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PREFACE 
 
 
 
Impetuous passion of human society compels themselves to invent more sophisticated technology or 
to amend the existing ones. As, manufacturing industry plays a vital role to meet this ever growing 
demand, so, research on precision machining is always appreciated. For reduction of effective 
production cost, working in virtual environment is necessary. Therefore, near-accurate representation 
of machining process is prerequisite.   
 
For this purpose, researchers are trying to implement different modeling methods, still, complexity of 
the machining process and drawbacks of modeling methods itself keep them far behind their deemed 
goal. Therefore, robust modeling techniques and advanced optimization methods, as and when 
developed, are to be attended. Besides, underlying features of machining phenomena are to be 
understood.  
 
It is in this context, the present work on modeling, optimization and analysis of surface topography in 
electric discharge machining (EDM) process, a versatile and widely used non-traditional machining 
process, assumes significance. 
 
To date, neither the available models on process responses of EDM could absorb the irregular 
fluctuations in responses nor the adopted optimization procedures could ascertain a trade-off between 
two conflicting responses namely material removal rate, an index of productivity and surface finish 
that attributes to quality. Also surface topography, an end result of mechanism of material removal in 
EDM, has not been qualitatively assessed for its randomness or periodicity or chaos. Addressing each 
of the three issues quantitatively is the major contribution of the present work. 
 
The text of the thesis is organized in seven chapters and four appendices including introduction, 
review of literature, experiments, modeling, optimization, assessment of surface topography, 
conclusions and a list of pertinent references. 
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ABSTRACT 
 
 
 
Electric discharge machining (EDM) is one of the most versatile nontraditional machining processes in 
modern industries. Though application of EDM covers a wide range of industrial demand still complex 
mechanism of material removal restricts its maneuverability towards precision manufacturing. 
Presence of complex thermo-electrical phenomena, material inhomogeneity, transient behavior of 
dielectric fluid results complicated surface integrity. In the present study, a novel attempt is made 
towards the development of virtual environment of EDM process through modeling, pseudo Pareto 
optimization, inverse solution method and the understanding of randomness and chaos in surface 
topography. 
 
Experiments are conducted with different levels of three most significant machining control 
parameters namely current, pulse on time and pulse off time.  For each experimental run, material 
removal rate, different surface roughness parameters are measured and scanning electron 
micrographs are taken. From the obtained results, some irregularities in the behavior of process 
outcomes are observed. To encompass the irregular fluctuations, support vector machine (SVM) 
regression is employed for model building purpose. During model building of process outcomes 
internal structural parameters of SVM regression are tuned using two evolutionary metaheuristic 
optimization methods namely particles swarm optimization (PSO) and teaching learning based 
optimization (TLBO). Generalized modifications namely population based termination criterion, weight 
combining method are improvised for better performance of optimization techniques. It is observed 
that modified TLBO is computationally cost efficient than modified PSO. Modified TLBO is further 
employed for developing a unique learning system for two process outcomes. Here combined rank 
method is proposed for efficient handling of multiple objective functions without affecting their 
individual impacts.  
 
Further, the representative SVM regression based learning systems for each of the process outcomes 
are used for optimization of EDM process. Pseudo Parent front is developed and a relation between 
optimum achievable combination of process outcomes is estimated. An inverse solution methodology 
is proposed to get the setting of machining control parameters in EDM machine to meet the customer 
demand based requirement.  
 
Moreover, an attempt is made to correlate the surface generation process with the characteristics of 
surface topography. Sequence of profile heights measured on each of the machined surfaces is 
considered as representative time series of that corresponding machined surface. Contributive effects 
of randomness and periodicity on surface topography is assessed through the formation of 
autocorrelation function. Predominance of randomness is observed through the evaluation of a non-
dimensional index called as PR ratio. Also, presence of chaos in surface topography is checked. 
Saturation of correlation exponents measured on phase space, reconstructed from representative 
time series, indicates the presence of chaos. Non-integer value of correlation dimension suggests the 
fractal nature of machined surface. A different test directly from time series without phase space 
reconstruction, that is 0-1 test, is performed and presence of chaos for all machined surfaces is 
substantiated.        
 
However, the proposed methodology for model building of process outcomes, pseudo Pareto front 
development, inverse solution method to get settings of machining control parameters to meet specific 
need based requirement, evaluation of contributive effects of randomness and periodicity in surface 
topography and investigation of the presence of chaos could be implemented to any such process in 
a generalized way. 
 
 
 

KEYWORDS: Electric discharge machining; Support vector machine regression; Particle swarm 
optimization; Teaching learning based optimization; Autocorrelation function; Randomness; Chaos 
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Modern industries like automobile, aeronautical, nuclear reactor demand materials having 
combination of diverse properties like higher strength temperature resistance (HSTR), higher 
hardness, higher toughness and also higher strength to weight ratio concurrently. To meet the 
demands, different alloys like nimonics, stellites, ceramics, particle and fiber reinforced composites 
are invented by researchers [1, 2]. Besides, machining of such hard to cut materials creates a 
challenging task to process engineers. Making of complex intricate shapes like blind holes, non-
circular holes, holes with shallow entry angle, holes with large aspect ratio, conformal channels on 
very hard materials like titanium, tool steel put limitations on productivity. With the aid of material 
removal by physical contact with wedge shaped tool in the form of chips formed due to plastic 
deformation in conventional machining processes, high production rate, better surface finish and near 
zero tolerance could not be achieved simultaneously.  
       
Therefore, different methods of material removal, named under the group of non-traditional machining 
(NTM) process, are invented. Based on the sources of energy used for machining operation, NTM 
processes are broadly classified in the four groups namely mechanical processes, electrical 
processes, thermal processes and chemical etching processes [3]. Material removal may not be due 
to macroscopic chip formation (AJM, UCM), physical tool might be absent (WJM, LBM), cutting tool 
need not to be harder than workpiece (EDM) and not necessarily mechanical energy required for 
machining (ECM, EDM) are some significant advantages of NTM over conventional machining. As a 
consequence, better surface finish with close tolerance are easily achieved. Each of the non-
traditional machining processes is suitable for specific working environment. Selection of the process 
depends on physical parameters, properties of workpiece material, final geometry, production 
constraints, process capability, economic considerations etc. [4].    
 
Among all the NTM processes, electric discharge machining (EDM) gains high popularity for its 
potential to machine complex shapes with high accuracy and precision on almost all conductive 
materials irrespective of their strength, hardness and toughness. Development of electric discharge 
machining (EDM) was started in the mid of 1940's. Since the debut of EDM, modifications are still 
going on. Whatever might be the modifications, presence of uncertainty in the mechanism of material 
removal still keeps it away from very accurate controlling. As a result, prediction of process outcomes 
and setting of the optimum levels of machining control parameters become more challenging.   
 
Reported developments on the assessment of EDM process outcomes have been grouped into 
modeling and optimization. Different analytical, empirical and intelligent procedures are used to build 
representative model of EDM process. From the theory of material removal mechanism in spark 
erosion, it is obvious that involvement of transient thermo-electric phenomena, complex behavior of 
plasma dynamics, material inhomogeneity, flow of dielectric and debris particles cause erratic 
fluctuations in process outcomes. As, quality of the product should be maintained at predefined 
specific level without too much sacrificing productivity, so, along with robust modeling and 
optimization methods, systematic scientific investigation for understanding the underlying features of 
EDM process is necessary. In machining process, machined surface carries the inherent features of 
surface generation process, thus, meticulous study of surface topography is inevitable for accurate 
representation of EDM process.  
  
While highlighting the lacunae in the existing methodologies of modeling, optimization and 
assessment of surface topography, machining theories, process parameters involved, specific 
applications and difficulties in EDM and proposed study on modeling, optimization and assessment of 
surface topography are presented in chapter 2. In light of the discussions, specific objectives for the 
present work are set forth in the same chapter. 
 
From the review of literature, need of appropriate experimental data for the proposition of robust 
modeling and efficient optimization is evident. To cover a wide range of applicability of the proposed 
models, ample experiment should be conducted. Significant machining control parameters are 
identified from literature namely current, pulse on time and pulse off time and different levels are 
chosen from the available machine settings. Experiments are designed and performed in keeping with 
the decided objectives of the present work. Experimental results of the quantitative measurements of 
process performance like material removal rate, different surface roughness parameters exhibit 
irregular variations. Therefore, application of an advanced robust modeling technique becomes 
prerequisite. It is also observed that quality of machined surface reduces with increase of production 
rate. Thus, a guideline is required to obtain the possible maximum level of surface finish without 
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sacrificing productivity. To deduce this tradeoff, optimization of the process outcomes is necessary. 
Further, scanning electron micrographs of various machined surfaces are taken. Complex pattern, 
erratic fluctuations and overall random behavior of surface topography are found. This type of surface 
topography compels further investigation to reveal the underlying features of surface topography and 
correlate the surface topography with surface generation in EDM process. Details of experimentation 
are reported in chapter 3.    
 
In order to improve the prediction capability, the proposed modeling technique must address complex 
high dimensional interactive behavior of input parameters and irregular variations of process 
outcomes. In this regard, a supervised batch learning methodology, named as support vector 
machine (SVM) regression, is suggested for modeling of the two process outcomes, material removal 
rate (MRR) and average surface roughness (ASR). In SVM regression, experimental data are fitted 
through minimization of the upper bound of expected risk along with empirical risk. Adverse effects of 
complex high dimensional interactive patterns of input parameters are reduced by mapping the input 
space to feature space. Irregular variations in process outcomes are absorbed by introducing a 
insensitive zone around the estimated model that is points inside the insensitive zone are deemed as 
zero error in fitting. The insensitive zone allows the engineers to use the model for products obtained 
in different batches. One of the major contributions of the present work is to frame out the exact 
procedure for modeling of such process through SVM regression. During model development, internal 
structural parameters of SVM regression are optimized. For this optimization. two evolutionary 
metaheuristic techniques, particle swarm optimization (PSO) and teaching learning based 
optimization (TLBO), are imposed with some relevant modifications. The proposed modifications. 
namely current population based termination criterion, initial population with high dispersion measured 
by termination criterion, selection of guide for next iteration in case of multiple particles have same 
optimum score, are added to the existing algorithm for smoother convergence and could be 
implemented to other population based optimizations in a generalized way. Apart from the above said 
modifications, need of tuning of own internal parameters of PSO is eliminated in TLBO. Further, SVM 
regression based a unified learning system for MRR and ASR is tried to predict both the process 
outcomes from a single set of internal structural parameters of SVM regression. In this proposed 
unification process, a novel idea of handling multiple objective functions for solving multiobjective 
optimization problem is proposed which could be implemented to any multiobjective problem with 
large number of objective functions. The above said propositions for modeling of EDM process are 
elaborated in chapter 4.  
 
Rate of material removal from workpiece controls the productivity of the process. Therefore, higher 
material removal rate (MRR) is always preferred. At the same time, productivity should not be 
increased at the cost of the quality of product. In EDM, higher MRR results low surface finish. Higher 
surface roughness of finished product exhibits deleterious effect on its long-term performance. Hence, 
during machining operation, a compromise between productivity and product quality is always 
maintained. Process engineers should be aware of the achievable limit of product quality without 
hampering the productivity schedule. This productivity-quality balancing must be completed at the 
early stage of product design. A typical weighted combination of MRR and ASR is formulated. With 
different combinations of weight factors, level of compromise is decided. The objective functions with 
different weighted combinations are optimized with the aid of modified TLBO. A pseudo Pareto front is 
found and a relation is developed which will guide the process engineers to select the achievable 
optimum ASR for a specific need of MRR. Further, an inverse solution methodology is proposed to 
select the near-optimum settings of machining control parameters in EDM machine to get near-
optimum combination of MRR and ASR which is another major contribution of the present work. In 
chapter 5, the above mentioned optimization process is discussed in detail.  
 
 
During the model building and optimization of EDM process, it is observed that the representation of 
the process is greatly affected by the erratic fluctuations in process outcomes. As, quality of machined 
surface is a consequence of complex material removal phenomena, so, thorough study of the 
characteristics of surface topography is necessary. In chapter 6, surface topography is analyzed by 
representing the roughness profile as a time series. Finite sequence of profile heights is considered 
as representative time series of machined surface. Autocorrelation function of representative time 
series is calculated and used for an organized analysis of surface topography. Contributive effects of 
randomness and periodicity in surface topography are assessed using a non-dimensional index, PR 
ratio. Further, presence of chaos in the surface topography is checked. This test for chaos is done 
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from two different perspectives. In first approach, phase space is reconstructed from representative 
time series with chosen set of embedding delay and embedding dimension. Correlation exponents are 
estimated for a selected range of embedding dimensions. In second approach, test for chaos is 
performed directly on the representative time series. The results from both the approaches suggest 
similar features of surface topography and thereby correlate surface generation process in EDM. 
                    
The salient conclusions are drawn and the recommendations are suggested in chapter 7. 
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2.1 Introduction 
 
Electric discharge machining (EDM) process is widely used in recent-day manufacturing practice. 
Electric sparks for metal erosion was first used by Joseph Priestly, an English chemist, in 1878 [3]. 
After several years, Lazarenko [5] of Moscow University did control machining by electric sparks in 
1944. Within next 6 to 8 years, machines using spark erosion were developed in USA, Japan and 
Switzerland. Since the first development of spark erosion machines, modifications are still going on 
towards nano-scale precision machining. 
 
As the major concern of the present study centers around modeling, optimization and assessment of 
surface topography in EDM process by advanced methods, the review of literature has been restricted 
to arriving at the need of the present work vis-a-vis the existing literature and its lacunae. The topics 
for discussion are arranged as (i) machining theories and mechanism of material removal, (ii) 
parameters involved, (iii) applications, (iv) modeling of the process for responses, (v) optimization of 
the process performances and (vi) assessment of surface topography. 
 
2.2 Machining theories and mechanism of material removal 
 
Electric discharge machining is capable of machining any conductive material (resistivity should not 
exceed 100 ohm-cm) regardless of its hardness, toughness and strength [6]. Material is removed by 
high frequency, high power density, spatial and sporadic electrical discharges (sparks). In general, 
both the electrodes - tool and workpiece are immersed in dielectric fluid with a precisely controlled fine 
gap (figure 2.1) maintained at 10-100 µm [7] depending upon electrode-dielectric combination. The 
performance of EDM process is primarily dependent on energy release during sparking. There are 
four theories which try to explain the erosion phenomena in spark machining. 
 

 
Fig. 2.1 Schematic of electric discharge machining process [1] 

 
2.2.1 High pressure theory [8]  
 
According to high pressure theory [8], high impulsive pressure is released on the electrode surfaces 
due to sudden stoppage of electro-dynamic waves. This high impulsive pressure is considered to be 
responsible for the erosion of electrodes.  
 
Pressure of electrical discharge was first measured by Niwa and Fujimoto [9]. Inoue [10] reported that 
pressure as high as 1000 kg/mm2 was caused but the expected plastic deformation was not found on 
the surface. From the energy distribution of discharge spectrum, Motoki and Hashiguchi [11] reported 
that the pressure in the arc column was 0.1 to 1 kg/mm2 only. Satio and Kobayashi [12] obtained that 
the duration during which pressure acts was longer than the discharge period. Fujimoto and 
Togoshima [13] measured the maximum force about 60 kg and observed that the impulse was 
proportional to the discharge power. It was concluded [8] that in smaller energy discharges, the 
discharge pressure alone would not be sufficient to erode the material, but in conjunction with some 
other facts, such as heat energy, the pressure might blow out molten metal from the electrode 
surfaces. 
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2.2.2 Static field theory [14, 15, 16]  
 
Electro-mechanical theory or static field theory states that erosion takes place only because of ripping 
away of bits of the electrodes by a strong electric field that produces sufficient electrostatic force [14].  
 
For very short discharge duration, less than 2 µs, force required for tensile rupture is generated due to 
strong electric field gradient caused by extremely high current density under electrode surface. For 
ferromagnetic materials, current density decreases substantially as current passes inside. Therefore, 
skin effect comes into play which is unlikely in non-ferromagnetic materials. Due to the assumption of 
non-involvement of ionic force in material removal, this static field theory is not capable of explaining 
the material removal for discharge duration longer than 2 µs. In case of stainless steel cathode, Singh 
and Ghosh [15] observed that for pulse on time less than 5 μs, electrostatic force acting on the 
surface played dominant role in metal removal and crater depth varied with square root of total current 
during discharge. As the pulse duration increased, yield strength decreased and electrostatic force 
became not sufficient for rupture the material. Even the assumption of non-influence of EDM process 
on material properties of electrode surface was proved to be wrong as metallographic investigations 
revealed the presence of a thin layer of resolidified and rehardened metal on the electrode surface 
[16].  
 
2.2.3 High temperature theory [8] 
 
According to the high temperature theory [8], the bombardment of the charged particles on the 
respective electrodes results in high temperature at those spots. Because of this high temperature, 
material at the respective spots instantaneously melts and vaporizes leaving a crater on the surface. 
The ratio between the energy expended at the anode and the total discharged energy are related to 
various parameters like gap between the electrodes, mean-free-path of electrons, cathode and anode 
work-functions. There is a large variation among the suggested percentage values of the total energy 
carried by the electrodes. Singh [17] observed that the fraction of input energy transferred to the 
anode (workpiece) varied from 6.1% to 26.82% with different settings of current and pulse duration. 
DiBitonto et al. [18] and Patel et al. [19] found that cathode (workpiece) took away 18% of total input 
energy. Using water as dielectric, Shankar et al. [20] found that 40-45% of heat input was taken away 
by anode (workpiece) itself. Zhang et al. [21] suggested that energy transferred to the cathode 
(workpiece) was almost 50% of the total input energy.  
 
The joule-heating by high density current of the discharge channel was also considered to contribute 
towards the generation of this high temperature. Marafona and Chousal [22] considered this radius of 
the conductor (high current density channel) was a function of current intensity and pulse duration 
with no variation of electrical potential in the radial direction. 
 
2.2.4 Thermo-electric theory [16, 23] 
 
According to thermo-electric theory [16, 23], the discharge occurs in several stages. The charge 
induced on the two electrodes by the power supply creates an electric field at a location where the 
electrodes come closest. This is where the discharge takes place. Molecules and ions of the dielectric 
fluid are polarized and oriented between the two peaks, forming a narrow, low-resistance channel. 
Actual current flow is initiated, as current ‘streamers’ organize and open the way to the main flow of 
current. The emitted high velocity electrons collide with dielectric molecules, makes them ionized and 
secondary electron emission starts. Ionization continues through the next two stages, even though 
current is already flowing between the two electrodes. In the next stage, resistance of the channel 
continues to decrease while the current is increased. Supplied electric energy is transformed to 
thermal energy. At this point, the ionized path consists of plasma [24], formed from positive ions and 
free electrons, mixed with the gas formed by the chemical decomposition of the dielectric. Current 
intensity in the plasma channel is very high at this stage, perhaps in the order of 107-108 A/s. The high 
current continues to ionize the channel and produces a strong magnetic field, which attracts the ions 
towards the axis of the discharge channel (pinch effect). The magnetically attracted ions compress the 
channel of current and increase its temperature in the range of 8000oC to 12000oC [25] or as high as 
20000oC [26], which melts a portion of the electrodes and vaporizes some of it. 
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2.2.4.1 Ejection of molten material and formation of crater 
 
The forces causing the ejection of the molten material from the electrodes are not fully understood 
[27, 28]. Although it is believed that shock waves and electromagnetic and electrostatic forces are 
responsible for violent nature of ejection of material [29].  
 
Presence of evaporated conductive electrode material is much higher than dielectric vapor because 
ionization potential is much smaller for metals (Cu: 7.7 V, Fe: 7.8 V) than non-metallic gases (N2: 15.9 
V) [30]. Generated metal vapor at electrode surface provides some of the forces needed to expel the 
molten material from the electrodes and the rapidly collapsing ionized channel assists the process. 
Due to high temperature, dielectric starts to vaporize, plasma channel expands radially and very high 
pressure inside the plasma channel distributes shock wave in surrounding dielectric medium. Another 
effect, the mechanical impact of the discharge itself, contributes to the expulsion. Even, electrostatic 
force from the electrodes pulls apart some amount of molten material [31]. 
 
On the contrary, VanDijck et al. [30] proposed a different theory to explain the ejection of molten 
material, the majority of which takes place at the end of a pulse. Liquid material in the crater is 
superheated to a temperature corresponding to the boiling point at the increased pressure within the 
plasma channel. Sudden drop in this pressure at the end of the pulse causes the material in the 
subsurface layers to boil vigorously. As a result, liquid drops will be ejected from the molten material 
pool by rapid formation of vapor bubbles. This boiling can take place in a material volume defined by 
the electrode surface and the boiling point isotherm at ambient pressure. At the end of discharge, 
temperature at electrode surface suddenly drops and plasma channel collapses, the maximum 
possible volume of material has been already melted. Due to severe thermal gradient and surface 
tension, tensile and bonding strength between liquid-solid phases [32], part of molten material is 
exploded and rest is resolidified forming tiny debris particles. This evacuation process is virtually the 
only remaining mechanism for displacing any appreciable amount of material.  
 
After the "flare" ejection of material [33], each discharge left craters on electrode surfaces, a large 
crater in the workpiece (hopefully) and a smaller one in the tool electrode. Molten material removed 
from the electrode surfaces cools quickly in the dielectric liquid, forming tiny spheres that are flushed 
away [23]. This ejected part forms a bulge around the crater. The path of expulsion leaves marks on 
the edge of the crater. Ejection occurs tangentially to the crater lip and the molten layer breaks up into 
fragments. Based on the analysis of hydrodynamic propagation of shock waves generated due to 
electrical breakdown in dielectric, an expression for the velocity for the ejected particle is available 
[29]. The tracks of ejected particles are straight lines. Particles typically travel many crater diameters 
and resolidify in the dielectric. Some of the ejected particles definitely bombard a nearby electrode 
surface [27].  
 
