.2mm 0.2959 2088.75 618.06 Rs m3 (a)Rs Cost of 11.2mm 0.2959 1949.75 576.93 m3(a) Rs Rs 502.07 Cost of 5.6mm 0.2959 1696.75 m3 (a) Rs Rs Cost of S/dust with grit 0.59191571.50 930.17 Rs m3 (a) Rs Cost of Lime 45.00 kg (a) Rs 7.50 337.50 Rs Cost of Bitumen 137.00 Rs31.95 4377.15 kg (a) Rs Labour +T & P [P - 255/It-5.08(B)/(i)] 1244.00 Rs 8585.88 8585.88 Per M³ Say Rs

						Rs. 402.50
v) 50.00 km to 55.00km	=	5.00	@	Rs.5.60	/Cum.=	Rs.28.00
iv) 20.00 km to 50.00km	=	30.00	@	Rs.6.30	/Cum.=	Rs.189.00
iii) 10.00 km to 20.00km	=	10.00	@	Rs.6.70	/Cum.=	Rs.67.00
ii) 5.00 km to 10.00km	=	5.00	@	Rs.7.30	/Cum.=	Rs.36.50
i) Up to 5.00 km per Cum.	=			, ,	,	Rs.82.00
6) Cost of carriage of Steel	 Materials fr	om Kolkata to worl	site un to = '	 55 km. (P-230. It-5 of SO	DR 2018)	143. 1,000.01
,					-	Rs. 1,553.3
vi) 100.00 km to 172.00km	=	72.00	(a)	Rs.7.90	/Cum.=	Rs.568.8
v) 50.00 km to 100.00km	=	50.00	@	Rs.8.40	/Cum.=	Rs.420.0
(v) 20.00 km to 50.00km	=	30.00	@	Rs.9.50	/Cum.=	Rs.285.0
iii) 10.00 km to 20.00km	=	10.00	@	Rs.10.10	/Cum.=	Rs.101.0
ii) 5.00 km to 10.00km	=	5.00	@	Rs.10.90	/Cum.=	Rs.54.5
i) Up to 5.00 km per Cum.	=					Rs.124.0
5) Cost of carriage of Moor		inanipur to work sit	e up to = 172 .	.v km. (r-230, It-1 of SOI	K 2018)	
5.6.4.6.			, , , , , , , , , , , , , , , , , , , ,	01 (0.436 *: 1.426	D 4010)	Rs. 598.5
v) 50.00 km to 90.00km	=	40.00	@	Rs.5.60	/Cum.=	Rs.224.0
v) 20.00 km to 50.00km	=	30.00	@	Rs.6.30	/Cum.=	Rs.189.0
ii) 10.00 km to 20.00km	=	10.00	@	Rs.6.70	/Cum.=	Rs.67.0
i) 5.00 km to 10.00km	=	5.00	@	Rs.7.30	/Cum.=	Rs.36.5
) Upto 5.00 km per Cum.	=					Rs.82.0
1) Cost of carriage of Penet	ration grad	e Bitumen (Packed)	from Dhulag	arh to site up to = 62 + 2	1.5+ 12.45/2= 89.725 km = 90 k	
7i) 100.00 km to 156.00km	=	68.00	@	Rs.5.30	/Cum.=	Rs. 360.4 Rs. 1,014.9
v) 50.00 km to 100.00km	=	50.00	@	Rs.5.60	/Cum.=	Rs.280.0
(v) 20.00 km to 50.00km	=	30.00	@	Rs.6.30	/Cum.=	Rs.189.0
iii) 10.00 km to 20.00km	=	10.00	@	Rs.6.70	/Cum.=	Rs.67.0
ii) 5.00 km to 10.00km	=	5.00	@	Rs.7.30	/Cum.=	Rs.36.5
i) Upto 5.00 km per Cum.	en Emuisio	m (Buik) iroin Haid	ia to site up to) - 140 + 21.5+ 12.45/2=	167.725 km = 168 km (P-230, I	Rs.82.0
2) C4 -fi f Di4	Fl-i-	(D-II-) £ II-1-1	:-	- 140 + 21 5 + 12 45/2-	1(7.725 l – 1(9 l (D 220 L	Rs. 1,014.9
ii) 100.00 km to 156.00km	=	68.00	@	Rs.5.30	/Cum.=	Rs.360.4
i) Upto 100.00 km per Cum.	=	(0.00		D 5 20	10	Rs.654.5
		ien from Haldia to v	vork site up to	b = 140 + 21.5+ 12.45/2=	167.725 km = 168 km (P-231, I	
2) 6-4-6	DII. D:4	f II-ld:- 4		- 140 + 21 5 + 12 45/2-	1(7.725 l – 1(9 l (D 221 L	Rs. 517.0
1V) 20.00 km to 43.00km	_	23.00	<u>u</u>	KS.9.30	/Cum	
iii) 10.00 km to 20.00km iv) 20.00 km to 45.00km	=	10.00 25.00	@ @	Rs.10.10 Rs.9.50	/Cum.= /Cum.=	Rs.101.00 Rs.237.50
ii) 5.00 km to 10.00km	=	5.00	@	Rs.10.90	/Cum.=	Rs.54.50
) Upto 5.00 km per Cum.	=					Rs.124.00

2. COST OF DIFFERENT MATERIALS AT WORK SITE Rs / m3

SI No.	Ref.	Unit	Coarse sand	Medium sand	Fine sand	Silver sand	Brick Aggregates (40 mm down)	Jhama metal	Moorum	Lime stone dust	Hydrated Lime powder
1	Cost of Materials at Site (It 1, 2, 3, 4, 5 (e) (g), 7 & 10 Pg 222 of SOR/ R&B/ 2018	M^3	1430.00	1180.00	990.00	800.00	1176.00	1667.00	117.00	3.70	7.50
2	Add Loading, Unloading (I-1.03, P-224)	M^3	0.00	0.00	0.00	0.00	0.00	0.00	62.00	0.00	0.00
3	Cost of Road Transport 166.0 Km for Moorum (I-1, P-227)	M^3	0.00	0.00	0.00	0.00	0.00	0.00	1505.90	0.00	0.00
4	Cost of Materials at work site for = 1+2+3	M^3	1430.00	1180.00	990.00	800.00	1176.00	1667.00	1684.90	3.70	7.50

3. COST OF CEMENT AT WORK SITE Rs / MT

Sl No.	Ref.	Unit	PPC / PSC / OPC 33 / OPC 43	OPC 53
1	Cost of Materials at Site (It 1 & 2 (ii) (b) Pg 218 of SOR /R&B /2018	MT	5717.00	5873.00
2	Add Loading, Unloading (I-1.03, P-224 & 225)	MT	0.00	0.00
3	Cost of Road Transport 120.0 Km for HYSD bar (I-1, P-227)	MT	0.00	0.00
4	Cost of Materials at work site for = 1+2+3	МТ	5717.00	5873.00

Suj Samue 18/04/2024

Associate Professor

Department of Civil Engineering
Jadavpur University
Kolkata-700 032

Dr. Sarbal Chakraborty
Head Civil Engineering Department
Jnan Chandra Ghosh Polytechnic
Department of Technical Education,
Training & Skill development
Govt, of West Bengal