Volume % of molten material removed depends on thermal expansion coefficient of electrode 
material, amount of molten material, plasma channel radius, thermal properties of electrodes, 
dielectric flushing conditions [32]. Material equivalent to almost 8-10 times of final crater volume melts 
and 10-15% of the final crater volume vaporizes [34]. Around 10-15% of total molten material is 
removed at the end of discharge [34]. Though volume of material removal in each discharge is in the 
range of 10-6-10-4 mm3 [35], still, frequency of discharge is maintained at high level - 103-106 Hz [7]. 
For small electrode gap, high pressure results large force on tool and workpiece, but there is a 
restriction effect of the surrounding medium on expansion in large discharge gap [36]. In case of large 
discharge gap, plasma channel is longer and as a consequence, amount of heat loss, radial diffusion 
of ions and amount of recombination occurred between anode and cathode drop region increase. 
Material removal efficiency decreases on account of the losses. Though to accommodate high 
discharge energy (above 50 mJ), electrode gap is increased to maintain breakdown strength [37], still, 
smaller inter-electrode distance yields higher material removal rate. Erden [31] studied the effects of 
different pulse shapes on material removal rate. Pulse shape having negative slope causes higher 
material removal rate compared to pulse shape having positive slope. For the pulses having positive 
slope, wear in tool electrode also reduces. Therefore, to achieve highest material removal rate from 
workpiece and lowest from tool simultaneously, shape of pulse should be justifiably selected.  
 
During discharge time, normal component of stress at the surface changes from compressive to 
tensile, whereas, inside the electrode, it remains compressive [38]. High compressive stress is 
generated (greater than 3 GPa) at the direct heat spot. As the material melts, this stress is relieved. 
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Then, cooling of this molten and expanded material causes high tensile stress (more than 3GPa) and 
results in disintegration of material. At the beginning of cooling at around 1100 K, heterogeneous 
solidification starts and more than 3 GPa residual tensile stress exists at this resolidified layer. When 
temperature falls down below 700 K, homogeneous solidification starts. White layer is formed where 
tensile and compressive stress exist alternatively [39]. Therefore, residual stresses at the surface and 
inside the electrode are conflicting type, which causes more prone area of crack generation [38]. 
Crack propagates from top surface to almost twice the crater depth [40]. Higher heat flux and longer 
pulse duration favor more thermal damage in EDM. 
 
Selection of the polarity of electrodes plays crucial role in material removal as rate of material removal 
from the electrodes are different. The phrase "all parameters yielding a decrease of the current 
density will reduce the positive electrode wear" [30, 41, 42] is common to the researchers. For higher 
pulse duration, current density decreases, anode wear decreases. Growth rate of plasma channel are 
increased for longer pulse duration due to reduction of inertia forces acting upon less denser dielectric 
flown into electrode gap. Growth rate of plasma are also increased due to reduction of dielectric 
pressure. All the above said effects cause lower current density and thereby result smaller anode 
wear. Therefore, in case of pulse generators, negative polarity for workpiece is generally 
recommended.    
 
Hence, surface generated in EDM is superposition of the craters formed by each of the discrete 
discharges. As machined surface topography is combined effect of all discharges, the time and space 
separations between discharges are very important. Though high frequency of discharges is to be 
maintained to get good productivity, yet, enough time between successive discharges is necessary to 
recover the breakdown strength of dielectric medium. As, next discharge will occur at the position of 
minimum resistance between electrode surfaces, so, to avoid localized non-uniform erosion of 
material, proper flushing of debris particles after each discharge is to be ensured [43]. Otherwise, 
colloidal suspension of removed particles may form current carrying bridges at electrode gap which 
cause repeated melting and reunion resulting low productivity and poor surface integrity.      
 
However, materials with melting point below 2800oC are eroded by the above melting mechanism, 
while for the materials with higher melting point, such as TiB2, BN-TiB2, the mechanism of erosion is 
thermal spalling [44, 45]. 
 
2.2.5 Spalling and oxidation/decomposition 
 
Spalling effect is most often related to the generation of larger micro-cracks perpendicular and parallel 
to the top surface. The large micro-cracks make the separation of material during successive 
discharges much easier [46]. Due to lower fracture toughness and mechanical strength of Al2O3-TiCN 
compared to ZrO2-TiN, severe micro cracks are induced on machined surface [47]. The cracks 
propagate parallel to the surface and may cause detachment of large flakes during subsequent 
sparks. Malek et al. [48] investigated the spark machining of transition metal diboride ceramics like  
(NbxZr1-x)B2-SiC. They suggested both the thermal shock due to negative thermal expansion 
coefficient of Nb2O5 and concomitant spalling that was material delamination due to high residual 
stress as the dominant material removal mechanism. Apart from ceramic composites, sub-surface 
microstructure of electric discharge machined aeronautical alloy (Inconel 718) [49], hard to machine 
Ti-6Al-4V [50], ceramic/carbon nanostructure composite [51] and diamond polycrystalline super hard 
material [52] showed mostly the crack formation as their dominant material erosion mechanism. 
 
Material removal of ceramic matrix composite is mostly through cracking, crack expansion and 
stripping off [53]. Insulating fibers are broken due to thermal expansion/compression by the cracks. 
During the pulse on time, rise of temperature might be sufficient enough to melt the matrix due to its 
lower melting temperature than reinforced material [54]. After melting of matrix material, no binding 
exist, reinforcement could be easily evacuated from the crater without getting melted.  
 
During machining of conductive ceramic composites [46] that is ceramic materials, namely ZrO2 
based, Si3N4 based and Al2O3 based, with additions of electrical conductive phases like TiN and 
TiCN, material is removed through oxidation/decomposition along with spalling.  In case of short pulse 
duration that is less than 2 μs (relaxation discharge pulse), dominant mechanism is chemical 
reactions like decomposition and oxidation. When deionized water is used as dielectric medium, huge 
amount of nitrogen gas is evolved which becomes responsible for porous structure of the machined 
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surface [46, 55]. When discharge duration is relatively long, the input energy is higher (iso-energetic 
pulse). In lieu of oxidation/decomposition and spalling, melting/evaporation becomes dominant and 
forms more regular craters relative to splashed crater in short pulses. It is found that compared to long 
pulses, tool wear ratio is lower and machining speed is higher [55].  
 
Different variations over standard configuration of EDM are developed to meet the ever-growing 
demands of modern industries like machining of exotic, high strength and temperature resistive 
(HSTR) and super hard metal alloys used in aeronautical and aerospace parts. In Wire-cut electric 
discharge machining (WEDM), a thin continuously fed wire is used to shape workpiece. Fabrication of 
need-based shape of tool electrode for die-sinking EDM is not required in WEDM. Further, 
hybridization of standard EDM process is also developed by combining laser beam machining, 
ultrasonic machining, grinding etc. 
 
2.3 Process parameters involved in EDM process  
 
As discussed above, EDM involves transient thermoelectric phenomena in the dielectric medium 
present at the gap between electrodes having certain metallurgical features. Therefore, recognition 
and classification of different electrical and non-electrical parameters provide viable option for close 
monitoring and control of EDM process. Process parameters involved in EDM [1, 7, 35, 56-58] are 
listed in figure 2.2.  
 
 
 
 
1. Open circuit voltage   10. Dielectric strength                                                               Material 
     2. Discharge voltage   11. Electrical conductivity of electrodes                               removal rate 
                 3. Gap voltage   12. Thermal conductivity of electrodes                                                     
                  4. Peak current   13. Thermal diffusivity of electrodes 
               5. Average current   14. Work function of electrodes                                              Tool 
                     6. Pulse on time   15. Electrical conductivity of inclusion in dielectric            wear rate 
                       7. Pulse off time   16. Thermal conductivity of inclusion in dielectric           
                      8. Pulse waveform   17. Thermal diffusivity of inclusion in dielectric                                                                           
                 9.Polarity of electrodes                 
                                                                                                                                                         Taper 
 
                            1. Material of electrodes    1. Dielectric material              
                                 2. Size of electrodes    2. Type of inclusion in dielectric  
                             3. Shape of electrodes   3. Size of inclusion in dielectric 
                     4. Orientation of electrodes   4. Shape of inclusion in dielectric                        Over 
                        5. Rotation of electrodes   5. Density of inclusion in dielectric                         cut 
  6. Amplitude of vibration of electrodes   6. Size of debris  
7. Frequency of vibration of electrodes   7. Shape of debris 
                                   8. Working time   8. Concentration of debris 
          9. Lifting time of tool electrode    9. Distribution of debris 
                                                            10. Type of flushing                                              Surface  
                                                           11. Rate of flushing                                                integrity 
                                                          12. Flushing pressure 
 
 
 

Fig. 2.2 Process parameters involved in EDM process 
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2.4 Applications 
 
Electric discharge machining process is well known for its wide range of applications in modern 
industries. Electric discharge machining is a potential process of developing complex surface 
geometry and integral angles in mould, die, aerospace, surgical components etc. [35] irrepective of 
hardness, toughness and strength of material. Different hard to machine materials even toxic 
materials can be machined by EDM. Dies for moulding, casting, forging, stamping, coining, extrusion, 
wire drawing with intricate features like square, hole, D-shaped holes, narrow spline-shaped slots, 
conformal channel are also manufactured by EDM operation. Broken tap, drill, stud, reamer, pin could 
be removed from machine parts by EDM process. With relatively small sub-surface damage, EDM is 
applicable for machining particle reinforced metal matrix composites. Even WC-Co coated ceramic-
metal composite steel plate could be machined by EDM [59]. Now-a-days feasibility of machining 
ceramics doped with conductive material is tested [46]. As there is no burr formation in EDM 
operation, post-treatment cost like polishing reduces.  
 
During EDM operation no mechanical force acts except bursting pressure of plasma channel. Thus, 
very thin and fragile components (in micron level) can be manufactured. Micro-EDM is capable of 
making micro-holes of diameter 40 µm and micro-shafts of diameter 5 µm with high repeatability.  
 
As EDM generated surface is composed of tiny craters, distribution of lubricants over entire machined 
surface could be maintained. Even, low fatigue strength could be achieved in components having 
surface machined by EDM process.   
 
Though different difficult to manufacture parts could be produced by EDM process, still, resistivity of 
workpiece, crack generation, low material removal rate and emission of aerosols put limitation 
towards successful utilization of the process in modern industries. Even, performance of EDM for 
material with both high electrical and thermal conductivity like aluminum is not very good [1]. Emission 
from EDM process might be a mixture of metallic particles and different hydrocarbons of n-alkanes, 
branched alkanes, aromatic compounds, alicyclic compounds, hetrocyclic compounds etc. [60]. The 
emissions can cause adverse health effect to the operators and have direct impact on environment.  
Paramashivan et al. [60] showed that 70% of the constituents of aerosol generated from EDM 
process were metallic particles which are caused by the vaporization of workpiece and tool electrode. 
Remaining 30% consisted of carbon particles and other reaction products attached to aerosol. 
 
The goal of developing and deploying machining techniques, capable of meeting almost all 
performance requirements, is difficult to achieve till now. Whereas, near exact representation of the 
process and thus, setting of control parameters to achieve simultaneous optimum responses are 
necessary to freeze the procedure at the earliest in pre-production stage. Therefore, characterization 
of EDM process is still persuaded so as to work in virtual world. Manufacturing processes could be 
well characterized by both the quantitative and the qualitative assessments of their performances. 
The performance measures are to be modeled and optimization of process performances is to be 
done. It is to be noted here that due to involvement of complex electrodynamics, electromagnetics, 
thermodynamics and hydrodynamics in spark erosion, assessment of process performance is very 
difficult. Different approaches taken by the researchers for model building, optimization of process 
performances and assessment of surface topography are sequentially reviewed in the next three 
sections.  
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2.5 Modeling of EDM process 
 
Modeling of any process plays crucial role for developing a virtual platform of the process. Different 
researchers considered different approaches to reveal the underlying relationship of EDM process 
parameters and outcomes. Broadly, three groups are identified namely analytical, empirical and 
intelligent procedure for model building (refer figure 2.3). Discussion on each of the three groups is 
made in the following subsections and is restricted to a few relevant literature in each group.  
 
 
                                                                                                                        
 
 
 
 
                                                                                       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2.3 Classification of modeling methods employed on EDM process 

 
2.5.1 Analytical modeling  
 
Analytical method for model developing addresses the fundamental knowledge of the physical 
phenomena behind the process. 
 
In general, physical phenomena behind the material erosion is tried to be numerically framed in 
analytical modeling of any machining process. Melting/evaporation, spalling and 
oxidation/decomposition are the main causes of erosion in EDM process depending on the 
metallurgical behavior of workpiece material. In section 2.2, it is mentioned that during machining 
operation, immense heat is generated at electrode surfaces. Plasma formation-growth-collapse and 
its aftereffects are found to be the main cause of heat generation and material erosion (refer 
subsection 2.2.4). As, generated surface topography is a superposition of craters with various shape 
and size formed after removal of material, so, plasma channel remains in the core of analytical 
modeling through thermal approach. Therefore, understanding of plasma channel geometry and 
temperature distribution therein are very much essential. The information available in literature [21, 
32, 61-75] regarding that is summarized and given in table D.1 in appendix D.  
 
Plasma channel diameter was measured by two experimental methods namely, metallographic 
method [21, 37, 74-76] and optical spectroscopic [69,77] method. The transient nature of plasma 
channel in EDM was confirmed by ultra-rapid photographic study [78] and kerr-cell photographs taken 
for underwater (deionised) plasma [79-81]. Still, due to high temperature and high frequency of 
sparks, measurement of plasma channel geometry was very difficult in EDM. In general, 
characterization of plasma channel was done either estimating the growth rate from analytical 
relationship for a given tool-workpiece combination [78, 82] or through experiments by exploding 
wires in water [79-81]. While some investigators [30, 41, 42, 78] followed the first method, others [19, 
83] followed the second. Even, in the first method, there were three different analytical approaches for 
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the computation of plasma channel growth namely thermodynamic model, crater shape measurement 
and constant surface temperature approach [78, 82]. The net emission coefficient of plasma channel 
[84] was estimated using fluid description approach [85] in liquid nitrogen dielectric medium.   
 
However, adapting the plasma channel characteristics, modeling of material removal through 
estimation of crater geometry was attempted by different researchers. In 1972, Snoey and VanDijck 
[82] first studied the effects of spark radius on different responses of EDM process. It was observed 
that spark radius was very sensitive to tool-workpiece electrode material combination. In 1983, Erden 
[32] considered pulse shape as rectangular and suggested an empirical relationship (refer table D.1) 
among spark radius, discharge power and discharge duration for specific tool-workpiece electrode 
pair and dielectric. Padey and Jilani [61] included energy density and material properties like boiling 
temperature, thermal diffusivity in their proposed model of spark radius in 1986. Still, the suggested 
model was limited to be applicable for a few pair of electrodes and dielectric. A critical assessment of 
five important thermal models based on thermo-electric theory was published by Yeo et al. [86] in 
2008. Main considerations, assumptions, fraction of discharge energy, radius of the heat flux and 
limitation of the models [18, 61, 78, 87-91] are listed in table D.2, in appendix D. DiBitonto et al. [18] 
and Patel et al. [19] introduced point heat source model for cathode erosion and expanding circular 
heat source model for anode erosion. In cathode erosion model [18], they considered power as a 
boundary condition instead of conventional temperature conditions. Though, power was supplied at a 
point, yet, the area, upon which heat flux was working, was growing with time. Melting front and 
subsequent resolidification boundary were rapidly migrating. Thus, expanding circular heat source 
model for anode erosion was considered by Patel et al. [19]. They assumed that the erosion took 
place through melting by one spark per single pulse. Plasma radius at anode was growing with 
fractional power of time. Plasma flushing efficiency at anode was marginally low compared to cathode 
model. In microscopic level, the spark characteristics were studied by Shankar et al. [20] through an 
integrated approach analyzing dielectric and electrodes together. Using finite element method, spark 
profile was found to be non-cylindrical and at the middle section it was the smallest. Generally, 
electrode having high thermal diffusivity made larger spark radius but, cross section at the cathode 
interface was found to be larger than anode-interface. During simulation, spark radius was corrected 
considering the discharge current at each cross section as constant [20]. 
 
Two temperature model (TTM) and molecular dynamics based models were integrated and dynamical 
behavior of material at the atomic level in electric discharge machining was studied by Guo et al. [92] 
and Ming et al. [93]. During simulation of material removal, pure thermal condition, pure electric 
condition and hybrid action by combining both of them were implemented by Guo et al. [92]. When 
pure thermal condition was applied, it was found that, at the beginning, material was removed in the 
form of clusters due to thermal shock effect. As time progressed, strength of the shock waves was 
decreased and material was removed in the form of single atoms or tiny clusters. When, pure electric 
action was applied, generated high tensile stress caused polycrystalline region at the top part of 
cathode. Thus, material was removed in the form of single atom or small clusters. Ming et al. [93] 
observed that material was removed from the harder tungsten surface in the form of clusters, 
whereas, single atom was removed from comparatively softer copper surface. Yang et al. [94] 
reported that for low power density, vaporization played the significant role in material removal in the 
form of single atom and for high power density, material was removed in the form of clusters by 
bubble explosion. Crater surface morphology for the raised edges were simulated by considering the 
movement of molten material as incompressible viscous flow [95]. From the molecular dynamics 
based simulation, it was concluded that crater generated in gas medium was larger in diameter and 
smaller in depth compared to hydrocarbon oil. High power density resulted large diameter and depth 
of the molten area, and thereby improved removal efficiency as well as machinability [94]. Whatever 
may be the material removal mechanism, removal efficiency was very low (e.g. 0.02-0.05), as most of 
the molten part were resolidified. Stress in the resolidified layer highly fluctuated during the discharge 
progresses, but at the end, rate of fluctuation fell [38].  The spatiotemporal scale of the molecular 
dynamics confirmed this theory. Fluctuation of stress level and presence of alternating tensile and 
compressive stress during solidification were also supported by Zhang et al. [39]. They integrated 
TTM with molecular dynamics and exclusively suggested the material removal mechanism in four 
steps namely melting, disintegration, ablation and solidification.  
 
Though EDM process could be applicable to any conductive material irrespective of its hardness, 
toughness and strength properties, researchers proposed methods to identify the ease of machining 
of any tool-workpiece combination. Earlier, ease of machinability was determined by λ X θ theory (λ = 
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thermal conductivity and θ = melting point of workpiece) [96]. That theory only used machining time as 
the decision parameter to measure the ease of machinability. Later Mahadika et al. [96] pointed out 
that time of machining might be affected by some complex phenomenon like adhesion, cavitation and 
short-circuiting. Therefore, they introduced electrical resistivity (ρ) of the workpiece along with the 
previous theory. Hence, the product of λ, θ and ρ of the workpiece material, was considered and five 
parameters, namely total energy of discharge pulses, discharge pulse number, average discharge 
pulse energy, discharge pulse density and tool electrode wear, were chosen for measuring the ease 
of machining. 
 
Further, semi-implicit CFD algorithm was implemented in the FLUENT software for simulation of the 
turbulent model of dielectric flow with low Reynolds number [97] considering dielectric with constant 
density. Using Particle image velocimetry (PIV) [43], trajectory of debris particles inside the dielectric 
was studied. Wang and Han [98] proposed a three dimensional flow field model with solid, liquid and 
gas phases for simulation of debris and bubble movement inside the gap between electrode and 
workpiece.  
 
A plate capacitor model was developed to describe the sparing process during pulse on time in EDM 
process [99]. The correlative functions of process parameters and energy distribution were deduced 
with the help of field electron emission theory. Energy analysis showed that the ratio of valid 
machining time and critical field intensity played crucial role for improvement of the efficiency of EDM 
process. 
 
Pandit and Rajurkar [100] proposed a data dependent system based mathematical model in the form 
of stochastic differential equation of surface profile obtained from machining of cemented carbide 
(grades K-8 and K-701 of Kennametal). Their models were used to predict ejected volume of material 
and to evaluate thermal stresses which was further extended to estimate length of cracks in terms of 
material properties and machining parameters.   
 
Analytical models are developed by framing the physical phenomena involved in the process. Yet, 
applicability of the developed model is limited as chosen assumptions reduces the closeness to actual 
event. In this regard, empirical modeling based on relevant experimental results is more effective for 
practical applications.  
 
2.5.2 Empirical modeling – statistical approach 
 
Empirical models are developed from the experimental results. A relationship is fitted among process 
parameters and outcomes. Unknown coefficients are estimated for the purpose. Under the group of 
statistical analysis, multivariable regression and response surface methodology are the most common 
approaches used by the researchers. Some researchers tried Gaussian process regression and 
group method of data handling for building prediction model of electric discharge machining process 
outcomes. 
 
2.5.2.1 Modeling based on multivariable regression 
 
Models based on multivariable regression consist of linear models, second order polynomial models, 
higher order polynomial models, power law models and multivariable regression models of fractional 
order. A few are briefly discussed here. 
 
Linear models were built by Rajesh and Anand [101], Ugrasen et al. [102] and Mahapatra and Patnaik 
[103]. Rajesh and Anand [101] considered working current, pulse on time, pulse off time, working 
voltage, oil pressure and spark gap as input parameters and MRR and surface roughness in EDM as 
output parameters. They did L32 orthogonal array based experiments. Using molybdenum wire in 
WEDM of EN 31, Ugrasen et al. [102] developed linear models of accuracy, surface roughness and 
volumetric MRR. L16 orthogonal array was used to accommodate different levels of current, pulse on 
time, pulse off time and bed speed. However, no testing of estimated model was done. Mahapatra 
and Patnaik [103] did experimentation based on L27 orthogonal array. They used zinc coated copper 
wire and D2 tool steel as workpiece element. They developed linear models of MRR, surface finish 
and kerf width with input parameters as discharge current, pulse duration, pulse frequency, wire 
speed, wire tension and dielectric flow rate. Testing of fitted models were not reported there.  
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Second order polynomial models were built by Boopathi and Sivakumar [104], Liao et al. [105] and 
Huang et al. [106].  Boopathi and Sivakumar [104] considered discharge current, pulse on time, pulse 
off time, gap voltage and air mist pressure as input parameters and MRR and surface roughness in 
near dry WEDM of HSS (M2 grade) by molybdenum wire as output parameters. They did experiments 
using L18 orthogonal array. Their estimated models were further tested with 12 different data set. Liao 
et al. [105] did L18 orthogonal array based experiments with different levels of pulse on time, pulse off 
time, wire speed, wire tension, table feed and flushing pressure for WEDM of SKD11 alloy steel by 
brass wire. They developed models of MRR, gap width, surface roughness, discharging frequency, 
gap voltage and normal discharge frequency ratio. With same workpiece and wire material, used by 
Liao et al. [105], Huang et al. [106] accommodated different levels of input parameters, namely pulse 
on time, pulse off time, table feed, flushing pressure, machining history distance between wire 
periphery and workpiece surface, in L18 orthogonal array for experimentation in WEDM. Their 
estimated models of surface roughness, gap width, white layer depth were fitted with experimental 
results with high r2 values. Though testing of fitted models were not reported.  
 
A higher order polynomial model of MRR with current, pulse on time, pulse off time and capacitance 
as input parameters was estimated by Al-Ghamdi and Aspinwall [107]. They conducted 81 full 
factorial experiments in EDM of WC-Co by copper electrode. Their model was fitted with the 
experimental data with r2 value 0.81. They did testing of their model with 9 sets of intermediated data 
points.  
 
Power law model of wire wear ratio in WEDM of AISI 4140 steel by brass wire was developed by 
Tosun and Cogun [108]. Their model includes pulse duration, open circuit voltage, wire speed and 
dielectric flushing pressure as input parameters. They did testing of their model with 12 different sets 
of data.   
 
Multivariable regression model of fractional order was developed by Petropoulos et al. [109]. They did 
experimentation with 12 different combinations of levels of current and pulse on time in EDM of CK60 
carbon steel using copper electrode. Different roughness and waviness parameters, namely center 
line average surface roughness, quadratic mean profile inclination, mean spacing of the asperities, 
skewness of the profile height distribution and arithmetic average of waviness, were fitted. Testing of 
fitted models were not reported there. 
 
Thus, it appears that for better fitting of estimated data, large size of data set is necessary for 
multivariable regression. So, rigorous experimentation is required. Besides, experimental results are 
fitted with predefined relationship. Along with fitting error, measurement errors further shift the model 
from accurate representation of the process. 
. 
2.5.2.2 Modeling based on response surface methodology (RSM) 
 
Modeling based on response surface methodology considers central composite design, face centered 
central composite design and Box-Behnken design. A few models are briefly discussed here. 
 
Rotatable central composite design was employed by Shashikant et al. [110], Das et al. [111] and 
Habib [112]. Shashikant et al. [110] and Das et al. [111] considered 31 experiments to accommodate 
different levels of discharge current, pulse on time, pulse off time and gap voltage. Shashikant et al. 
[110] correlated surface roughness with input parameters EDM of EN19 by electrolytic copper and 
found r2 value 0.77. They did testing of their model with only the result obtained at the combination of 
mid-levels of each of the four input parameters and found 0.02% prediction error. Das et al. [111] 
developed models of MRR and surface roughness but no fitting error was reported and testing of 
estimated models was not done. Habib [112] considered peak current, pulse on time, average gap 
voltage and volume percentage of SiC as input parameters and accommodated 31 runs in EDM of 
Al/SiC composite material by copper tool electrode. Their estimated models of gap size, material 
removal rate, tool wear rate and surface roughness were fitted with r2 values as 0.96, 0.93, 0.87 and 
0.92 respectively. Testing of the fitted models was not reported. 
 
Face centered central composite design was used by Assazadeh and Ghoreishi [113], Gopalakannan 
et al. [114], Pal et al. [115] and Maji and Pratihar [116]. Both Assarzadeh and Ghoreishi [113] and 
Gopalakannan et al. [114] measured MRR, tool wear rate and surface roughness as output 
parameters. Assarzadeh and Ghoreishi [113] considered discharge current, pulse on time, duty cycle 
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and gap voltage as input parameters. They did 31 experiments in EDM of WC-Co by copper electrode 
and output parameters were correlated with input parameters. Values of fitting error were not given 
and no testing of estimated model was done. With gap voltage, pulse on time, pulse off time and 
discharge current as input parameters, Gopalakannan et al. [114] did 30 experimental runs in EDM of 
Al 7075/B4C metal matrix composite by copper tool and their experimental results are fitted with r2 
value 0.98, 0.96 and 0.99 respectively. Testing of fitted model was not reported. Pal et al. [115] 
correlated MRR, surface roughness and fractal dimension of machined surface with current, pulse on 
time and pulse off time. They did 20 experimental runs in EDM of HSS (M2 grade) by copper tool 
electrode. They did not report their fitting errors but tested their estimated models with 5 separate runs 
and found 6.45%, 6.77% and 0.79% prediction errors respectively. Models of MRR and surface 
roughness with input parameters as peak current, pulse on time and duty factor were developed by 
Maji and Pratihar [116]. They took mild steel workpiece and copper electrode and did 17 experiments. 
Confirmatory test was done by six intermediate settings. Both the values of fitting error and testing 
error were not reported. 
 
Box-Behnken design was implemented by Mohanty et al. [117] and Sahu et al. [118]. Mohanty et al. 
[117] correlated MRR and surface roughness measured in EDM of Inconel 718 with current, pulse on 
time, duty factor and type of tool material. Along with MRR and surface roughness, Sahu et al. [118] 
developed models of tool wear rate and circularity of workpiece. They considered discharge current, 
pulse on time, duty factor and flushing pressure as control parameters and did 27 experiments in 
EDM of AISI D2 steel by copper electrode. In both the studies [117, 118], values of fitting error were 
not given and no testing of estimated models was done. 
 
Confirmatory test of estimated models is necessary before practical application of RSM based 
models. In most of the above studies, fitting errors and testing of estimated models are not reported. 
The above models, limited to development of second-order polynomial, could not reflect the effect of 
complex interactive relations among input parameters. 
 
2.5.2.3 Modeling based on Gaussian process regression 
 
Sufficient sampling is time consuming and expensive, still, large history might be helpful for future 
prediction. Gaussian process regression (GPR) performs better than neural network based prediction 
technique for short training data set. This Bayesian approach has the ability to choose hyper-
parameters from training set directly and provides a probabilistic measure of uncertainty of the model 
prediction. In this approach, nonlinear process is treated as multiple-input-single-output (MISO) model 
[119]. Gaussian process (GP) is a collection of random variables of any finite number which have a 
joint Gaussian distribution. Gaussian process regression is developed on Bayesian framework. 
Correlation between two latent variables is defined by a covariance function. Two basic assumptions 
in this modeling approach are Gaussian noise and smooth response surface of process outcomes. 
Therefore, GPR model with Laplace or even Student-t distribution might be a good assumption for 
obtaining better result. 
 
Yuan et al. [119] further developed GPR models of MRR and surface roughness of WEDM process 
with on time, off time and mean current as input parameters. Estimated models were trained with 
mean squared error 1.25 and 0.02 for MRR and surface roughness respectively.  
 
Yuan et al. [120] improved the prediction capability and robustness of the model by fusing fuzzy 
model with GPR approach. Re-sampling algorithm based on GPR was proposed for incorporating 
prior model. True training data set and re-sampled prior confidence dataset were fused with piecewise 
relational transfer interpolation method and obtained a pseudo training data set. This fusion model 
predicted MRR and surface roughness better than direct GPR based model by 28.7% and 20.7% 
respectively. 
 
Ming et al. [121] developed a hybrid intelligence model for prediction of MRR and surface roughness 
in EDM process. They implemented finite element method for estimation of process responses with 
different setting of pulse current, pulse duration and discharge voltage. The estimated responses 
were correlated by GPR approach. Estimated models of MRR and surface roughness were tested 
with six separate data sets and average prediction error were found as 14.75% and 20.74% 
respectively. 
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As, the random noise are assumed as Gaussian in nature, so, this approach may not work well for the 
data lies near to the boundary. Though offline training of relatively sparse training data are common in 
practice, still, this involves highly non-linear interactive optimization process.  
 
2.5.2.4 Modeling based on group method of data handling 
 
Group method of data handling (GMDH) is a family of inductive algorithms for computer-based 
mathematical modeling of multi-parametric datasets. This algorithm is characterized by inductive 
procedure that performs sorting-out of gradually complicated polynomial models and selection of the 
best solution by means of the so-called external criteria. To find best solution of GMDH algorithm, 
various component subsets of the base function (partial models) are considered. The most popular 
base function used in GMDH is the gradually complicated Kolmogorov-Gabor polynomial [102]. 
 
Ugrasen et al. [102] developed prediction models of surface roughness, volumetric material removal 
rate and accuracy in WEDM of EN-31 material by this approach. Three different criteria functions, 
namely regularity, unbiased and combined, were tried with training data of different size. It was 
reported that regularity criterion function gave better result than other two. For surface roughness, 
62.5% data were used as training set and 75% for volumetric material removal rate. Testing result 
was not reported. 
 
It appears that performance of GMDH depends on base function and criterion function. In real world 
practice it is very difficult to select the suitable base function and criterion function in earlier. 
 
2.5.3 Empirical modeling - non-statistical approach 
 
Though multivariable regression and response surface methodology are the most common 
approaches for empirical model building, yet, non-statistical techniques like dimensional analysis, grey 
system theory, empirical mode decomposition, instrument variable approach, time-varied predictive 
model are also employed for modeling of EDM process. 
 
2.5.3.1 Modeling based on dimensional analysis 
 
Dimensional analysis based semi-empirical models are able to include more number of process 
variables in model building than the estimated error based empirical techniques. Dimensional analysis 
is founded on the concept that variables could be represented in a dimensionally homogeneous 
equation [122]. Using Buckingham pi theorem all variables appearing in the problem will be connected 
through number of different dimensionless products. The dimensionless products or groups of 
variables are raised to unknown indexes and they are estimated through experimentation using 
different linear and non-linear regression analysis techniques.  
 
Wang and Tsai [123] developed models for MRR and tool wear in EDM with dimensional analysis. 
Their models included peak current, discharge time, input energy on electrode, boiling point, electrical 
conductivity, specific heat capacity, thermal conductivity, density and latent heat of vapor per unit 
mass of electrode material. With the variables, they constructed five dimensionless groups and they 
were connected through unknown indexes. Different non-linear regression techniques were tested for 
estimation of the indices. They did number of experiments earlier for screening of significant 
parameters with different tool-workpiece variations. This screening procedure was done by S/N ratio 
based noise analysis. Tsai and Wang [124] used the same procedure for model development of 
average surface roughness value in EDM with same input parameters. In both the papers, models 
were unable to represent the process efficiently. For average surface roughness, material removal 
rate and tool wear rate, prediction error varied within 0.92%-46.48%, 8.46%-79.11% and 1.02%-
303.5%.  
 
Patil and Brahmankar [125] considered same variables along with melting phenomenon instead of 
boiling condition. Here, they did experiments on Al/SiC composite with three different levels of 
ceramic reinforcements namely 10%, 20% and 30%. It was reported that this model [125] was able to 
capture the MRR with almost 99% accuracy for all three composites. Their model was compared to 
RSM model. This semi-empirical model slightly overestimated MRR than RSM based model for higher 
pulse on time. With higher ceramic reinforcements this model showed decrease in MRR value.  
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It is observed that dimensional analysis is not capable of reflecting either of the additive or subtractive 
input-output relationship. Even, it could not derive formula containing trigonometric function, 
exponential function, logarithmic function etc. Correlation with constant is not captured in this 
approach. It is difficult to handle the physical quantities having same dimensional formula. 
 
2.5.3.2 Modeling based on grey system theory 
 
Grey system theory is more suitable for the system having partially unknown parameters where some 
information are poor, incomplete and uncertain [126]. To study the discharge state prediction, 
calamities grey prediction theory [127] and to forecast the process outcomes, grey dynamic model 
[128] were implemented by the researchers.  
 
Liu et al. [127] implemented calamities grey prediction theory to predict the discharge state of micro-
EDM process and tried to reduce the electrode pullback and to improve the processing efficiency and 
processing quality in both micro-hole and micro-groove EDM. Nonstationarity, nonlinearity and 
internal coupling characteristics of voltage signal, current signal and spark ratio caused the hysteresis 
of conventional control method. To reduce this hysteresis effect, output velocity of conventional 
control system was replaced and a real-time predictive control method with voltage signal, current 
signal and spark ratio was proposed.  They considered negative velocity (electrode pull back) as a 
calamity value. As, this predictive method exhibited good real-time performance in prediction whether 
the future processing cycles would be in discharge state or not, so, the proposed discharge state 
predictive method was coupled with conventional control system.  
 
Chiang and Chang [128] conducted experiment on EDM of electro-conductive ceramic 
(Al2O3+30%TiC) with variation of pulse current and pulse duration and measured the process 
performances namely material removal rate, electrode wear ratio and maximum surface roughness. 
Using this experimental data, residual grey dynamic model (1, 3) was developed. Least square 
method was used to estimate the parameters of grey model and predicted values of the original 
discrete data were obtained by using inverse accumulation generating operation (IAGO). Though it 
was reported that, residual error of proposed forecasting model was less than 4%, still, some lacunae 
of this approach were identified.  
 
As, the prediction is dependent on primitive sequence, if the historical data sequence is altered, 
prediction could be affected. Interaction effects of parameters are not revealed clearly. Time series 
data should be independently and identically distributed. Therefore, some confusion is still present as 
to whether this type of historical data set could be considered as time series or not.  
 
2.5.3.3 Modeling by empirical mode decomposition 
 
High frequency discharge, complex interference and frequent discharge signal distortion are common 
in micro-EDM. Thus, method for detection of discharge state should be faster, have less operations 
and good real-time performance. 
 
For the same prediction length, discharge state prediction of EDM using empirical mode 
decomposition was proved as better than conventional methods [129]. The decomposition technique 
was developed by combining autoregressive model identification and linear prediction. Complex 
discharge state signals were divided into several linear, smooth and mutually orthogonal intrinsic 
mode function (IMF) components. Autoregressive identification model of each IMF was built and thus, 
linear prediction was employed for each IMF component. This method showed good real-time 
performance with less operational time by reducing the lag of conventional model. 
 
Performance of empirical mode decomposition is affected by the selection of IMF. It is difficult to set 
number of IMF prior to modeling. Linear prediction of IMF component may not be appropriate for all 
practical problems. 
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2.5.3.4 Modeling based on instrumental variable approach 
 
Online modeling of EDM process by instrumental variable approach with Kalman filters was 
developed by Zhou et al. [130, 131]. They used two Kalman filters for this purpose. One was used for 
estimation of gap states from gap state identifications and the other for the estimation of 
autoregressive model parameters [130]. Gap state identification and the other were defined as an 
average of states identified based on pulse discriminating criteria from sample voltage and current in 
a time interval. Spark pulses, transient arc pulses, stable arc pulses and short pulses were classified 
by their different voltage threshold value. Compared to the four pulses, very high voltage during open 
pulses and almost zero voltage during pulse off time were used as the criteria for state identification. 
Multi-performance optimization of noise variances, namely identification of noise variance and 
parameter of noise variances, were done by grey correlation approach. Filter parameters were 
upgraded [131]. Prediction errors of the developed model of gap state were found within theoretical 
bounds which showed the confidence of two Kalman filters for online modeling of gap state in EDM 
process.  
 
Classification of different pulses depends on pulse discriminating criteria and therefore, efficiency of 
instrumental variable approach will be affected by selection of Kalman filters. Efficiency of 
instrumental variable approach is also suffered by the quality of the instruments and associated 
errors. 
 
2.5.3.5 Time-varied predictive model 
 
Classification technique for discriminating different discharge pulses in EDM based on gap states was 
developed by Zhou et al. [132]. They mentioned five discharging pulses in gap according to 
waveforms of voltage and current, namely machining pulses like spark and transient arc pulses, non-
machining open pulse and deleterious pulses like stable arc and short pulses. Sum of spark ratio and 
transient arc ratio was considered as gap state. Time series of gap state was analyzed with spectral 
analysis. Their time-varied predictive model was found to work with on-step-ahead mean prediction 
error less than 2%.  
   
It appears that performance of time varied predictive modeling is affected by chosen sampling rate of 
time varying signal and discriminating criteria of gap state. However, it is to be noted here that gap 
state status, as described in grey prediction theory, instrumental variable approach and time varied 
predictive modeling, attributes to material removal rate and surface topography in EDM. 
 
2.5.4 Modeling by intelligent procedure 
 
Researchers also use intelligent procedures to build a representative architecture of the EDM process 
from experimental results and physical experiences. With the aid of different learning theories, some 
soft and some hard computing based methods like artificial neural network, fuzzy logic, ANFIS, 
genetic expression programming are used by the researchers.  
 
2.5.4.1 Modeling based on artificial neural network (ANN) 
 
Variants in modeling by artificial neural network of EDM process are method of learning, selection of 
activation function, values of learning and momentum coefficients, number of hidden layers and 
number of neurons in each of the hidden layers.  
 
In feed forward neural network (FFNN), information is passed into forward direction without forming 
any cycle or loop. Two typical architectures namely, multi-layer FFNN and radial basis function 
networks (RBFN) were used for modeling of EDM process. For the purpose of getting optimum multi- 
layer FFNN architecture with optimum internal parameters, gradient descent search based back 
propagation algorithm were used by Pal et al. [115] and Mandal et al. [133]. Pal et al. [115] trained 
experimental results of MRR, surface roughness and fractal dimension in EDM obtained at different 
combinations of levels of current, pulse on time and pulse off time. Learning rate and momentum 
coefficient were chosen as 0.9 and 0.8. For both hidden layer and output layer, tansigmoidal function 
was chosen as activation function and weights were updated by gradient descent search based back 
propagation algorithm. With 5000 iterations and training error 0.0001, they finally selected 3-14-3 
architecture for their study. Their network was tested and found as better compared to RSM based 
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model [115]. With same input parameters [115], models of MRR and tool wear rate were developed 
by Mandal et al. [133]. They considered 3-2-2 architecture and 10 neurons for each of the two hidden 
layers. For selection of optimum learning rate and momentum coefficient, gradient descent search 
based back propagation algorithm was employed and optimum values of both the learning rate and 
momentum coefficient were found as 0.6. It is observed that first order derivative based gradient 
descent search method is quite slow and chance of trapping in local optimum is very high.  
 
Therefore, Al-Ghamdi and Aspinwall [107] employed second order derivative based Levenberg-
Marquardt algorithm for searching optimum architecture for prediction of MRR in EDM of WC-Co by 
copper tool with current, on time, off time and capacitance as input parameters. One hidden layer was 
decided and different schemes of choosing number of neurons were tried. Finally, 9 neurons for 
hidden layer were set. Activation functions for hidden layer and output layer were chosen as sigmoid 
function and linear function respectively. With dynamic damping factor of Levenberg-Marquardt 
algorithm, termination criterion was set by 1300 epochs and obtained MSE in training is 0.01. Their 
network could predict better compared to RSM based model [107].  
 
To avoid the uni-directional search in Levenberg-Marquardt approach, Joshi and Pande [134] used 
scaled conjugate gradient (SCG) based searching method for developing models of MRR, crater 
depth, crater radius and tool wear rate in EDM. They generated data set from thermo-physical FEM 
based model with discharge current, discharge duration, duty cycle and breakdown voltage as input 
parameters. With two hidden layers, interconnected weight factors were optimized by SCG. At the end 
of simulation, 4-5-28-4 architecture was finalized with 7% mean prediction error. Testing result with 16 
separate data set showed that 90% of testing data set could predict within 15% absolute error. They 
compared their multi-layer FFNN with RBFN.  
 
Derivative based searching algorithm are suffering from large memory and poor convergence rate. 
Trapping inside local optimum is also high. For better searching operation, evolutionary optimization 
method like genetic algorithm (GA) was implemented by Rao et al. [135] and Wang et al. [136]. Rao et 
al. [135] developed model of surface roughness in EDM of different workpieces like Ti-6Al-4V, HE15, 
15CDV6 and M250. They considered current, average voltage and machining time as input 
parameters. Number of hidden layer was chosen as one. For both the hidden layer and output layer, 
hyperbolic tangent function was chosen as activation function. At the end of 30000 epochs, MSE was 
obtained as 0.00063369. Architecture and interconnected weights of the network were found through 
optimization by GA. Root mean square error in prediction was considered as objective function for 
GA. Wang et al. [136] developed models for MRR and surface roughness, obtained from EDM of Ni 
base alloy by graphite tool, with six control parameters namely peak current, on time, off time, voltage, 
dielectric fluid and electrode material. Sigmoid transfer function was used as activation function for 
both hidden layer and output layer. For optimization by GA, they considered same objective function 
as mentioned by Rao et al. [135]. Testing error for MRR and surface roughness were found as 5.6% 
and 4.98% respectively.  
 
Instead of using multiple hidden layers in multi-layer FFNN, Joshi and Pande [134] considered RBFN 
with single hidden layer and Gaussian radial basis function was used as transfer function in the 
hidden layer. They employed RBFN to correlate MRR, crater depth, crater radius and tool wear rate in 
EDM with discharge current, discharge duration, duty cycle and breakdown voltage as input 
parameters. Thermo-physical FEM based model was used for data generation. Number of hidden 
neurons, centers of RBF neurons and interconnected weights between hidden and output layers were 
optimized by orthogonal least square approach. Optimum spread factor of Gaussian function was 
selected by trial and error method. With optimum spread factor 0.12, 4-250-4 RBFN architecture was 
found as best fitted and absolute mean error was found as 19%. Using 16 separate data set for 
testing purpose, it was found that 80% of testing data set could predict each of MRR, crater depth and 
crater radius within 15% absolute error. Mean prediction error was 10%. In case of tool wear rate, 
mean prediction error was 46% and 25% of testing data set were within 15% absolute error. They 
concluded that in spite of the simplicity and fast convergence rate of RBFN, it was not suitable for 
global fitting. Further, it was claimed that SCG based multi-layer FFNN was more accurate and had 
more potential to model complex machining process like EDM. 
 
Thus, it appears that training time is high due to poor convergence rate of derivative based search 
methods. Large memory is required for derivative calculation. Internal parameters of optimization 
method, namely learning rate and momentum coefficient of gradient descent method, damping factor 
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of Levenberg-Marquardt algorithm and crossover and mutation probability of genetic algorithm, affect 
the training schedule and thereby final architecture. Final architecture of ANN might not be optimum 
and might have low repeatability due to size of training data set and initial setting of weight factors. 
Besides, ANN based models are suffering from efficiency of training, efficiency of testing, over-fitting. 
 
2.5.4.2 Modeling based on fuzzy logic 
 
Researchers also used fuzzy logic for prediction of outcomes of EDM process. Formulation of 
membership function for fuzzification, definition of the expert rules and selection of defuzzification 
method are three main criteria to be decided prior to the application of fuzzy logic based intelligent 
modeling.   
 
Shabgard et al. [137] developed models of MRR, tool wear rate and different roughness parameters 
with current and pulse on time as input parameters. Shabgard et al. [137] did EDM of WC-Co by 
commercial copper. By trial and error, triangular and trapezoidal membership functions were found 
better and used for fuzzification. Fuzzy sets for input and output parameters were 5, 3, 5, 5, 5, 5. 
Number of fuzzy rules used was 15. Their models were tested with five different test sets and 
accuracy in prediction was found above 91% in each case.  
 
Sengottuvel et al. [138] conducted EDM on Inconel 718 using copper electrode with different 
combinations of levels of current, pulse on time, pulse off time, flushing pressure and tool geometry 
and measured MRR, tool wear rate and surface roughness. By trial and error, they found Gaussian 
membership function was better and used for fuzzufication. They used 16 fuzzy rules and center of 
area method for defuzzification. Their models were tested with one separate data set and predicted 
within 5% absolute error in each case.  
 
Lin et al. [139] predicted models of MRR, electrode wear ratio and surface roughness in EDM of 
SKD11 alloy steel by copper electrode with discharge current, pulse on time and duty factor as input 
parameters. Number of fuzzy rules used here was 27. No results of testing were reported.  
 
For combining multiple responses, Lin and Lin [140] used grey-fuzzy approach and Tzeng and Chang 
[141] used multiple performance characteristics indices (MPCI). Using grey-fuzzy approach Lin and 
Lin [140] developed combined model of MRR, electrode wear ratio and surface roughness in EDM of 
SKD11 alloy steel by copper electrode with discharge current, pulse on time and duty factor as input 
parameters. Nine fuzzy rules were used for this purpose. Values of prediction error was not reported 
but it was concluded that grey-fuzzy approach [140] performed better than direct data based single 
response fuzzy model [139]. Dimensional precision and accuracy of slope were combined to multiple 
performance characteristics indices (MPCI) for fuzzy modeling by Tzeng and Cheng [141]. They did 
experimentation on EDM of SKD11 tool steel by electrolytic copper with aluminum powder added to 
dielectric fluid. Along the variation of powder size and concentration, they considered pulse peak 
current, pulsed duration, duty cycle, open circuit voltage, regular distance for electrode lift and time 
interval for electrode lift as input parameters. Number of fuzzy rules used was 27 and defuzzification 
was done by center of gravity method. Result of confirmatory test was not reported.    
 
Modeling by fuzzy logic suffers from uncertainty of the modeling process itself. Methods of 
fuzzification and defuzzification and selection of fuzzy rules affect the performance of fuzzy logic 
based prediction. Allocation of same importance to all input parameters is not appropriate. 
 
2.5.4.3 Modeling based on adaptive neuro-fuzzy inference system (ANFIS) 
 
In adaptive neuro-fuzzy inference system (ANFIS) based modeling, mapping from input and hidden 
layers to corresponding hidden and output layers of neural network is replaced by fuzzification and 
defuzzification of fuzzy logic based approach. 
 
Models of MRR and surface roughness in magnetic field assisted EDM process were developed by 
Teimouri and Baseri [142] using ANFIS. Magnetic field intensity, rotational speed and product of 
average current and pulse on time were considered as input parameters. Using trial and error method, 
different architectures were tested with 0.01 root mean squared error or 500 epochs as termination 
criteria. Among 39 experimental results, 25, 7, 7 results were used for training, validation and testing 
purposes respectively. First order Sugeno-fuzzy rules were implemented and 27 Gaussian 
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membership functions were selected for the architecture. Average RMSE of testing of MRR and 
surface roughness with four separate data set were found as 46.28 and 49.76 respectively but 
confirmatory test gave lower values like 1.16 and 0.85 respectively.  
 
Maji and Pratihar [116] employed ANFIS for developing models of MRR and surface roughness in 
EDM with input parameters as peak current, pulse on time and duty factor. They took mild steel 
workpiece and copper electrode. Linear and non-linear membership functions were tried for forward 
and reverse mapping of MRR and Ra with input parameters. Based on developed RSM model [116], 
they generated almost thousand data sets and used for training purpose for this approach. Genetic 
algorithm was implemented to find optimum distribution of membership function and coefficients of 
fuzzy rules. It was found that bell shaped membership function performed better than any other 
membership functions. Confirmatory test was done with six different data set. 
 
As, ANFIS approach combined neural network and fuzzy logic, so, uncertainty and less repeatability 
in prediction are common problem. Complex architecture, lack of training efficiency and chance of 
over-fitting restrict the use of ANFIS in practical field.  
 
2.5.4.4 Modeling based on genetic expression programming 
 
Genetic expression programming (GEP) algorithm gives a solution in searching of global function, 
developed from genetic algorithm and genetic programming [143].  
 
Salman and Kayacan [143] developed GEP based modeling of surface roughness with variation of 
discharge current, pulse on time, pulse off time, gap voltage and various electrodes. No significant 
difference was found in EDM generated surface for different electrodes.  
 
Need of internal parameter tuning of genetic expression programming makes it difficult for 
implementation in real world problems.   
 
The above mentioned procedures of model development are rigorously used for modeling empirical 
data. Suffering from generalization of model estimation, over-fitting might have occurred in ANN. 
Besides, random variations in process outcomes are obvious in stochastic type machining process. 
The random fluctuations in experimental results are required to be absorbed with specified tolerance 
value for intelligent predictions. Advanced learning based systems being devoid of four problems, 
namely efficiency in training, efficiency in testing, over-fitting and algorithm parameter tuning, would 
be effective in such situation. Structural risk minimization based [144] supervised batch learning 
system, support vector machine regression, could be a smart way of handling the situation and makes 
a trade-off between flatness and complexity of the unknown underlying fixed function. 
 
2.5.5 Support vector machine (SVM) regression 
 
Support vector machine regression, a supervised batch learning system, is firmly grounded in the 
framework of statistical learning theory. Vapnik [144] introduced structural risk minimization (SRM) 
principle instead of empirical risk minimization (ERM) implemented by most of the traditional artificial 
intelligence based modeling technologies. Neural network approaches may have suffered with 
generalization, producing over fitted models but SRM minimizes upper bound on the expected risk, as 
opposed to ERM, that minimizes error on the training data. This difference equips SVM regression 
with a greater ability to generalize [145]. Detailed discussion on SVM regression [144-150] is given in 
appendix A.1. Only a few applications of SVM regression learning system for development of 
predictive models of different machining processes are found and reported as follows.  
 
Zhang et al. [151] developed separate hybrid models of processing time and electrode wear in micro-
EDM through SVM regression. They also employed discrete level leave-one-out cross-validation for 
choosing C and ε. Though they used Gaussian kernel function but no such choice of σ was reported.  
 
Surface roughness in CNC turning of AISI 304 austenitic stainless steel was modeled with high 
correlation coefficient through three SVM regression learning systems namely least square SVM (LS-
SVM) regression, Spider SVM regression and SVM-KM based on clustering by k-means and ANN 
[152]. Internal parameters of SVM regression (C and σ) were set by grid search method. Though it 
was reported that for model development, SVM regression learning systems consumed less time than 
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ANN but no clear explanation about the specific choice of searching regions of SVM regression 
parameters was stated. Also, the values of SVM regression parameters obtained through grid search 
method depended on the choice of jumping interval.  
 
Ramesh et al. [153] conducted CNC end milling operation on 6061 aluminum varying feed rate, 
spindle speed and depth of cut. They employed SVM regression for modeling of surface finish in 
milling operation. Though their estimated model could predict with 8.34 % error which is better 
compared to 9.71% in prediction through multivariable regression model, but the procedure of their 
iterative choice of internal parameters of SVM regression, namely error, width and upper bound of 
global basis function, was not reported anywhere.  
 
Models of surface finish in face milling of steel were also developed using multivariable regression 
analysis, SVM regression learning system and Bayesian neural network by Lela et al. [154]. It was 
reported that SVM regression learned model estimated better than multivariable regression model. All 
three internal parameters of SVM regression were chosen by leave-one-out cross validation 
procedure keeping two parameters fixed at particular values and other one was searched by 
minimizing the mean square error. A continuous optimization technique which simultaneously 
searches the three parameters should be used to get better result for a newly developed system.  
 
Three prediction models of milling operation were developed by Dong et al. [155] using LS-SVM 
regression, standard SVM regression and ANN. They considered spindle speed, feed rate, depth of 
cut and number of milling blades as input parameters and surface roughness was considered as 
output parameter. With their training set of 54 samples, testing set of 8 samples and radial basis 
function as kernel function, LS-SVM regression performed better than standard SVM regression and 
ANN in terms of computational time and prediction accuracy. Internal parameters of SVM regression 
like C, ε and parameter of kernel function were set by their own choice. No guidelines were reported.  
 
Further, LS-SVM regression was used for modeling of surface roughness with more input parameters 
namely spindle speed, feed rate, axial depth of cut, radial depth of cut, rake angle and tool diameter 
[156]. Jiang [156] selected radial basis function (RBF) as kernel function and estimated C, ε and 
parameter of kernel function by 5-fold cross validation procedure. With training set of 16 experiments 
(following L16 orthogonal array), testing results over 8 separate sets of data were within average 8% 
prediction error. 
 
Different parameters of vibration signal in worm wheel and gear grinding in CNC machine were 
predicted using LS-SVM regression [157]. Wang et al. [157] considered RBF as kernel function and 
selected the values of C, ε and parameter of kernel function by grid search method. Their developed 
model predicted with more accuracy than auto-regressive model and neural network. 
 
From the above discussion, it is observed that in EDM, irregular fluctuations in process outcomes like 
MRR, surface roughness could be captured by insensitive zone of support vector machine regression 
and use of kernel function reduces the curse of dimensionality in model development process. This 
robust way of modeling would be helpful to machine within an allowable tolerance limit. 
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2.6 Optimization related to EDM process 
 
To sustain in the competitive industrial market, manufacturing processes should be implemented in 
economically viable way. Both the quantity and quality of the process outputs are to be balanced. 
Thus, from early days of industrial revolution, optimum results are rigorously searched by researchers. 
Recent applications of evolutionary techniques for optimization of machining processes are listed by 
Yusup et al. [158]. They reported very few publications regarding EDM process parameter 
optimization. Though the evolutionary methods were proposed in recent time and already gained the 
popularity due to its stable performances, yet, different hard computing methods are more common to 
the researchers. Most popular hard computing based discrete techniques are S/N ratio based 
method, grey relation analysis, principal component analysis etc. and continuous methods are 
feasible direction, Newton’s steepest descent method etc. Soft computing techniques include 
probabilistic approaches namely trajectory based simulated annealing (SA), heuristic method like 
genetic algorithm (GA) and metaheuristic techniques like ant colony optimization (ACO), particle 
swarm optimization (PSO), sheep flock (SF) algorithm, artificial bee colony (ABC) algorithm, 
biography based optimization (BBO), etc. The above said methods are employed for single and 
multiobjective optimization of machining processes. Classification of the optimization methods 
employed on EDM process is shown in figure 2.3. In each group, discussion is kept limited to a few 
typical literature. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.3 Classification of optimization methods employed on EDM process 
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2.6.1 Optimization based on direct data based methods 
 
Deterministic approaches for searching optimum result that is hard computing methods are classified 
into two groups namely discrete methods and continuous methods. Optimum result obtained from 
discrete methods is limited within the preselected levels of parameters but continuous methods are 
capable to reach any point within the specified boundary.  
 
2.6.1.1 Single objective optimization based on S/N ratio 
 
Among, discrete methods, S/N ratio based method is generally restricted to implement for single 
objective optimization. Depending on the type of optimization, either of the three types of S/N ratio, 
namely larger the better, nominal the better and smaller the better, is calculated.  
 
Rajmohan et al. [159] performed EDM of 304 stainless steel with process parameters as current, 
pulse on time, pulse off time and voltage. They used L9 orthogonal array and measured MRR for 
each run. Based on S/N ratio calculation, they obtained optimum set of input parameters for maximum 
MRR. Bergaley and Sharma [160] also performed L9 orthogonal array based experiment on EDM of 
high-carbon-high-chromium steel using copper electrode with same process parameters as [159] 
except copper powder concentration in dielectric instead of voltage. They did maximization of MRR 
and minimization of tool wear rate. Both Rajmohan et al. [159] and Bergaley and Sharma [160] did not 
conduct any validation test. Boopathi and Sivakumar [104] did experimentation on near dry WEDM of 
M2 grade HSS using molybdenum wire and measured MRR and surface roughness in each run. L18 
orthogonal array was used to accommodate different levels of discharge current, pulse on time, pulse 
off time, gap voltage and air mist pressure. They reported that discharge current, pulse on time and 
gap voltage had significant contributions on MRR and surface roughness. They estimated the 
optimum setting separately for maximum MRR and minimum surface roughness.  
 
It is noted that optimum results obtained from S/N ratio based method are restricted within the 
discrete combination of the levels of input parameters.   
 
2.6.1.2 Multiobjective optimization based on S/N ratio 
 
To implement the S/N ratio method for simultaneous optimization of multiple responses, concept of 
weighted average is introduced. Combining the number of process performances using different 
scheme of weight vectors, it makes a way out for multiobjective optimization.  
 
Ramakrishnan and Karunamoorthy [161] conducted WEDM of Inconel 718 by brass wire and 
measured MRR and surface roughness. They considered ignition current, pulse on time, delay time 
and wire feed speed as input parameters and did experimentation using L9 orthogonal array. 
Assigning equal weight vectors (each of 0.5), normalized MRR and normalized surface roughness 
were combined and multi-response S/N ratio (MRSN) was evaluated. Optimum results were validated. 
Confirmation test showed that MRSN ratio was improved by 0.783. Along with multi-response S/N 
ratio (MRSN) method, Gauri and Chakrabarty [162] compared WSN and VIKOR method for 
multiobjective optimization of both the combinations namely MRR-surface roughness-kerf width and 
SR-cutting removal rate.  Among the three techniques, WSN method gave better result than other 
methods but no confirmation test was reported. Searching of Non-dominated solution in optimization 
of MRR and surface finish of WEDM was done by Scott et al. [163] using S/N ratio based calculations. 
Discharge current, pulse duration and pulse frequency were found as significant control factors 
compared to wire speed, wire tension and dielectric flow rate. They concluded that dynamic 
programming approach was more efficient than complementary approach in case of searching non-
dominated solution through S/N ratio based multiobjective optimization.   
 
It appears that result of multiobjective optimization by S/N based method depends on the scheme of 
weight vector employed for combining multiple responses.    
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2.6.1.3 Optimization based on principal component analysis (PCA) 
 
Principal component analysis (PCA) is a method to transform the multiple normalized process 
outcomes into uncorrelated linear combinations. Two shortcomings of standard PCA are, in case of 
eigen value greater than unity, feasible solution becomes unknown and multiresponse performance 
index (MPI) could not be replaced by multiresponse solution. To overcome this, weighted PCA is 
generally used where assigned weights are used to combine all principal components to obtain a 
multiresponse performance index (MPI). Using this MPI, optimum levels of control parameters are 
identified. 
 
Das et al. [164] conducted L27 orthogonal array based experiment on EDM of EN31 tool steel by 
electrolytic copper. With variation of discharge current, pulse on time, pulse off time and voltage, they 
measured MRR and five different surface roughness parameters, namely center line average surface 
roughness, root mean square of profile heights, skewness of the profile height distribution, kurtosis of 
profile height distribution and mean width of profile elements. At first they checked the correlation 
between process outcomes and it was reported that all responses are correlated in pair. Principal 
component of each trial is computed by eigen vectors of each response. Next, accountability 
proportion is estimated and multiresponse performance index is calculated from principal 
components. From the level average of MPI, optimum settings were found and compared to 
experimental results. Confirmation test showed that S/N ratio was improved by 1.6554 dB. 
 
It is observed that estimation of eigen value increases computation time and assignment of weight 
vectors demands prior information about input-output relationship. If output parameters have higher 
order relationships, then, correlation coefficients and principal components are not capable of 
capturing them. Also, optimum results are limited within discrete levels of experimentation. 
 
2.6.1.4 Optimization based on grey relation analysis (GRA) 
 
Grey relational analysis (GRA), one of the widely used multiresponse discrete optimization methods, 
is consisted of four steps, namely grey relational normalization, grey relational gathering, calculation 
of grey relational coefficient and evaluation of grey relational grade. Normalization technique absorbs 
the differences between maximization and minimization problem. Grey relational grade is calculated 
by averaging the grey relational coefficients which are generated by gathering multiple responses 
using distinguishing coefficients. In general distinguishing coefficient is chosen as 0.5. Parameter 
settings corresponding to highest grey relational grade indicates the optimum settings of input 
parameters.  
 
Jegan et al. [165] conducted EDM of AISI 202 stainless steel with electrolytic copper and measured 
MRR and surface roughness. They considered discharge current, pulse on time and pulse off time as 
process parameters and did full factorial experimentation. Based on grey relational grade, optimum 
setting was reported but value of distinguishng coefficient was not mentioned. Rajesh and Anand 
[101] measured the same responses as [165] in EDM with copper electrode, but to further incorporate 
working voltage, oil pressure and spark gap as the control parameters, they used L32 orthogonal 
array. Optimum results were not validated. Along with MRR and surface roughness, Lin et al. [139] 
minimized electrode wear ratio. They did EDM of SKD11 alloy steel by copper electrode and used L9 
orthogonal array to accommodate different levels of discharge current, pulse on time and duty factor. 
Their confirmation test showed that at the optimum condition, grey relational grade was improved by 
0.092. Vikas et al. [166] conducted EDM of EN41 by copper electrode and measured different surface 
roughness parameters, namely center line average surface roughness, root mean square of profile 
heights, skewness of profile height distribution, kurtosis of profile height distribution and mean width of 
profile elements, of machined surface. They used L27 orthogonal array for experimentation to 
accommodate different levels of discharge current, pulse on time, pulse off time and gap voltage. 
Using GRA, they found the optimum setting of input parameters and conformation test showed that 
grey relational grade was improved by 0.18137.  
 
In optimization using GRA method, optimum setting depends on selection of distinguishing coefficient 
and is limited within discrete combinations input parameters.  
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2.6.1.5 Optimization based on data envelopment analysis (DEA) 
 
In data envelopment analysis (DEA) each experimental run is considered as a decision making unit 
(DMU). Fractional mathematical linear programming technique is employed to calculate the relative 
efficiency, a ratio of weighted sum of DMU of outputs and that of inputs. Best among the calculated 
relative efficiency values is selected for the optimum solution. In case of multiple DMUs having same 
relative efficiency value, average ranked value method is adopted to find out the best solution.   
 
Sahu et al. [118] did Box-Behnken based 27 experiments with different levels of discharge current, 
pulse on time, duty factor and flushing pressure in EDM. For each experimental run, MRR, tool wear 
rate, surface roughness and circularity of workpiece were measured. For tool wear rate and surface 
roughness, responses are set as inputs for calculating DMU but for larger-the-better type 
performances, namely material removal rate and circularity, responses are set as outputs for DMU. 
Average ranked values were calculated and optimum combination was identified. Effect of variation of 
duty factor on relative efficiency is the highest among all input parameters. Validation test showed that 
optimum results of MRR, tool wear rate, surface roughness and circularity of workpiece were differed 
from experimental values by 5.45%, 18.90%, 17.86% and 0.23% respectively.   
 
It is observed that implementation of linear programming is time consuming and selection of weight 
factors for calculation of DMU affects the optimum setting. 
 
2.6.1.6 Optimization based on desirability function approach (DFA) 
 
Desirability function is a dimensionless measure of performance calculated by combining multiple 
responses. In this approach, each response is transformed to a desirability value between zero and 
one, where higher value indicates better preference of that response. This desirability may be 
nonlinear function depending on the assigned weight factor between one and ten. Overall desirability 
is estimated by taking the geometric mean of individual desirability of each response raised to an 
importance value (least important as 1 to most important as 5). Highest desirability value is declared 
as the optimum result.   
 
Sengottuvel et al. [138] conducted experiment on EDM of Inconel 718 with copper tool. They 
incorporated peak current, pulse on time, pulse off time, flushing pressure and electrode geometry as 
input parameters in L16 orthogonal array. Assigning 0.33 weight factor to each of MRR, tool wear rate 
and surface roughness, optimum setting was found by desirability function approach. No validation 
test was done. Assarzadeh and Ghoreishi [113] measured same process outcomes in EDM of WC-Co 
by commercial copper electrode. They conducted face centered CCD based 31 experiments with 
different combination of levels of discharge current, pulse on time, duty cycle and gap voltage. 
Optimum values of MRR, tool wear rate and surface roughness were validated with 8.56%, 9.45% 
and 6.45% error respectively. Gopalakannan et al. [114] did experiment on EDM of Al 7075/B4C 
using electrolytic copper as tool electrode. With the help of desirability function approach, they 
simultaneously maximized MRR, minimized electrode wear rate and minimized surface roughness. 
Using the optimum setting of input parameters, namely pulse current, pulse on time, pulse off time, 
gap voltage, they conducted confirmatory test and reported average error of 3.21%, 6.19% and 4.63% 
for MRR, tool wear rate and surface roughness respectively.  
 
It appears that performance of desirability function approach is affected by nature of desirability 
function and chosen weight factors. 
 
2.6.1.7 Optimization based on utility concept 
 
Products based on different quality characteristics are assessed by prospective buyer. Different 
characteristics are combined and composite index is evaluated [167]. This composite index 
represents the utility of the product. At first, preference scale is set based on experimental 
observation. This preference scale of each response multiplied by weight factors are added to get 
overall utility function. Therefore, multiple responses could be optimized simultaneously using this 
method. 
 
Goswami and Kumar [167] performed WEDM of Nimonic 80A using brass wire. L27 orthogonal array 
was used to accommodate different levels of peak current, pulse on time, pulse off time, wire feed, 
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wire tension and gap voltage. They measured MRR and surface roughness value in each 
experimental run. Assigning equal weight factor as 0.5 to each response, multiresponse optimization 
was done by implementing utility concept and single optimum set of input parameters was obtained. 
No confirmatory test was reported. 
 
It is noted that construction of preference scale depends on both experimental observations and 
users. Besides, assignment of weight factors affects the results of optimization.  
 
2.6.1.8 Optimization based on technique for order of preference by similarity to ideal solution 

(TOPSIS) 
 
For optimization of multiple responses, TOPSIS method is implemented in fuzzy environments. 
Decision makers give their decisions on responses for each attribute weight factor. Normalized 
responses are multiplied by the fuzzy weights. Based on the characteristics of the responses, positive 
and negative ideal solutions are identified. Using the weighted performances and ideal solutions, 
distance between two fuzzy numbers is estimated. With the distance value, closeness coefficient (CC) 
is calculated for each experimental run. The highest CC value indicates optimum setting of input 
parameters. 
 
Dewangan et al. [168] simultaneously minimized white layer thickness, surface crack density, surface 
roughness and overcut in EDM of AISI P20 tool steel using copper electrode by Fuzzy-TOPSIS-based 
multi-criteria decision making approach (MCDM). Face centered CCD is considered for 
experimentation to accommodate different levels of peak current, pulse on time, tool work time and 
tool lift time. Employing this approach, a single set of levels of input parameters is found which 
minimized all four process outcomes simultaneously. Validation test of the obtained optimum result 
was not done.   
 
It is observed that selection of weight factors affects the performance of TOPSIS in multiresponse 
optimization. 
 
From the above discussion in subsection 2.6.1, it appears that direct data based methods are not 
efficient to explore the search space except from few preselected points. Input-output relationship 
over full search space is established through representative model of the process. Therefore, 
considering the representative model as objective function, optimization methods are employed on 
this. Optimization of objective function is done by either traditional or evolutionary optimization 
method.  
 
2.6.2 Optimization based on traditional methods 
 
Apart from direct data based methods, traditional optimization techniques are employed on objective 
functions. Researchers did optimization of EDM process considering representative model as 
objective function. Thus, possibility of getting global optimum value other than optimum at some 
predefined levels of input parameters increases. exists. Feasible direction method and Newton's 
steepest descent method are two gradient based traditional optimization methods employed for 
optimization.    
 
Liao et al. [105] conducted experiment on WEDM of SKD11 alloy steel by brass wire using L18 
orthogonal array to accommodate different levels of input parameters namely pulse on time, pulse off 
time, table feed, wire speed, wire tension and flushing pressure. They developed regression models 
of MRR, gap width, surface roughness. Considering the estimated regression model of MRR as 
objective function, they maximized MRR subjected to the constraint of gap width (0.42 mm) and 
surface roughness (3 μm) by feasible direction search method. Saha et al. [169] developed a model of 
temperature distribution in wire of WEDM by copper wire using finite element analysis. The developed 
model was considered as objective function and used Newton’s steepest descent method for 
optimization. They minimized wire temperature. In both the studies [105, 169], validation tests of 
optimum results were not reported. 
 
Performances of traditional optimization methods are suffered from calculation of derivatives. 
Feasibility of derivative calculation at all points is very low and computation time is high. As, both of 
this traditional methods follow uni-directional search technique, so, possibility of trapping inside local 
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optimum is very high. Efficiency of traditional methods reduces in searching of global optimum for 
complex multimodal objective functions. Evolutionary optimization methods are effective in this 
regard.     
 
2.6.3 Optimization based on evolutionary methods 
 
In practical field of work, optimization problems are suffered from non-convex design spaces, a mix of 
continuous-discrete variables. Mathematical non-linear programs are found to be inefficient, 
computationally expensive and in most of the cases searching operation might be trapped near to 
starting point or local optimum. In this regard, some physical phenomena based or nature inspired 
soft computing based heuristic or metaheuristic algorithms are developed. Simultaneous handling of 
number of objective functions and better exploration to search global optimum, make the probabilistic 
approaches more popular in industrial engineering problems. For optimization of EDM process, three 
major soft computing techniques are applied namely single point trajectory based method, population 
based heuristic and metaheuristic methods. There is confusion regarding clear distinction between 
heuristic and metaheuristic methods. Mukherjee and Roy [170] give a brief idea about the techniques. 
Among the several alternative solutions, a simple means of identifying the most preferable one with a 
set of rules is the basic concept of heuristic approach. Compared to heuristic methods, metaheuristic 
methods are computationally cheaper, chance of finding global optimum is higher and not problem 
dependent.   
 
2.6.3.1 Single point trajectory based simulated annealing (SA) 
 
Single point trajectory based simulated annealing mimics the cooling phenomena of molten material. 
As temperature reduces, chance of free movement of atoms gets restricted. Faster cooling may lead 
to the end state as polycrystalline, whereas, very slow process takes longer time. Therefore, rate of 
temperature reduction needs to be efficiently controlled to reach global minimum [171, 172]. In each 
state, a new generated point is accepted with Boltzmann probability distribution. Starting from an 
initial state, simulated algorithm gradually moves towards global optimum through some intermediate 
states. 
 
Yang et al. [173] considered weighted combination of the negative of ANN trained model of MRR and 
the ANN trained model of surface roughness as objective function. Discharge current, pulse on time 
and pulse off time were chosen as input parameters. Internal parameters of SA were set as initial 
temperature = 400oC, Boltzmann constant = 10, cooling rate = 0.9 and number of cycles per 
temperature = 100 and termination criterion = 10-5 oC. Initial starting point was not given. Though, they 
considered weighted combination of ANN based models, but values of weight factors were not 
mentioned. They performed 10 trials starting from same initial point factors but it was not mentioned 
that how the different results were found. As, simulated annealing was generally used for minimization 
purposes, so, negative of the MRR value was considered along with positive surface roughness 
value. To avoid this confusion, Aich et al. [174] took the reciprocal of MRR. Without combining to a 
weighted sum, they simultaneously optimized RSM based models of MRR and surface roughness 
considering current, pulse on time and pulse of time as input parameters. Starting from 1210 different 
initial points, they reached 1210 optimum settings and Pareto optima were identified. Though they set 
the initial temperature as 250oC, number of iteration at a particular temperature as 100, temperature 
reduction parameter as 0.975, but their termination criterion was not set by predefined iteration 
number. Accuracy level was set by changes in the values of objective functions of both the outputs 
simultaneously. Optimum results of MRR and surface roughness were validated with 11.47% and 
4.73% average absolute error respectively.  
 
As, simulated annealing is a single point trajectory based optimization, so. in case of multiobjective 
optimization, choice of initial point may change the final result. No general guidelines are found in 
literature regarding the choice of different parameters namely Boltzmann constant, temperature 
reduction parameter, number of iteration at particular temperature and termination criteria. 
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2.6.3.2 Evolutionary heuristic method - genetic algorithm (GA) 
 
From the idea of Darwin’s theory of survival of the fittest, natural genetics inspired biological evolution 
based genetic algorithm is developed [171, 172]. Population based genetic searching has three basic 
elements namely reproduction, crossover and mutation. Reproduction operator selects good strings 
for mating pool and crossover combines the substrings to evolute new population for next generation. 
Mutation operator is used to alter the strings locally. Probabilistic evolution by the three simple 
operators gradually pushes the population towards global optimum. Therefore, population size, 
crossover and mutation probabilities, termination criteria are needed to be chosen properly for better 
implementation. 
 
Rajesh and Anand [101] did multiobjective optimization of MRR and surface roughness in EDM using 
GA and found optimum combination of working voltage, working current, oil pressure, pulse on time, 
pulse off time and spark gap. Though they performed multiobjective optimization by GA, yet, no clear 
elaboration of the adopted technique for handling multiple objective functions was reported. Selection 
of internal parameters and results of validation test were not mentioned. Su et al. [175] employed GA 
for training of ANN based model of MRR, tool wear and surface roughness in EDM. They introduced a 
fitness function as the weighted combination of absolute error between desired and predicted values 
of the three outcomes and considered pulse on time, pulse off time, low voltage discharge current, 
high voltage discharge current, gap size, servo feed, jumping time and working time for rough, middle 
and finish cut with different machined area as input parameters. Internal parameters of GA were set 
as length of string = 64, population size = 77, mutation probability = 0.0077 and crossover probability 
= 0.7. Optimum results obtained after single objective optimization of proposed objective function 
were validated with insignificant errors.  
 
For adopting multiple objective functions in genetic algorithm, min-max, weighted sum and crowding 
distance based dominated ranking were used by different researchers. Crowded-comparison operator 
based selection operation was improvised in non-dominated searching genetic algorithm (NSGA). 
With further modifications of NSGA, NSGA-II was developed [133]. Mandal et al. [133] did 
multiobjective optimization of ANN trained models of MRR and absolute tool wear rate in EDM by 
NSGA-II with population size 100, two point crossover probability 0.9 and bitwise mutation probability 
0.04. At the end of 250 generations, they reached a Pareto optimum set of 100 combinations of 
discharge current, pulse on time and pulse off time. A typical Pareto optimum set was validated with 
1.27 % error for MRR and 0.54% error for absolute tool wear rate. Along with MRR and tool wear, 
crater depth was also considered by Joshi and Pande [134]. They used FEM based EDM data 
generator and the generated data are trained through neural network architecture. For roughing 
operation, maximum of MRR and minimum of tool wear were searched by NSGA-II with selection 
tournament of size 4, simulated binary crossover probability 0.5 and mutation operator with 
polynomial of the order of 20 with probability 0.1. In case of finishing operation, crater depth was also 
minimized with MRR and tool wear. Optimum combinations of duty cycle, discharge current, 
discharge duration and break down voltage for both the roughing and finishing operation were found. 
Validation of their optimum results appeared as not appropriate.   
 
Presence of different probabilistic calculations reduces the efficiency of GA in multimodal problems. 
Termination criteria, as set by all the researchers are maximum number of iterations, might not ensure 
proper convergence to global optimum. Selection of initial population affects the optimum results in 
multiobjective optimization by GA.  
 
2.6.3.3 Evolutionary metaheuristic algorithm - ant colony optimization (ACO) 
 
Being influenced by the cooperative behavior in real ant colonies, that is collective effort to find the 
shortest path between their home to food source [171], ant colony optimization (ACO) is developed. 
Ant lefts a chemical trail named pheromone in their path and amount of pheromone influences the 
path of other ants. Pheromone amount is updated by the following ants and trail evaporation. Parallel 
movements of ants in several random ways are represented by multilayered graph connected through 
discrete data points and the ants always find the minimum possible path length.   
 
Mukherjee et al. [176] employed ACO for both single and multiobjective optimization of non-linear 
regression and RSM based models of MRR, wear ratio, kerf width, surface roughness in WEDM. For 
multiobjective optimization, weighted combination of normalized responses namely wear ratio, surface 



34 
 

roughness, kerf width and negative value of MRR was considered as objective function. Optimum set 
of input parameters namely peak current, duty factor, wire tension, water pressure, discharge current, 
pulse duration, pulse frequency, wire speed and dielectric flow rate were reported for two different set 
of models. Values of internal parameters of ACO and validation test of optimum result were not 
reported. Teimouri and Baseri [142] modified standard ACO to easily handle continuous optimization 
problem that was, maximization of MRR constrained to surface roughness value. They developed 
ANFIS model of MRR in magnetic field assisted EDM process. As, continuous ACO (CACO) was 
used for minimization, so, negative value of MRR was considered. Internal parameters of CACO were 
set as like number of ants 200, pheromone weighting 1.0, evaporating rate of pheromone 0.8, control 
parameter of pheromone updating 0.9 and changing rate 0.8. Simulation was stopped by maximum 
number of iteration as 100. Implementing this CACO for maximization of MRR with seven different 
constraints of maximum surface roughness, optimum sets of magnetic field, rotational speed and 
product of average current with pulse on time were obtained. Validation test of optimum results were 
not reported.  
 
Though maximization of MRR constrained to specific surface roughness value is performed, still, 
physical significance of negative MRR is confusing. Simulation should not be stopped by maximum 
number of iterations as this might not ensure proper convergence. It is observed that selection of 
internal parameters affect the performance of ACO. 
 
2.6.3.4 Evolutionary metaheuristic algorithm - particle swarm optimization (PSO) 
 
Flock of birds, swarm of bees, school of fish search their food based on their own intelligence and the 
information is shared among other members of the group. Particle swarm optimization mimics this 
behavior. The whole group always maintains an average direction and position of the group [177, 
178]. Initially, a set of widely spread particles start their searching and gradually all of them try to 
converge towards global optimum. Number of particles in swarm, initial population, termination criteria 
and different internal parameters namely inertia factor, constriction factor, social and cognitive 
acceleration coefficients should be set properly.      
 
Mohanty et al. [117] developed RSM based models for MRR and surface roughness in EDM process 
with open circuit voltage, current, pulse on time, duty factor and flushing pressure as input 
parameters. They performed multiobjective optimization of MRR and surface roughness by PSO. 
They considered initial size of population as 100 and fixed internal parameters like inertia factor as 
0.4, both cognitive and social parameters as 2. They found Pareto optimal solution but no guidelines 
were given regarding handling of multiple objective functions. Optimum results were not validated. 
Shayan et al. [179] developed BPNN models of cutting velocity, surface roughness and oversize in 
WEDM process. They did both single-objective and multiobjective optimization of the three process 
outcomes by PSO with number of particles in swarm as 200 and both social and cognitive 
acceleration coefficients as 2.05. They converted multiobjective optimization problem to single-
objective problem by combining each of the normalized responses by weight factors. As, PSO is used 
for minimization purpose, so, negative of cutting velocity is taken along with other responses. They 
reported optimum set of pulse on time, pulse off time, gap voltage, discharge current and wire tension 
for both the single-objective and multiobjective optimization. Validation test of their result showed that 
for both single objective optimization and multiobjective optimization, BPNN-PSO approach performed 
better than RSM-desirability approach. Mukherjee et al. [176] employed PSO for both single and 
multiobjective optimization of non-linear regression and RSM based models of MRR, wear rate, kerf 
width, surface roughness and surface finish in WEDM. For multiobjective optimization, normalized 
wear ratio, surface roughness and kerf width were combined with negative value of MRR using weight 
factors and considered as objective function. Optimum set of peak current, duty factor, wire tension, 
water pressure, discharge current, pulse duration, pulse frequency, wire speed and dielectric flow rate 
were reported for each of the two different sets of models. Setting of internal parameters of PSO and 
validation test of optimum result were not reported. 
 
It appears that improper selection of internal parameters affects the performance of PSO. Large 
number of particles like 200 delays the convergence schedule. It is difficult to set termination criteria 
like the percentage error in change of the value of objective function in earlier for unknown problem.   
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2.6.3.5 Evolutionary metaheuristic algorithm - sheep flock optimization (SFO) 
 
Sheep flock optimization (SFO) technique simulates the heredity of sheep flocks in a prairie [180, 
181]. Within their own flock, genetic inheritance is maintained through breeding by high fitness sheep. 
If different flocks are occasionally mixed and then separated by their shepherds, several sheep of one 
flock are inevitably mixed with sheep of another flock. As, sheep with better fitness characteristics 
breeds most within flock, so, characteristics of the sheep in neighbor flock could be inherited to the 
sheep of another flock. Compared to GA, inheritance within one flock and mixing-separation of flocks 
are similar to sub-chromosome and chromosome level genetic operation respectively. 
 
Mukherjee et al. [176] employed SFO algorithm for both single and multiobjective optimization of non-
linear regression and RSM based models of MRR, wear rate, kerf width, surface roughness and finish 
in WEDM with peak current, duty factor, wire tension, water pressure, discharge current, pulse 
duration, pulse frequency, wire speed and dielectric flow rate as input parameters. In case of 
multiobjective optimization, weighted combination of the normalized responses, wear ratio, surface 
roughness, kerf width and negative value of MRR, was considered as objective function. Selection of 
internal parameters of SFO algorithm namely chromosome and sub-chromosome level crossover 
probabilities and validation test of optimum result were not reported. 
 
It is observed that performance of SFO algorithm depends on selection of chromosome and sub-
chromosome level crossover probabilities. In case of multiobjective optimization, generation of initial 
population and choice of termination criteria affect the optimum result.  
 
 2.6.3.6 Evolutionary metaheuristic algorithm - artificial bee colony optimization (ABCO) 
 
Artificial bee colony optimization (ABCO) is developed by Karaboga [182] inspired by intelligent 
foraging behavior of honey bees. In the hive, employed bees are associated with specific food 
sources, onlooker bees are watching dance of employed bees within the hive to choose a food source 
and scout bees are searching for foods randomly. In ABCO, position of food sources is treated as 
possible solution in the search space and the nectar amount of food source represents the objective 
function of the problem. 
 
RSM based models of MRR and surface roughness in EDM process were developed by Das et al. 
[111]. Using the developed models, they performed both single objective and multiobjective 
optimization by ABCO algorithm. In case of multiobjective optimization, they combined the normalized 
surface roughness with negative of the normalized MRR by equal weight factors (each of 0.5). They 
set swarm size as 10, number of employed bees as 5, onlooker bees a 5, scout bee as 1 and 
maximum number of cycles as 1000. They reported optimum set of pulse on time, pulse off time, 
current and voltage for both the single and multiobjective optimization. In case of single objective 
optimization, optimum MRR and surface roughness were tested with 0.88% and 0.75% error 
respectively. For multiobjective optimization, validation test showed 0.97% and 0.91% error 
corresponding to optimum MRR and surface roughness. Mukherjee et al. [176] employed ABCO for 
both single and multiobjective optimization of non-linear regression and RSM based models of MRR, 
wear ratio, kerf width, surface roughness in WEDM with peak current, duty factor, wire tension, water 
pressure, discharge current, pulse duration, pulse frequency, wire speed and dielectric flow rate as 
input parameters. Weighted combination of normalized responses was considered as objective 
function for multiobjective optimization. Values of internal parameters of ABCO and validation test of 
optimum results were not found.   
 
It appears that selection of internal parameters is very important for reaching global optimum. Choice 
of termination criteria affects the performance of ABCO. 
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2.6.3.7 Evolutionary metaheuristic algorithm - biography based optimization (BBO) 
 
From the concept of biological distribution of species, that is migration of species from one island to 
another, arising of new species and extinction of existing species, biography based optimization 
(BBO) is developed [183]. Immigration and emigration rate of habitats probabilistically decide the 
migration of suitability index variable (SIV). A good solution is chosen based on the habitat suitability 
index (HSI) value that is similar to the objective function value. The two migration rates are the 
monotonically increasing and decreasing function of HSI respectively.  
 
Mukherjee et al. [176] employed BBO algorithm for both single and multiobjective optimization of non-
linear regression and RSM based models of MRR, wear rate, kerf width, surface roughness and finish 
in WEDM. To convert into a single objective optimization problem, multiple responses namely wear 
ratio, surface roughness, kerf width and negative of MRR are combined by weight factors. For both 
the single and multiobjective optimization, optimum sets of peak current, duty factor, wire tension, 
water pressure, discharge current, pulse duration, pulse frequency, wire speed and dielectric flow rate 
were reported for two different sets of developed models. No information on the selection of internal 
parameters, namely habitat modification probability, mutation probability, maximum species count, 
maximum rates of immigration and emigration, maximum mutation rate, elitism parameter and number 
of habitats were mentioned. Validation of optimum result was not found.   
 
A number of internal parameters of BBO are to set prior to optimization. For selection of the internal 
parameters, brief knowledge of search space is necessary. Choice of termination criteria plays crucial 
role in search of optimum result of multiobjective optimization.   
 
The above discussed optimization techniques are widely used for global optimization problems with 
optimum settings of their own internal parameters. As the technology advances, number of objective 
functions, number of constraints, type of constraints increase. If the optimization methods are itself 
suffering from choice of internal parameters, then, it would become more difficult to implement the 
techniques in real world applications. Therefore, need of expertise is obvious for each of the problem. 
In 2011, Rao et al. [184] proposed an algorithm-specific parameter-less evolutionary metaheuristic 
global optimization technique called as teaching learning based optimization (TLBO). 
 
2.6.4 Teaching learning based optimization (TLBO) 
 
Based on the ideology of teaching-learning process, an algorithm-specific parameter-less optimization 
technique, teaching learning based optimization (TLBO) was proposed in [184]. Though, no such 
internal parameters are required to fix in TLBO before simulation starts, yet, two crucial conflicting 
aspects of a metaheuristic algorithm, namely intensification and diversification, are successfully 
achieved in it. Exploration of the search space is done in learner phase whereas teaching phase does 
the exploitation. Knowledge gain of a learner depends on both the teaching ability of the teacher as 
well as the receiving capacity of the learner. Teacher always tries to pull forward the batch of learners 
aiming to his/her own level. Sharing of knowledge among learners also helps in improvement of their 
individual knowledge levels. In this way, in every iteration, values of objective function that is scores of 
the learners in each subject gradually move toward optimum zone. Since the development of TLBO in 
2011, number of researchers modified and used TLBO for different applications. A wide range of 
applications were listed by Rao [185]. Still, applications in the field of machining technology are very 
limited.   
 
Rao and Kalyankar [186] maximized cutting velocity in WEDM process with constraint surface 
roughness below a permissible value. Second-order polynomial model of cutting velocity was taken as 
objective function for optimization and an optimum set of pulse on time, pulse off time, peak current 
and servo feed was reported. Number of learners was chosen as 10 and termination criterion was set 
by maximum number of iteration as 20. Validation of optimum result was not reported. 
 
Pawar and Rao [187] employed TLBO for single objective optimization of abrasive water jet 
machining, grinding and milling process.  In abrasive water jet machining, they maximized MRR with 
power constraint. In grinding, production cost was minimized and production rate was maximized 
simultaneously by combining weight factors. In milling, production time was minimized by TLBO. In all 
three machining processes, optimization by TLBO converged within 20 to 30 iterations. Their results 
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showed that performance of TLBO was much better than other evolutionary metaheuristic techniques 
like SA, GA, PSO, ACO.  
 
Rao and Kalyankar [188] did both multiobjective optimization and single objective optimization with 
multiple constraints using TLBO for multi-pass turning operation. In multiobjective optimization, 
production time and tool life were considered as objective functions. They took cutting force, cutting 
power and surface roughness as constraints. They compared their results with results obtained by 
GA. It was observed that with 50 learners, TLBO outperforms GA at the end of 50 iterations. In their 
single objective optimization, unit production cost was minimized with 20 constraints in rough cutting 
and finishing zones. For single objective optimization, TLBO also showed better performance than GA 
in terms of convergence rate and accuracy of the solution.  
 
In case of turning CFRP composite material, Abhishek at al. [189] developed non-linear regression 
models of MRR, cutting force and surface roughness separately. They did single objective 
optimization of each of three response parameters and of a weighted combination of all the three 
models. During optimization, values of objective functions saturated almost at the end of 20 iterations 
with initial population size 10 and fixed teaching factor 2. They compared their result with genetic 
algorithm and concluded that TLBO was computationally more efficient. 
 
Teaching-learning based optimization is found to be more promising than other optimization 
techniques as no such internal parameters are required to fix earlier and convergence rate is much 
higher (number of iteration is low). Still, maximum number of iterations considered as termination 
criteria is confusing as it may not ensure global optima. Thus, with modifications, TLBO might be a 
promising optimization technique for tuning of the internal structural parameters of SVM regression.   
 
2.7 Assessment of surface topography 
 
Characterization of machining process primarily involves measurement of rate of material removal 
and assessment of surface topography. Levels of machining control parameters directly influence the 
material removal phenomena. This material removal operation could be assessed both by rate of 
material removal and by geometry of the marks left by machining process. Rate of material removal 
includes a quantitative measurement of the amount of material removed. Whereas, investigation of 
the surface topography leads to study the inherent features of the mechanism of material removal. In 
EDM process, complex thermo-electrical phenomena, material inhomogeneity, transient behavior of 
dielectric fluid and material ejection during sparking result critical surface integrity of the machined 
part.  
 
In general, a surface topography is characterized by different arithmetic parameters of roughness 
profile, grouped in mostly three categories namely amplitude parameters, spacing parameters and 
hybrid parameters. Amplitude parameters include center line average, maximum peak to valley, 
average peak to valley, root mean square etc. Mean spacing of the asperities at the level of the 
central line, average wavelength, peak count, number of intersections of the profile at the mean line 
etc. belong to category of spacing parameters. Different hybrid parameters are average slope of 
profile, root mean square slope of profile, average radius of asperities, developed length of profile etc. 
[190]. In general, the above parameters are some algebraic combinations of absolute measurements 
of surface profile variations.  
 
Apart from 2D measurements of surface, Ramasawmy and Blunt [191] measured some 3D surface 
roughness parameters, namely root mean square height, density of summits, core material volume, 
core void volume, valley void volume and core roughness depth, on EDM generated surface obtained 
at different combinations of levels of pulse current, pulse on time and electrode surface area. They 
observed that root mean square height had linear relation with current but parabolic or quadratic 
relationship with pulse duration and pulse energy. Similarly, core material volume and core void 
volume exhibited strong influence of pulse current whereas valley void volume was sensitive to 
change of pulse duration. Still, no correlation was found between surface texture and surface 
generation process.  
 
Use of statistical functional parameters is another way of extracting features of surface topography. 
Generally, height distribution function and autocorrelation function (ACF) are implemented to study 
the possible features of surface. Mostly, first to fourth order central moments, bearing ratio curve or 
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Abbott-Firestone curves are different forms of height distribution function of surface profile. Gaussian 
distribution function with reasonable approximation almost matches with the height distribution 
function of real engineering surfaces [190]. Zhu et al. [192] studied the surface topography to evaluate 
cavitation erosion resistance of AlSi10Mg using third (skewness) and fourth (kurtosis) order central 
moments. They observed that time required for removing original surface finish marks which was 
closely related to cavitation erosion rate, could be predicted by tracking the changes of the two height 
distribution functions.  
 
Another statistical approach, autocorrelation function (ACF) of roughness profile, exhibits possible 
random and periodic features buried on generated surface. Roy et al. [193] analyzed the surface 
roughness data to find out the relative contribution of the electrolytic dissolution and the pure 
mechanical grinding in electrochemical grinding.  
 
Murti and Philip [194] characterized the EDM generated surfaces through SEM photographs. The 
machined surface is a cumulative effect of many independent events. Final surface is consisted of 
resolidified layers of molten material, overlapping craters of different sizes, networks of micro-cracks 
and pinholes. The resolidified layer on the machined surface, called as white layer is irregular and 
non-uniform in thickness. Hardness of this layer is extremely high due to rapid quenching of molten 
material [195]. Micro-cracks are of two types namely network of fine cracks, which are perpendicular 
to surface but limited to resolidified layer only and radially distributed cracks. Network of fine cracks 
are generated by thermal stress and stress due to phase transformation [195]. Jeswani and Basu 
[195] also identified three types of craters namely normal craters with raised rim of resolidified layer, 
crater with spilled pool of material caused by ineffective expulsion of molten material and neat crater 
formed by abrasive effects of flying debris particles. Their model of surface generation claimed that 
proposed surface was expected to be periodic with wavelength equal to half of crater size. Still, the 
model was far away from actual results. Stochasticity of the EDM generated surface is due to random 
variation in energy and location of successive sparks producing a wide variety of crater size, 
splashing of molten material, ineffective ejection from crater and incomplete solidification of residual 
material before the onset of next spark [194]. Murti and Phlip [194] finally concluded that machined 
surface was stochastic in nature and Gaussian with open texture with high repeatability.  
 
Pandit and Rajurkar [196] developed a data dependent system from measured surface profile which 
"trully" reflected the mechanism of material erosion. They developed a stochastic differential equation 
and estimated the temperature distribution through construction of isothermals that was correlated to 
crater shapes. Williams and Rajurkar [197] proposed ARMA (4,3) model to assess wire electric 
discharge machined surface profile. Their study indicated that higher order model was required for 
wire electric discharge machined surface compared to die sinking electric discharge machined 
surface. Non-directional features of surface profile were also observed after wavelength 
decomposition of machine surface profile. Due to the involvement of complex electrodynamics, 
electromagnetics, thermodynamics and hydrodynamics, Yeo et al. [198] also considered EDM as 
stochastic in nature and proposed a model for crater geometry formed on both the tool electrode and 
the workpiece. Though, their model predicted crater geometry within 7% error, still, they followed 
deterministic procedure in model development.  
 
In die-sinking EDM, discharge takes place at the spot of least resistance between tool electrode and 
workpiece. The favorable position of least resistance is governed by material inhomogeneity and gap 
state. Present gap status is determined from previous spark history. Thus, investigation of location 
and type of earlier sparks is necessary to understand the present gap status. At the end of each 
discharge, debris particles are formed. Cracking and chemical decomposition of dielectric also affect 
debris formation. Due to electrophoresis, debris particles flow in between tool electrode and 
workpiece in the perpendicular direction to electrode surfaces [199, 200]. It was observed that the 
debris particles were likely to form chain like bridges parallel to electric field in between tool electrode 
and workpiece. Hence, various concentrations of contaminants like suspended debris particles and 
products from dielectric decomposition, that remain even after flushing, result different types of 
discharge initiation. Statistical investigation of different ignition delays explains the discharge initiation 
due to the bridge formation by debris particles in between tool electrode and workpiece [201]. The 
above mentioned observations suggest probabilistic occurrence of discharges. Kunieda and 
Nakashima [202] reported that probability of occurrence of discharges is a product of probability of 
discharge per unit area and surface area but they identified the discharge locations in deterministic 
way.  
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Cooke and Crookall [203] studied the effect of time interval between successive discharges on 
distance between them for different parametric settings (capacitance and resistances) on relaxation 
type pulse generator. As time interval increased, dispersion of debris particles increased, deionization 
became more effective, as a result of that, mean and variance of the distances between successive 
discharges increased. Their study recommended the predominant influence of discharge history on 
next discharges. Kunieda et al. [7] did an extensive literature review on gap phenomena. They 
reported that discharge locations during stable operation were not random rather chaotic. Each 
discharge was determined by previous condition but final outcome was almost unpredictable even 
same control parameters were set. This conclusion was further explained by Gatto et al. [204]. They 
examined the gap phenomena by characterizing ignition delay. It was summarized that mechanism of 
material removal in EDM was dependent on initial condition. Formation of gas bubbles and 
arrangement of debris particles at the end of each discharge influenced consecutive discharges. It 
was observed that higher concentration of debris and possibility of low voltage discharge or short 
circuit pulse were interrelated. Higher concentration of debris may result formation of either chain or 
cluster. Cluster of debris particles causes discharge of higher voltage compared to bridge formation 
by chain structure. However, current state is related deterministically to earlier one but overall 
outcome is unpredictable. This spark erosion is recursive and regulated by earlier history. From the 
comprehensive view of discharge phenomena through examination of ignition delay, Gatto et al. [204] 
claimed that location and type of discharges were both chaotic in nature. As, concentration of debris 
increased, then, spark erosion process evolved towards chaotic behavior. Apart from presence of 
chaos in discharges, chaotic behavior of plasma generated from electrical discharges in gas [205] 
was also reported in literature.     
  
Lorenz [206] became famous for his pioneer work on searching chaotic dynamics in convection 
process. After that, in the fields of engineering, physics, biology, earth science, economics, cosmology 
etc., science behind the underlying process was described based on non-linear time series analysis of 
their purposefully selected outputs. Tang et al. [207] did a review of already proposed methodologies 
for the complexity analysis of time series data. Mono and multi-fractality analysis, estimation of 
attractor invariants and diagram description, structural and dynamical entropy evaluation were some 
mathematical concepts for building quantitative measurements of the dynamic characteristics of 
underlying process. Kędra [208] reported a detailed discussion on deterministic chaotic dynamics of 
river flow data. This discussion provided a comprehensive study of the different approaches taken for 
analysis of hydrological data. Hu et al. [209] conducted a study on runoff time series data of an inland 
river. Their cross-scale characterization of chaotic behavior suggested that selection of temporal scale 
of observed variable played a crucial role behind the confirmation of chaotic pattern. It was observed 
that along with temporal scale, aggregation of sample data, duration of observation, accuracy of data 
collection, presence of noise level, flow of information from unobserved to observed variables 
controlled the effectiveness of the analysis [208]. The non-linear techniques assisted to research on 
the presence of chaos behind the apparently erratic–looking behavior of physical process. 
 
Though number of researchers analyze the generated machined surface and comment on the 
machining process, still, no generalized way out is found to declare about stochasticity or chaotic 
nature of surface generation from machined surface. 
 
The following lacunae in the existing works on modeling of process outcomes, optimization of process 
performances and assessment of surface topography, are identified by summarizing the foregoing 
discussions on the literature. The objective and scope for the present thesis are also given with 
reference to the lacunae. 
 
(i) Modeling: 
 
Modeling methods employed on EDM process available to date are based on either of the three 
approaches namely analytical, empirical and intelligent. Applicability of analytical models are 
restricted to limited cases due to their user specific assumptions and closeness to practical situation is 
reasonably low. Instead of considering some assumptions regarding physical phenomena, empirical 
models are developed directly from experimental observations. Still, data size affects the performance 
of modeling by multivariable regression and dimensional analysis. Efficiency of historical data based 
approaches like grey system theory, time varied predictive modeling depends on sampling rate of 
data collection and the predefined sequence of data set. Selection of internal functions like basis and 
criterion functions in GMDH, intrinsic mode function in empirical mode decomposition controls the final 
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structure effectively. Pre-assumed discriminating criteria in instrumental variable approach and time 
varied predictive modeling reduce the repeatability of the proposed models. Dimensional analysis is 
not capable of accounting the nature of constants in correlation. Additive or subtractive nature of 
input-output relationship is not reflected in modeling by dimensional analysis. Even, dimensional 
analysis could not correlate functions like trigonometric, exponential, logarithmic etc. It is clear that 
nature of input-output relationship must be preselected before modeling through empirical approaches 
and developed model is highly sensitive to each of the data set. To some extent, intelligent 
procedures overcome this problem. Still, allowing same importance to all factors is a common 
problem in ANN and fuzzy logic. Training of internal parameters in ANN consumes large time and 
need prior knowledge. Models based on ANN are suffered from efficiency in training, efficiency of 
testing and over-fitting. Methods of fuzzifcation and defuzzification, setting of combination rules for 
conjunctive and disjunctive clauses decrease the repeatability and increase uncertainty in final output. 
In EDM, complex interactive patterns among machining control parameters and process outputs are 
obvious but global nature is not known at all. Involvement of transient complex thermo-electric 
phenomena results irregular variations of process outcomes but none of the available methods is 
capable of absorbing the fluctuations in robust way. 
 
In this context, a supervised batch learning methodology, support vector machine (SVM) regression, 
is proposed to develop a virtual data generator of EDM process which can predict the process 
outcomes in a robust way. 
 
(ii) Optimization:  
 
It is observed that performance measurements of EDM process like MRR and surface finish are 
conflicting in nature. As MRR increases, surface finish decreases. Therefore, a tradeoff should exist. 
A guideline is necessary to get the optimum MRR without sacrificing surface finish and to select the 
levels of machining control parameters in EDM machine to meet need-based MRR-surface roughness 
combination. Researchers employed different direct data based, traditional and evolutionary 
optimization methods for this purpose. Optimum results obtained by direct data based methods are 
limited within the preselected levels of available data set. Traditional methods involve calculation of 
derivatives which results long computation time, poor convergence rate and need large memory. 
Unidirectional search algorithms might be trapped inside local optimum. Performance of evolutionary 
method to reach global optimum is higher than traditional methods. Marching procedure of single 
point evolutionary method like simulated annealing is affected by the choice of initial point specially in 
case of multiobjective optimization. Along with simulated annealing, all the population based 
evolutionary optimization methods employed on EDM process available to date are suffering from 
their own internal parameter tuning. Profound knowledge regarding the influence of internal 
parameters on simulation steps of optimization algorithm is prerequisite. Further, termination criteria 
were set either by maximum number of iteration or by a predefined level for the change in objective 
function value. It is very difficult to know the values earlier for real world multimodal problems.  
 
In this regard, algorithm-specific parameter-less teaching learning based optimization (TLBO) is 
considered for optimization purpose with some proposed modifications. Pseudo Pareto optimization of 
MRR and surface roughness is also suggested with the aid of modified TLBO. Further, a inverse 
solution method is proposed to make a generalized layout for selection of the values of machining 
control parameters to meet near-optimum achievable specific need based combination of conflicting 
type process outcomes like MRR and surface roughness. Modified TLBO is also considered for tuning 
of internal structural parameters of SVM regression. Furthermore, a new way of handling multiple 
objective functions without affecting their individual impacts is attempted.  
 
(iii) Surface topography consideration: 
       
Due to presence of such phenomena like formation, growth and collapse of plasma channel, transient 
nature of dielectric medium, mechanism of material removal is complex in nature. As, surface 
generated in EDM is superposition of craters formed by high frequency, high power density, spatial 
and sporadic sparks, so, study of surface topography could help to comment on underlying surface 
generation process. No systematic study has so far been reported correlating the nature of surface 
generation from surface topography. Random nature of surface topography was reported by different 
researchers but it is qualitative and no one tried to correlate the process parameters with extent of 
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randomness. Though, some researchers did some remarks on nature of surface generation like 
stochastic and chaotic, still, no analysis is suggested in its favor.  
 
In the present thesis, therefore, a generalized structure is expounded to unfold the underlying unseen 
features of surface generation process by analyzing machined surface topography. The objective is to 
evaluate randomness, periodicity and their relative contributive effects and thereby to analyze the 
surface topography for chaos in EDM so as to comment on the surface generation process.      
 
2.8 Aims and objectives of the thesis 
 
Aims and objectives of the present work are thus summarized as follows. 
 
 To develop a robust virtual data generator of EDM process with the aid of SVM regression with 

internal structural parameters tuned by PSO and TLBO. 
 
 To perform pseudo Pareto optimization of MRR and surface roughness using TLBO and to 

propose an inverse solution procedure for selection of near-optimum achievable machining 
control parameters to meet specific need based combination of MRR and surface roughness. 

 
 To analyze the machined surface for quantitative assessment of relative contribution of 

randomness and periodicity in surface topography, for study the presence of chaos in surface 
topography and thereby to comment on surface generation process.   

 
2.9 Organization of the thesis 
 
Organization of the thesis thus becomes as follows. 
 
 In chapter 2, relevant literatures on modeling, optimization and assessment of surface 

topography in EDM process are discussed. Lacunae in existing methodologies are identified 
and thus, aims and objectives of the present work are set. 

 
 Chapter 3 deals with the scheme of experimentation to collect necessary data to meet the aims 

and objectives of the present work.    
 
 Steps of model development of EDM process outcomes, namely MRR and ASR, with the aid of 

SVM regression with internal structural parameters tuned by PSO and TLBO are discussed in 
detail in chapter 4. 

 
 In chapter 5, pseudo Pareto optimization of MRR and ASR, predicted through estimated 

models, are performed and an inverse solution procedure is proposed to select near-optimum 
setting of machining control parameters to meet specific need based combination of MRR and 
ASR. 

 
 In chapter 6, quantitative assessment of surface topography is done using autocorrelation 

function and logical layout is structured to evaluate the relative contributive effects of 
randomness and periodicity buried in fluctuations on machined surface. Further, test of chaos 
present in surface topography is performed. Extent of randomness, periodicity and chaos 
present in generated surface are studied with the variations of machining control parameters.     

 
 Conclusions are drawn from the present work, recommendations and future scope are reported 

in chapter 7.   
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3.1 Introduction 
 
Robust virtual working system of EDM process is necessary to reduce production time and cost 
through precise control over the process. Thus, representative models of process outcomes are to be 
built first and selections of optimum levels of machining control parameters are to be done using 
developed models. From the review of literature, it is found that predictions of process outcomes are 
difficult due to complex physical phenomena involved in EDM process and due to lack of robustness 
of model building methodologies. Advanced supervised batch learning based system would be 
effective in this regard. During training of supervised batch learning system, feeding of relevant data 
set is prerequisite. Therefore, sets of different levels of machining control parameters and 
corresponding process outcomes are to be generated. Larger training set would be good for validation 
of developed learning system over wide range of working conditions. In keeping with this idea, 
experiments are carried out in EDM machine and results are stored. Details of experimental set up, 
measurements of process outcomes and results are given below.  
 
3.2 Experimental set-up 
 
Experiments are carried out on Tool Craft A25 EDM machine (model no. G30/SD, serial no. 294-89) 
(figure 3.1) equipped with rectangular pulse generator operating with commercially available kerosene 
oil as dielectric medium and an open circuit voltage of 66 V. Specifications of EDM machine used for 
the experiment purpose are given table 3.1. 

 

 
Fig. 3.1 Tool Craft A25 EDM machine 

 
 
 
 
 
 
 
 
 
 
 
 



46 
 

Table 3.1 Specifications of EDM machine and accessories 
 

EDM machine 

Type of construction : 'C' type 
Size of worktable : 300 mm X 200 mm 
Size of fixed working chamber : 465 mm X 270 mm X 200 mm 
Table longitudinal movement : 175 mm 
Table cross movement : 100 mm 
Maximum dielectric level over table : 140 mm 
Maximum workpiece height : 90 mm 
Maximum workpiece weight : 45 kg 

 
Servo head 

Servo system : Stepper drive 
Quill travel : 150 mm 
Electrode platen size : 100 mm square 
Electrode weight carrying capacity : 10 kg 
Accuracy of quill movement : 0.01 mm over 200 mm 

 
Pulse generator  

Model : A25 
Shape of pulse : Square 
Peak current : Maximum 25 A through toggle switches 
Pulse on time : 2 µs to 2 ms 
Pulse off time : 2 µs to 2 ms 
Power source connection : 440 V, 50 Hz, 3 phase 

 
Dielectric system 

Dielectric : Commercially available kerosene oil 
Viscosity of dielectric : 5-6 cSt at 20oC 
Tank capacity : 160 litre 
Filtration : Better than 10 µm 
Flushing type : Side 
Flushing capacity : Maximum 1.23 litre/min 
Flash point : 37-67oC 

 
In the EDM machine, electric energy is supplied to the spark gap either in the form of voltage time 
standard pulse or current time "nal" pulse. Voltage time standard pulse is generally used for testing 
and finishing purposes. Actual power consumed in each discharge is almost constant and productivity 
is comparatively high for "nal" pulse. Thus, series of discrete rectangular pulses are generated by 
current time "nal" pulse for stable and precise machining operation. Servo sense potentiometer and 
servo feed potentiometer are set at particular positions throughout the experiment to have a stable 
machining condition with "anti-arc" switch on. 
 
Electrolytic copper rod (density 8904 kg/m3) with cross-sectional diameter of 12 mm is used as tool 
electrode. Standard high speed steel cutting tool, equivalent to M2 grade, is chosen as the workpiece 
material and connected to the negative terminal. Measured density of workpiece material is 8006 
kg/m3. Detailed specifications of workpiece and tool are given in tables 3.2 and 3.3 respectively.  
 

Table 3.2 Specifications of workpiece 
 

Size : 15.875 mm X 15.875 mm X 10 mm 
Material  : High speed steel, M2 grade (ZEDD) 
Composition : C - 0.95%, W - 6%, Mo - 5%, Cr - 4%, V - 2%, Fe - rest 
Density : 8006 kg/m3 
Hardness : 62-65 HRC 
Elastic modulus : 190-210 GPa 
Coefficient of thermal expansion : 10-12.5 µm/moC 
Thermal conductivity : 41.5 W/mK 
Melting point  4680 oC 
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Table 3.3 Specifications of tool 
 

Size : Φ12 mm X 15 mm 
Material  : Electrolytic copper 
Composition  99.99% Cu 
Density : 8904 kg/m3 
Elastic modulus : 110-128 GPa 
Coefficient of thermal expansion : 16.5 µm/mK 
Thermal conductivity : 401 W/m/K 
Electrical resistivity : 1.673 µΩ-cm at 20 oC 
Melting point  1085 oC 

 
Based on the availability of machine settings, four levels for each of the three most significant 
machining control parameters (refer table 3.4), namely current (cur), pulse on time (ton) and pulse off 
time (toff), are selected to operate the machining process in semi-finishing and roughing zones. 
 

Table 3.4 Levels of machining control parameters 
 

 Level 1 Level 2 Level 3 Level 4 

Current (A) 6 9 12 15 
Pulse on time (μs) 50 100 150 200 
Pulse off time (μs) 50 100 150 200 

 
Experiments are performed based on the procedure of full factorial design. Total 64 mutually 
exclusive treatments of different levels of three machining control parameters are set randomly to the 
EDM machine.  
 
3.3 Results and discussion 
 
Electric discharge machining process could be well characterized by two major responses – material 
removal rate (MRR) and average surface roughness (ASR). Representative models of MRR and ASR 
would meet both the quantitative and qualitative assessment of performance in EDM process. 
  
For the purpose of determining the material removal rate (MRR), weight of workpiece is taken at 
standard measuring balance (AFCOSET – ER182A) of least count 0.01 mg before (wbf) and after (waf) 
machining operation. Weight loss is then divided by the measured density of workpiece material (ρ) in 
order to convert it into volumetric term and is further divided by the actual cutting time (ct) to obtain 
the MRR in terms of mm3/min (equation 3.1).  
 

MRR (mm3/min) = 
wbf − waf

ct X ρ
                                                                                                               (3.1) 

 
Rate of tool lifting and releasing are set at particular positions in control panel of the pulse generator 
throughout the experiment. During each experimental run, tool idle time and working time are 
measured for depth of cut around 1 mm to 1.2 mm. It is found that on an average 71.8% of machining 
time is actually used for cutting operation. The typical machining time with lowest material removal 
rate is kept as 45 minute for a depth of 1.1 mm. It is observed that material removal rate varies from 
1.367 mm3/min at the combination of cur = 6 A, ton = 50 µs and toff = 200 µs to 28.099 mm3/min at the 
combination of cur = 15 A, ton = 200 µs and toff = 50 µs. 
 
Using Taylor Hobson Precision Surtronic 3+ Roughness Checker with stylus tip radius 5 µm, surface 
profiles of 4 mm length along three mutually 120o apart directions are measured on each of the 64 
generated surfaces. For measurement of surface profiles, cutoff length is 0.8 mm with Gaussian filter, 
horizontal magnification is 200X and vertical magnification is 2000X. The three surface profiles 
measured along three 120o apart directions on each of the 64 machined surfaces are considered as 
replications of that treatment. For 64 treatments, total 192 surface profiles (3 replications for each of 
the 64 treatments) are obtained. From each of the 192 surface profiles, roughness profile of 
evaluation length of 3.2 mm is separated and stored in image format.  
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For each of the roughness profiles, center line average surface roughness (Ra) value is noted. Mean 
of three such center line average surface roughness (Ra) values obtained from each of the machined 
surfaces is calculated and considered as the representative average surface roughness (ASR) of that 
machined surface.  
 
Variations of ASR with MRR are shown in figure 3.2. It is observed that ASR increases with the 
increase of MRR. Thus, to maintain the quality of machined surface productivity would be 
compromised. 
 

 
Fig. 3.2 Variations of ASR with MRR 

 
The values of average surface roughness (ASR) vary from 3.87 µm at the combination of cur = 6 A, 
ton = 200 µs and toff = 50 µs to 9.00 µm at the combination of cur = 15 A, ton = 200 µs and toff = 200 µs. 
The relative influences of machining control parameters and their interactions on MRR and ASR are 
estimated through analysis of variance of each of the MRR and the ASR. Percentage contributions of 
cur, ton, toff and their interactions are given in table 3.5. It is observed that effects of current on the 
variations of both MRR and ASR are sufficiently higher than the effects of pulse on time, pulse off time 
and their interactions. 
 

Table 3.5 Percentage contributions of cur, ton, toff and their interactions on MRR and ASR 
 

Machining control parameters 
and their interactions 

Process outcomes 

MRR ASR 

cur 56.3599 70.9923 
ton 12.6495 11.3290 
toff 19.7931 0.1466 
cur X ton  3.8533 8.2945 
cur X toff  6.6506 1.3949 
ton X toff  0.2797 4.5744 

Between treatments 98.5861 96.7317 

Within treatment 1.4139 3.2683 

 
Typical roughness profiles are shown in figure 3.3. In figures 3.3 (a) and (b), values of Ra are very 
close as 3.61 µm and 3.69 µm. Similarly, values of Ra in figures 3.3 (c) and (d) are very close as 9.76 
µm and 9.96 µm. Still, roughness profiles show different patterns and erratic fluctuations exist. Hence, 
it is understood that value of Ra is not sufficient to properly describe the features of machined 
surface. 
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(a) cur = 6 A, ton = 200 µs & toff = 150 µs (Ra = 3.61 µm) 
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(b) cur = 6 A, ton = 50 µs & toff = 50 µs (Ra = 3.69 µm) 
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(c) cur = 15 A, ton = 150 µs & toff = 100 µs (Ra = 9.76 µm) 
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(d) cur = 12 A, ton = 150 µs & toff = 50 µs (Ra = 9.96 µm) 
Fig. 3.3 Typical roughness profiles measured on machined surfaces 

 
Therefore, along with center line average surface roughness (Ra), few other measurements of surface 
roughness namely maximum peak to valley height over evaluation length (Rt), skewness of the 
distribution of profile heights (Rsk), kurtosis of the distribution of profile heights (Rku), root mean 
square of profile heights (Rrms), root mean square of slopes of profile (RΔq) and developed length of 
profile (RLo) are also taken. Variations of the six roughness parameters with corresponding values of 
Ra are shown in figure 3.4.  

 



 

5
0
 

 
Fig. 3.4 Variations of Rt, Rsk, Rku, RΔq, RLo and Rrms with Ra 
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In figure 3.4, it is observed that with almost same Ra value, values of Rt, Rsk, Rku, RΔq, RLo for 
different surfaces show large variations. Values of Rt lie within a large range of 22.3 µm and 76.3 µm. 
Most of the values of Rsk are close to zero (varies from -1.19 to 1.19) which indicates near 
symmetrical distribution of profile heights [190] and value of Rsk increases with the increase of Ra. 
Further, fourth order central moment of profile heights, that is Rku, varies from 2.03 to 6.54. Most of 
the Rku lie above 3 which indicates the presence of high randomness in profile heights [190]. 
Increasing patterns of both RΔq and RLo with the increment of Ra are observed. Surface having 
higher slope of profile (RΔq) attributes better retaining of lubricants [190] and large developed length 
of profile (RLo) suggests openness of machined surface [190].  
 
To obtain the percentage contributions of machining control parameters and their interactions on the 
roughness parameters (table 3.6), analysis of variance is performed on each of Rt, Rsk, Rku, RΔq, 
RLo and Rrms. From table 3.6, it is found that current has the most contributive effects on the 
variations of Rt, RΔq, RLo and Rrms. In case of Rsk and Rku, variations within treatment are much 
higher than variations between treatments. Therefore, presence of uncontrollable erratic fluctuations 
in profile heights is expected [210]. As, all the measurements of surface roughness are some 
algebraic treatment of profile heights measured at some specific locations, so, to understand the 
actual features of machined surface, scanning electron micrographs of machined surfaces are taken. 
 
Table 3.6 Percentage contributions of cur, ton, toff and their interactions on Rt, Rsk, Rku, RΔq, RLo and 

Rrms 
 

Machining control parameters 
and their interactions 

Process outcomes 

Rt Rsk Rku RΔq RLo Rrms 

cur 52.2921 22.0873  4.5336  43.0532  42.1082  65.2541  
ton 4.9448 9.9932  1.4083  2.0705  2.0660  9.8947  
toff 0.4673  1.5779  0.3414  0.1201  0.1850  0.1194  
cur X ton  3.4000  2.8350  6.7595  5.7138  3.5748  6.3114  
cur X toff  1.1185  3.9495  2.8919  3.5439  2.9544  1.3062  
ton X toff  2.7544  4.5445  3.0844  3.8414  5.1136  4.2758  
cur X ton X toff 7.1434  12.6187  14.9195  13.0179  11.5482  3.3473  

Between treatments 72.1205 57.6061 33.9386 71.3608 67.5502 90.5089 

Within treatment 27.8795  42.3939  66.0614  28.6392  32.4498  9.4911  
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3.3.1 Study of surface topography by SEM 
 
Scanning electron micrographs of typical machined surfaces are taken by JEOL JSM-6360 scanning 
electron microscope. Typical images of SEM are shown in figures 3.5 through 3.16. 
                  

  
 

(a) Ground surface before EDM 

 

 

(b) cur = 6 A, ton = 200 μs and toff = 200 μs 
 

  
 

(c) cur = 6 A, ton = 50 μs and toff = 200 μs 
 

(d) cur = 15 A, ton = 200 μs and toff = 200 μs 
Fig. 3.5 Obliteration of parent surface towards "random" texture patterns 

 
 

  
 

(a) cur = 6 A, ton = 50 μs and toff = 200μs 
 

(b) cur = 6 A, ton = 50 μs and toff = 200μs 
Fig. 3.6 Distribution of debris particles on machined surface 
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Fig. 3.7 Pinholes on machined surface 
(cur = 6 A, ton = 200 μs and toff = 200 μs) 

 

Fig. 3.8 Residual material at the rim of crater 
(cur = 6 A, ton = 200 μs and toff = 200 μs) 

 
 

  
 

(a) cur = 6 A, ton = 50 μs and toff = 200μs                
 

(b) cur = 6 A, ton = 50 μs and toff = 200μs 
Fig. 3.9 Violent explosion of molten material assisted with severe turbulence 

 
 

  
 

Fig. 3.10 Material exploded forming outward bend 
(cur = 6 A, ton = 200 μs and toff = 50 μs)       

 

Fig. 3.11 Material exploded forming inward bend 
(cur = 15 A, ton = 200 μs and toff = 200 μs) 
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Fig. 3.12 Normal crater with raised rim 
(cur = 6 A, ton = 200 μs and toff = 200 μs) 

 

Fig. 3.13 Crater with spilled pool of molten material 
(cur = 15 A, ton = 200 μs and toff = 200 μs) 

 
 

  
 

(a) cur = 6 A, ton = 200 μs and toff = 50 μs 
 

(b) cur = 6 A, ton = 200 μs and toff = 50 μs 
Fig. 3.14 Crater with frozen droplets inside 

 
 

  
 

(a) cur = 15 A, ton = 200 μs and toff = 200 μs 
 

(b) cur = 6 A, ton = 200 μs and toff = 200 μs 
Fig. 3.15 Micro-cracks 
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(a) cur = 6 A, ton = 200 μs and toff = 200 μs 
 

(b) cur = 6 A, ton = 200 μs and toff = 50 μs 
Fig. 3.16 Pock marks formed after bursting of blisters 

 
Scanning electron micrographs of EDM generated surface carries some typical features of machining 
process itself. In general, gradual obliteration of parent surface towards irregular pattern in surface 
texture is observed (figure 3.5). The "random" features of machined surface are due to superposition 
of debris particles (figure 3.6), pinholes (figure 3.7), different modes of molten material expulsion 
(figures 3.8 through 3.13), frozen droplets of molten material (figure 3.14), overlapping of craters, 
cracks (figures 3.6(a), 3.8, 3.10, 3.12, 3.14, 3.15, 3.16(a)). Presence of residual material at the rim of 
crater (figure 3.8) indicates ineffective violent expulsion associated with severe turbulence (figure 3.9).  
 
Detailed study of scanning electron micrographs suggests different possible modes and critical 
features of material removal. During each discharge, as dielectric starts to vaporize, plasma channel 
expands. This expansion of discharge channel generates huge pressure and expels the molten metal 
in the form of fin. Effectiveness of this expulsion depends on the available time before pressure starts 
falling due to heat dissipation to surroundings. If pressure starts decreasing before complete 
expulsion, crater with raised rim having outward bend is formed (figure 3.10). If discharge channel 
collapses and cavitation starts before complete expulsion, outgoing material is forced to move inside 
forming an inward bend (figure 3.11). Inward moving molten material is freezed and forms almost 
spherical droplets. The droplets either retain their attachment with parent surface encompassing the 
entire generated crater or are moved away by dielectric in the form of debris. Sub-surface boiling and 
bursting of blisters [30, 41, 211] also attribute to the formation of different types of fin at the rim of 
crater and formation of spherical droplets.   
 
However, it is obvious that formation of neat crater is a rare event. Craters surrounded by raised rim 
either with outward bend or with inward bend, craters with spilled pool and frozen droplets inside are 
frequently observed.  
 
Crack formation on EDM generated surface exhibits some typical features. Due to high temperature 
gradients, cycle of severe thermal stress is generated and network of fine micro-cracks is formed. 
Appearance of the micro-cracks looks like a draught affected land (figures 3.6(a) and 3.8). The micro-
cracks in many situations propagate perpendicular to surface but restricted to the thickness of 
resolidified layer (figure 3.15 (a)). Phase transformation of material adds transformational stress to 
existing one and makes the situation more adverse. Apart from this type of micro-cracks, radial cracks 
(figure 3.10 and 3.15 (b)) are also generated from pock marks formed by bursting of blisters. As a 
product of pyrolysis, hydrogen gas is generated. Solubility of hydrogen decreases with temperature 
and resolidified layer is super saturated even at ambient temperature with very high equilibrium 
pressure. When this equilibrium pressure crosses the failure stress, bursting of blisters happens, pock 
marks are formed (figure 3.16) and crack propagates radially. Almost all the above features are 
matched with the propositions made by Murti and Philip [194], Jeswani and Basu [195]. Study of 
scanning electron micrographs, therefore, indicates the presence of different irregular features of 
surface generation in EDM process. 
 
 
 
 



56 
 

3.4 Summary 
 
From experimental results following conclusions are drawn. 
 

 Current exhibits strong influences on the variations of MRR, ASR, Rt, RΔq, RLo and Rrms.  
 

 Effects of the variations within treatments on Rsk and Rku are comparatively larger than the 
effects of variations between treatments indicating the presence of uncontrollable erratic 
fluctuations in profile heights.   

 

 Fluctuations in MRR and ASR demand such modeling techniques that can absorb the 
irregular fluctuations in robust way. 

 

 As, MRR increases, surface finish decreases, so a tradeoff, that is Pareto optimal, should 
exist. 

 

 Values of Rku indicate the presence of high randomness in the distribution of profile heights 
of machined surface. 

 

 Scanning electron micrographs exhibit complex patterns, irregular variations and overall 
random features of machined surface. 

 
Thus, for near-accurate prediction, models of process outcomes like MRR and ASR are to be 
developed by such method that is capable of capturing uncontrollable fluctuations in robust way. The 
representative models would be used to search Pareto optimum combinations of MRR and ASR. 
Further, assessment of surface topography by some advanced techniques is necessary to comment 
on surface generation process in logical way.   

  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER 4 

 
 

MODELING OF EDM PROCESS BY SVM REGRESSION 
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4.1 Introduction 
 
At the end of chapter 2, two measurable process outcomes, MRR and ASR, are considered for 
development of representative models of EDM process. Sequence diagram for modeling of EDM 
process is shown on figure 4.1 in next page. After experimentation, uncontrollable fluctuations in MRR 
and ASR at different combinations of levels of control parameters are observed. As a consequence, 
predictability of each of the performances becomes very low. Though, number of approaches are 
taken by the researchers, still, searching of robust modeling method is persuaded by process 
engineers. Advanced structural risk minimization [144] learning based system, support vector 
machine (SVM) regression, would be effective in such situation. A meaningful physical significance of 
the insensitive zone of learned system provides a space to allow the tolerances on uncontrollable 
variations in EDM process. Besides, the insensitive zone of SVM regression absorbs the small scale 
irregular fluctuations appeared in responses. It is beneficial for other researchers to apply the models 
on different products obtained in different batches. 
 
Suppose, with a key assumption of disjoint, independent and identical distributed data set {(x1, y1), (x2, 
y2), .…… (xN, yN)}, model is to be developed in d dimensional input space (i.e. x Є Rd). Nonlinearity in 
the relation between input and output pattern is handled through mapping the high dimensional input 
space to a feature space Φ(x) via kernel functions. Here, an insensitive zone wrapped around the 
estimated function is improvised. This zone captures the fluctuations within permissible tolerances 
specified with process outcome. Thereby, radius of this hyper tube directly controls the allowable 
complexity of the learning system. Detailed discussion on SVM regression [144-150] is given in 
appendix A.1. However, the final model with optimum choice of internal structural parameters namely, 
C, ε and σ, may be presented as [146] 
 

f(x) = ∑ (αi −  αi
∗)N

i=1  K (xi, x) + b   

                                                                                                 

 
C optimum 
ε optimum 
σ optimum 

 
 
 

(4.1) 
                              

 with K (xi, x) = e
− 

‖xi−𝒙‖
2

2σ2  

 
 
σ optimum 

 

                              
In the present chapter, independent explicit SVM regression based learning system for each of the 
MRR and the ASR is developed. For robust modeling, controlling of internal structural parameters is 
necessary. Therefore, to develop optimal learning system, internal structural parameters namely 
regularization parameter (C), radius of loss insensitive hyper-tube (ε) and standard deviation of 
Gaussian radial basis function (σ) chosen as kernel function (K (xi, x)) for SVM regression are to be 
properly tuned. One of the nature inspired advanced evolutionary metaheuristic optimization 
algorithm, particle swarm optimization (PSO), is employed for tuning of the three internal structural 
parameters. Teaching learning based optimization (TLBO) procedure is next applied for tuning of the 
three internal structural parameters of SVM regression in quest of reduction of the computational time. 
A comparison is then made between two procedures. A unified learning system is then developed 
using modified TLBO for concurrent predictions of MRR and ASR.  
 
4.2 Modeling by modified PSO assisted SVM regression 
 
For the development of robust virtual data generator, above mentioned three internal structural 
parameters, C, ε and σ, are to be optimally tuned. With the different sets of C, ε and σ, different 
learning systems are developed. Using PSO, such combination of C, ε and σ is searched which would 
give minimum training error. For the purpose of model building through SVM regression learning 
system, 54 data sets are taken randomly for training. Fitted models are tested through rest 10 sets of 
data.  



 

6
0

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.1 Sequence diagram for proposed modeling of EDM process 

Step 1 
Measurement of MRR and ASR 

 

Modified TLBO is more computationally efficient than modified PSO  

 

Tuning of C, ε and σ for building SVM 
regression based learning systems for 

predictions of MRR and ASR by modified PSO  

 

Simultaneous tuning of C, ε and σ to build SVM 
based unified learning system for concurrent 

predictions of MRR and ASR by modified TLBO  

 

Set internal parameters of modified PSO 
namely number of particles in swarm, 
inertia & weight factors, cognitive & 

social acceleration coefficients 

 

Tuning of C, ε and σ for building SVM 
regression based learning systems for 

predictions of MRR and ASR by modified TLBO  

 

Termination criterion  
Values of SR ratio along all 

dimensions (C, ε and σ) go below 
5% in last consecutive 5 iterations  

 

Objective function  
Mean absolute training error (MATE) 

in prediction of MRR and ASR  

 

Weight combining method for 
selection of the guide for next iteration 
in case of multiple settings have same 

minimum objective function value 

 

Step 3 
Unified learning 

system development 
using modified TLBO 

Step 2.2 
Modeling by modified TLBO 

assisted SVM regression 

Objective function  
Mean absolute training error (MATE) 

in prediction of MRR and ASR  

 

Termination criterion  
Values of SR ratio along all dimensions (C, ε and 
σ) go below 5% in last consecutive 5 iterations  

 

Combined rank method for 
simultaneous optimization of 
multiple objective functions 

 

Weight combining method for selection of the 
guide for next iteration in case of multiple settings 

have same minimum objective function value 

 

Step 2.1 
Modeling by modified PSO 
assisted SVM regression 

Step 2 
Modeling based on SVM regression 

 

Comparison between modified PSO and modified TLBO for tuning of C, ε and σ 
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4.2.1 Marching procedure and results 
 
Training of experimental results with proper internal structural parameters of SVM regression (C, ε 
and σ) is necessary to get a near-exact representation of the process. So, the three internal structural 
parameters should be optimally tuned. Here, PSO with certain modifications is employed for this 
tuning operation. 
 
Particle swarm optimization is an advanced evolutionary computational intelligence based stochastic 
optimization method for optimizing real world multimodal problems. Kennedy and Eberhart [178] 
proposed PSO, mimicking the natural behaviors found especially in flock of birds or school of fish for 
seeking their best food sources. In PSO algorithm, set of initial position and velocity vectors are to be 
randomly generated, inertia factor, constriction factor, social and cognitive acceleration coefficients 
need to be logically updated for better local exploitation and global exploration in searching operation. 
Detailed discussion on PSO [178, 212 - 217] is given in appendix A.2. For improvement of the 
performance of PSO, number of modifications in estimating the internal parameters is done by 
theoretical analysis, mathematical inference and empirical research. Different sets of C, ε and σ, 
reshape the learning system and modified PSO is employed to search optimum internal structural 
parameter setting that would train the experimental results with minimum training error. With optimum 
set of C, ε and σ, a set of Lagrange multipliers is calculated and thus model of each of the responses, 
MRR and ASR, is estimated using equation (4.1).  
 
Searching techniques should be robust to get a general result. Wide range of search space may be a 
good choice but irrelevant movement would take lot of time to converge. So, searching ranges of C, ε 
and σ should be logically chosen. Actually, the regularization parameter C should lie within the 
response values. Thus, range of experimental values of the corresponding response parameter might 
be a robust reasonable choice for searching range of C.  
 
(MRRexp)min ≤ CMRR ≤ (MRRexp)max 
(ASRexp)min ≤ CASR ≤ (ASRexp)max                                                                                                         (4.2) 
 
Besides, searching ranges of ε and σ are chosen as [150, 218] 
 

ε = [
y̅

30

, y̅

10
] and σ = [(0.1)1/z, (0.5)1/z]                                                                                                  (4.3) 

 
Here, z indicates number of most influencing attributes in the process. In EDM it is 3, namely, current 
(cur), pulse on time (ton) and pulse off time (toff). Using equations (4.2) & (4.3), searching ranges of C, 
ε and σ are calculated (table 4.1). 
 

Table 4.1 Searching ranges of internal structural parameters (C, ε and σ) of SVM regression 
 

Internal structural parameters 
of SVM regression 

Material  
removal rate 

Average surface 
roughness 

C (1.3666, 28.0986) (3.87, 9.00) 
Ε (0.3682, 1.1045) (0.2127, 0.6380) 
Σ (0.4642, 0.7937) 

 
For better implementation of this estimated search range it was suggested [150, 218] to normalize the 
training inputs within the range [0, 1]. So, the chosen machining control parameters of EDM process, 
current, pulse on time and pulse off time, are normalized using the following formulae. 
 

x1,norm = 
cur − 6

15 − 6
 ; x2,norm = 

ton− 50

200 − 50
 ; x3,norm = 

toff  − 50

200 − 50
                                                                        (4.4) 

 
Choice of internal structural parameters, C, ε and σ, changes the values of Lagrange multipliers and 
thus shape of the prediction model changes. Best model should be selected for near-accurate 
estimation of responses. Chance of generalization error is reduced in SVM regression learning and 
internal parameters must be tuned in such a fashion as to reduce the training error in learning 
process. Thereby, in this study, mean absolute training error (MATE) in prediction of each of the 
process responses, MRR and ASR, is chosen as objective function.  
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MATE (%) = 
100

N
 ∑ |

yi,experimental− yi,estimated

yi,experimental
|N

i=1                                                                            (4.5) 

 
Minimization of MATE is carried out for selection of three internal structural parameters of SVM 
regression. In the marching steps for optimization of MATE, different combinations of C, ε and σ 
change the values of Lagrange multipliers. Subsequently, learning system is getting reshaped, 
responses are predicted and MATE is evaluated using equation (4.5). Here, this optimization is 
performed by particle swarm optimization. 
 
Though, PSO is a evolutionary population based metaheuristic optimization technique, still, to get this 
benefit in optimizing any non-linear high-dimensional objective function, termination criteria should be 
logically defined. In most of the optimization techniques, a termination criterion is defined by the 
maximum number of iterations or change in objective function value below a predefined margin. 
When, optimizing a new objective function, it is very difficult to know earlier the required number of 
iterations to meet a certain target. Even to attain certain accuracy, change in objective function values 
may vary due to their different scale range. In some cases, attainable optimum objective function 
value is difficult to predict earlier. As such, a general termination criterion is required to propose for 
population based searching techniques. In the present work, a general meaningful criterion is 
suggested based on spread of population relative to searching ranges in different dimensions that is 
spread-range (SR) ratio defined as a ratio of standard deviation of population (std) to span of 
searching range (Rng) (expressed in %).  
 

SR ratio (%) = 100 X 
std

Rng
                                                                                                                   (4.6) 

 
Thereby, simulation will be stopped when this SR ratio along each of the dimensions of input 
parameters simultaneously goes down below a predefined limit. Here, this limit is chosen as 5% that 
is termination of searching operation would be flagged on when SR ratio along C, ε and σ dimensions 
simultaneously drop below 5%.   
 
Metaheuristic techniques are marched to the global optimum with some randomly generated 
probabilistic logical movement. Whatever might be the termination criterion that is considered, if 
simulation is stopped by watching that the specific user defined measurement just reaches below a 
certain value in any iteration, then, it may be erroneous. Simulation should be allowed for a few more 
iterations to finally freeze down below that specified limit. In the present work, termination criteria is 
defined by SR ratio of latest population along each of the three dimensions, C, ε and σ and simulation 
is terminated when values of SR ratio along all three dimensions (C, ε and σ) satisfy the termination 
criteria that is go below 5% in last consecutive 5 iterations. 
 
In case of population based optimization technique, a widely spread initial population must be assured 
for better exploration in the whole searching range. As discussed earlier, a proposal has been raised 
to consider latest population based termination criteria that is SR ratio of the latest population along 
each dimension, so, initial SR ratio of the population must have high value along all of the three 
dimensions to ensure proper exploration of the search space.  
 
In the present study, number of particles in swarm (n) is chosen as 20. In PSO, a widely dispersed set 
of particles is good for better exploitation and exploration of searching algorithm. Thus, initial position 
vectors of 20 particles along three dimensions, C, ε and σ, are randomly generated within specified 
search space (table 4.1) with more than 40% SR ratio (refer table D.3). Velocity vectors are also 
randomly generated (refer table D.4) with absolute value lies within their respective range of 
searching space. Inertia factor (ω) influences the degree of maintaining original velocity and 
constriction factor (ψ) affects the convergence of PSO. Here, linear variation of inertia factor and 
constriction factor are considered in the range [0.9, 0.4] [216]. Cognitive (cog) and social (soc) 
acceleration coefficients both vary linearly within same range [2.5, 0.5] but in opposite order [217].  
 
In most of the published studies of different population based optimization algorithms [171], it is 
reported that the best one of the latest population works as the guide for next iteration e.g. pbest and 
gbest in PSO. The best one is chosen with either minimum or maximum objective function value. 
However, if more than one best setting in the population with same minimum or maximum objective 
function value are found, then, confusion will come to choose only one among all those best settings. 
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Improper choice of the best may guide the following iterations in wrong way and finally might be 
trapped inside any local optimum. In the present work, a simple methodology, namely weight 
combining method, is proposed to avoid this condition. A weighted combination of all the best settings 
should be evaluated which either having lower objective function than the second best (for first 
iteration) or lower (higher for maximization) than the objective function value of the best setting in 
immediate last iteration. Say, in case of minimization of a two-variable objective function within search 
space ([0, 20], [0, 20]), at any iteration two particles (13.4, 2.3) and (6.6, 17.7) score same minimum 
value 70.85. Minimum score at last iteration was 73.45. Now, it is required to choose the guide among 
the two particles for next iteration. No such clear guidance is reported till now to choose the right one 
among the two. Here, a weighted combination of the two particles along their corresponding 
dimensions is calculated. Randomly two weights (rw1, rw2) are generated between (0, 1) such that rw1 
+ rw2 = 1. A new particle is evoluted as (rw1 X 13.4 + rw2 X 6.6, rw1 X 2.3 + rw2 X 17.7). For rw1 = 0.3 
and rw2 = 0.7, new particle would be (8.64, 13.08) which scores 11.34.  New evoluted particle scores 
less than the minimum score at last iteration (73.45) (in case of first iteration, comparison would be 
done with second minimum). This particle (8.64, 13.08) would be the guide for next iteration otherwise 
the steps are repeated with another random set of weights (rw1, rw2) till the condition is fulfilled. 
However, there is no need to update current population with this evaluated guide. This proposition is 
expected to be effective to avoid ambiguity to choose the right optimum at any iteration. For selecting 
pbest and gbest in case of multiple particles have same minimum objective function value, above 
proposed methodology is incorporated in the present modified PSO algorithm. 
 
Adapting all the above mentioned modifications over standard PSO algorithm, simulation steps for 
searching optimum sets of C, ε and σ by minimization of MATEs in estimation of MRR and ASR 
separately are discussed as follows. 
 
Step 1 : Set n = 20, ωinitial = 0.9, ωfinal = 0.4, coginitial = 2.5, cogfinal = 0.5, socinitial = 0.5, socfinal = 

2.5, ψinitial = 0.9, ψfinal = 0.4 and termination criteria as SR ratio along each dimension ≤ 
5% for consecutive 5 iterations. 
 

Step 2 : Set itermax = 250. Randomly initialize the position of 20 particles that is 20 sets of initial 
combination of C, ε and σ with SR ratio along each of the three dimensions > 40% within 
search space (table 4.1). Initialize velocity vectors corresponding to each of the 20 
particles. Absolute value of each of the velocity vectors should lie within the range of 
respective search space. 
 

Step 3 : Set iter = 1. Current position of ith particle is set to the pi
best. Go to step 5.    

 
Step 4 : Calculate MATE for each of the 20 particles. If the current position of ith particle has 

lower objective function value (MATE) than the already selected pi
best, then, replace the 

pi
best with new position of ith particle, otherwise, pi

best is kept unaltered. 
 

Step 5 : Identify the particle having minimum MATE and set the corresponding particle as gbest. If 
number of particles having same minimum MATE, then, go to step 6, otherwise, go to 
step 7. 
 

Step 6 : Particles having same minimum objective function value, are identified and make a 
weighted combination of those such that the new evaluated particle must score lower 
than either the second minimum objective function value at current set of particles 
(applicable only for first iteration) or the minimum objective function value gained at last 
iteration. The new evaluated particle is selected as gbest. 
 

Step 7 : Calculate SR ratio along all three dimensions C, ε and σ. Store the maximum among the 
three SR ratio values in a separate matrix called “DECISION”. If iter < 5, go to step 10, 
otherwise, go to step 8. 
 

Step 8 : If the maximum of last five consecutive entries in matrix “DECISION” contains SR ratio 
values is lower than 5%, then, current gbest would be declared as the optimum setting of 
C, ε and σ, stop the simulation and minimum achievable MATE in estimation of 
response is calculated with the obtained optimum set of C, ε and σ, otherwise, go to 
step 9.     
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Step 9 : If iter = itermax, then, go to step 2, restart the simulation with higher itermax, otherwise, go 
to step 10.        
 

Step 10 : Evaluate the dynamic internal parameters as  
 

ωiter = ωinitial + 
(ωfinal  − ωinitial)

(itermax  −1)
 (iter – 1)                                                                 (4.7)                 

cogiter = coginitial + 
(cogfinal  − coginitial)

(itermax  −1)
 (iter – 1)                                                     (4.8) 

sociter = socinitial + 
(socfinal  − socinitial)

(itermax  −1)
 (iter – 1)                                                      (4.9) 

ψiter = ψinitial + 
(ψfinal  − ψinitial)

(itermax −1)
 (iter – 1)                                                                 (4.10) 

 
Step 11 : Calculate velocity vector as  

 
vk

iter+1, d = ωk
iter vk

iter + cogiter (rand) (pk
best,d - xk

d) + sociter (rand) (gbest, d - xk
iter, d),   

                                                                             k = 1(1)n  and d = 1(1)3               (4.11) 
 

Step 12 : Update velocity corrected position vector as  
 
xk

iter+1, d = xk
iter, d + cfiter vk

iter+1, d,     k = 1(1)n  and d = 1(1)3                                        (4.12) 
 
Set iter = iter + 1 and go to step 4. 

 
Therefore, latest gbest is selected as optimum settings of C, ε and σ. With the optimum settings of C, ε 
and σ, set of Lagrange multipliers is calculated and thus the model of the corresponding response 
could be represented by equation (4.1). Using this equation, estimated response parameter value is 
calculated and finally achieved training error (MATE) is determined. The above mentioned steps for 
tuning of internal structural parameters of SVM regression, C, ε and σ, by modified PSO and thereby 
for prediction of MRR and ASR separately are coded in the platform of MATLAB. 
 
Now, using the above said PSO algorithm adapted with all discussed modifications, training errors in 
prediction of MRR and ASR (refer equation (4.5)) are minimized separately for different settings of C, 
ε and σ. As the simulation marches, with different values of C, ε and σ, shape of estimated model of 
each response is getting modified and training error is changed. Finally, the optimum settings of C, ε 
and σ within the specified searching range (refer table 4.1) with minimum mean absolute training error 
(MATE) in estimation of MRR and ASR separately are found and reported in table 4.2.  
  

Table 4.2 Results of tuning internal structural parameters of SVM regression by modified PSO 
 

Response 

Optimum internal structural 
parameters of SVM regression Simulation 

time (s) 

No. of 
support 
vectors 

bias 
Performance 

C ε σ 
MATE 

(%) 
r2 

MRR 28.0969 0.3699 0.4642 10338.9618 41 0 5.55 0.9869 
ASR 9.00 0.2127 0.4642 15160.9776 41 0 3.76 0.9622 

 
Optimum values of C for both of the MRR and ASR are shifted towards the upper end of search 
space. This indicates the complexity of the model which is in favor of the stochastic behavior of EDM 
process. The random fluctuations could be controlled by proper choice of ε. Here, lower values of ε for 
both of MRR and ASR indicate that the complex models could be able to absorb the random 
variations adequately. Besides, small σ values for both MRR and ASR indicate that oscillatory 
patterns in outputs outside the insensitive zones are properly entrapped.  
 
With the simulated results of C, ε and σ listed in table 4.2, set of Lagrange multipliers (αi, αi*) are 
calculated (refer table D.5) and estimated models of MRR and ASR are as follows. 
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MRR: f(x) = ∑ (αi − αi
∗)N

i=1  K (xi, x) + b   
 

 
C = 28.0969 
ε = 0.3699 
σ = 0.4642     

 
 
 

(4.13) 
 
 

with K (xi, x) = e
− 

‖xi−𝒙‖
2

2σ2  

 
 
σ = 0.4642     

 

 
 
ASR: f(x) = ∑ (αi − αi

∗)N
i=1  K (xi, x) + b   

 

 
C = 9.0000 
ε = 0.2127 
σ = 0.4642     

 
 
 

(4.14) 
 
 

with K (xi, x) = e
− 

‖xi−𝒙‖
2

2σ2  

 
 
σ = 0.4642     

 

 
Marching steps for optimum selection of C, ε and σ in estimation of MRR and ASR separately are 
given in the following flow chart (figure 4.2). Gradual decaying pattern of MATE in estimation of MRR 
and ASR are represented in figures 4.3 through 4.6. 
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Fig. 4.2 Detailed steps in modeling by modified PSO assisted SVM regression 
 

Consider MATE in estimation of 
response as objective function 

(equation (4.5)) 

Normalize the control 
parameters – cur, ton 

and toff using equation 
(4.4) 

Stop simulation and latest 
gbest is declared as the 

optimum setting of C, ε and σ  

Calculate searching 
ranges of C, ε, σ using 
equation (4.2) & (3.3) 

(refer table 4.1) 

If termination 
criterion is 
satisfied 

Calculate objective function 
values for current set of particles 

(C, ε and σ) in estimation of 
response using equation (4.5) 

Within search space, 
randomly generate position 
vectors of 20 particles (table 

D.1) with SR ratio along 
each dimension > 40%  

 

Find pbest of individual 
particle and gbest for the 

current swarm 

Calculate SR ratios along 
all dimensions (C, ε and σ) 

(equation (4.6)) 

Set termination criterion 
as SR ratio along all 
dimensions < 10% in 

consecutive 5 iterations 

 Set n = 20, itermax = 250, ωinitial 
= 0.9, ωfinal = 0.4, coginitial = 
2.5, cogfinal = 0.5, socinitial = 

0.5, socfinal = 2.5, ψinitial = 0.9, 
ψfinal = 0.4 and iter = 1  

 

Randomly generate velocity 
vectors of 20 particles (table D.2) 

with absolute value lies within 
their respective searching spaces   

 

Calculate dynamic internal 
parameters – ω, ψ, cog 
and soc (equation (4.7) 

through (4.10)) 

Update velocity vectors 
(equation (4.11)) and 

velocity corrected position 
vectors (equation (4.12)) 

If  
iter = itermax 

Restart the simulation 
with higher itermax 

iter = iter + 1 
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    Fig. 4.3 Marching steps to minimize MATE in estimation of MRR with C, ε and σ tuned by modified 

PSO 
 

 
Fig. 4.4 Changes of SR ratios along C, ε and σ tuned by modified PSO to minimize MATE in 

estimation of MRR 
 

 
Fig. 4.5 Marching steps to minimize MATE in estimation of ASR with C, ε and σ tuned by modified 

PSO 
 



67 
 

 
Fig. 4.6 Changes of SR ratios along C, ε and σ tuned by modified PSO to minimize MATE in 

estimation of ASR 
 
In case of minimizing MATE in estimation of MRR, relative to C and σ, the effect of ε is lower, as SR 
ratio for ε decreases at a faster rate than that of C and σ (figure 4.4). Whereas, all three parameters, 
C, ε and σ, influence the model of ASR to almost same pattern (figure 4.6). 
 
Though, the higher values of coefficient of determinations, r2 (refer table 4.2), indicate the high 
correlation between experimental and estimated response values from the trained models (equations 
(4.13) & (4.14)), still, testing of the models with separate data sets from training sets is necessary for 
using the models as representatives of the EDM process outcomes.         
         
4.2.2 Testing of estimated models  
 
Trained models of MRR and ASR, equations (4.13) & (4.14), are tested with 10 disjoint data sets 
obtained from separate follow up experimental runs.  
 

Table 4.3 Testing of estimated MRR model with C, ε and σ tuned by modified PSO 
 

Sl. 
no. 

Machining condition Material removal rate 

cur  
(A) 

ton  
(μs) 

toff  
(μs) 

Experimental 
(mm3/min) 

Estimated 
(mm3/min) 

Absolute 
error (%) 

1 6 100 50 5.48126 5.20270 5.08 

2 6 100 200 2.25924 2.43427 7.75 

3 6 200 150 4.56557 4.76071 4.27 

4 9 100 100 9.13364 8.60190 5.82 

5 9 150 50 13.50951 12.67906 6.15 

6 9 200 100 10.48887 10.32156 1.60 

7 12 50 50 14.41525 15.38597 6.73 

8 12 150 200 11.36906 11.38677 0.16 

9 15 100 100 18.06487 16.61805 8.01 

10 15 150 50 24.95816 25.57226 2.46 

Mean absolute testing error (%) 4.80 
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Table 4.4 Testing of estimated ASR model with C, ε and σ tuned by modified PSO 
 

Sl. 
no. 

Machining condition Average surface roughness 

cur  
(A) 

ton  
(μs) 

toff  
(μs) 

Experimental 
(μm) 

Estimated 
(μm) 

Absolute 
error (%) 

1 6 100 50 4.61 4.44 3.69 

2 6 100 200 5.05 4.95 1.98 

3 6 200 150 4.21 4.27 1.43 

4 9 100 100 5.79 6.03 4.15 

5 9 150 50 6.95 6.66 4.17 

6 9 200 100 6.22 6.47 4.02 

7 12 50 50 5.98 6.23 4.18 

8 12 150 200 7.35 7.62 3.67 

9 15 100 100 7.48 7.23 3.34 

10 15 150 50 8.49 8.31 2.12 

Mean absolute testing error (%) 3.27 

 
Mean absolute testing errors (table 4.3 and 4.4) for both MRR (4.80%) and ASR (3.27%) indicate the 
practical adequacy of the models in their experimental ranges. 
 
With the aid of modified PSO, internal structural parameters of SVM regression based learning 
system are tuned in optimal way and prediction of MRR and ASR from developed learning systems 
are fair. Still, few drawbacks exist for practical use of developed learning system.  
 
It is observed that, internal parameters of PSO namely inertia factor, weight factor, cognitive and 
social acceleration coefficients are decided before starting of optimization process. Selection of such 
internal parameters is crucial for final result. Even, improper selection not only consumes more 
simulation time, but global optimum could not be reached. Simulation time for developing each 
independent model is in the order of 104 second which is very high for developing a system with new 
set of experimental results. Therefore, need of fast and global algorithm-specific parameter-less 
optimization algorithm is evident. Teaching learning based optimization algorithm (TLBO) [184] may 
be effective in this regard.     
 
4.3 Modeling by modified TLBO assisted SVM regression 
 
From the ideology of teaching-learning process, a evolutionary metaheuristic algorithm-specific 
parameter-less optimization algorithm, teaching learning based optimization (TLBO), is developed 
[184]. Though, no such internal parameters are required to fix in TLBO before simulation starts, yet, 
two crucial conflicting aspects of a metaheuristic algorithm, namely intensification and diversification 
are successfully achieved in it. Exploration of the search space is done in learner phase whereas, 
teaching phase does the exploitation. Detailed discussion on TLBO [184, 219, 220] is given in 
appendix A.3. In searching of optimum sets of internal structural parameters of SVM regression, C, ε 
and σ, MATEs in estimation of process outcomes, MRR and ASR, are minimized separately by 
modified TLBO. Some modifications as discussed in subsection 4.2.1, namely population based 
termination criterion, initialize population with high dispersion and way of choosing guide in case of 
multiple best particles performing same score, are further adapted for more smoothing convergence.  
 
4.3.1 Marching procedure and results 
 
Searching ranges of C, ε and σ are kept same as in subsection 4.2.1 (refer table 4.1). Training input 
vectors that is machining control parameters of EDM (cur, ton and toff) are normalized using equation 
(4.4). Mean absolute training errors (MATE, refer equation (4.5)) in estimation of MRR and ASR are 
separately considered as objective functions for searching optimum sets of C, ε and σ. With the 
corresponding training vectors and optimum set of C, ε and σ, set of Lagrange multipliers could be 
evaluated for each of MRR and ASR. Estimated models of MRR and ASR would be constructed 
separately using the sets of Lagrange multipliers.  
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Termination criterion for stopping the searching operation is defined by suggested SR ratio (refer 
equation (4.6)). Simulation will be terminated when all of the SR ratio values along three dimensions, 
C, ε and σ, simultaneously go below 5%. After crossing this limit (SR ratio along each dimension < 
5%), searching of global optimum is further continued for 5 more iterations for better assurance in 
freezing of simulation process.  
 
In TLBO, a widely dispersed set of particles is good for better exploitation and exploration of 
searching algorithm. In the present work, considering initial SR ratio as at least 40% along each 
direction, a set of 20 learners are randomly generated within specified search space (refer table 4.1). 
For maintaining the repeatability of the simulation steps, initial learners are given in table D.6. 
 
In every step of iteration, with different sets of learners that is sets of C, ε and σ, shapes of trained 
model change. Teacher for any iteration is selected as that set of C, ε and σ having lowest training 
error (MATE) value. Delivering capability of teacher is controlled by adapting a teaching factor 
evaluated from the latest condition of the students in the population. Here, teaching factor is modified 
as a ratio of mean of the values of learners to the value of teacher of latest population [220], instead 
of any randomly chosen integer either 1 or 2 [219]. This adaptive teaching factor aids in converging 
the simulation with lesser time. 
 
A easy way of selecting teacher for next iteration in case of multiple learners have same minimum 
score, weight combining method, as proposed in subsection 4.2.1, is also incorporated in the present 
modified TLBO algorithm.  
 
Adapting all the above mentioned modifications, simulation steps of modified TLBO for searching 
optimum sets of C, ε and σ by minimization of MATEs in estimation of MRR and ASR separately are 
discussed as follows. 
 
Step 1 : Set number of learners (n) = 20 and termination criteria as SR ratio along each 

dimension ≤ 5% for consecutive 5 iterations. Randomly initialize the position of 20 
learners that is 20 sets of initial combination of C, ε and σ with SR ratio along each of the 
three dimensions > 40% within search space (refer table 4.1).  
 

Step 2 : Set itermax = 250 and iter = 1.       
          

Step 3 : Calculate mean of all the learners and evaluate score of the individual learner that is 
objective function value (refer equation (4.5)) for each of the 20 sets of C, ε and σ. 
Identify the minimum objective function value and set the corresponding learner as 
current teacher. If multiple learners have same minimum score, then, go to step 4 
otherwise go to step 5.   
 

Step 4 : Learners having same minimum score, are identified and make a weighted combination 
of those such that the new evaluated learner must score lower than either the second 
minimum score at current set of learners (applicable only for first iteration) or the 
minimum score gained at last iteration. The new evaluated learner is selected as teacher.   
 

Step 5 : Calculate adapted teaching factor (TF) as 
 

TFiter, d = 
CMiter,d

CTiter,d
,     d = 1(1)3                                                                                     (4.15) 

 
With calculated adaptive teaching factor, evaluate new values of learners according to 
the following relation. 
 
xk

new, d = xk
iter, d + rand X (CTiter, d – TFiter, d X CMiter, d),     k = 1(1)n  and d = 1(1)3      (4.16) 

 
If score of each of the new evaluated learners is lower than its corresponding earlier 
score before this modification, then, replace the old value with new one otherwise old 
learner is kept unaltered.  
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Step 6 : For each of the learners (xnew), choose another learner randomly (xr
new). If score of this 

randomly chosen learner is lower or higher than that of current learner, then, update the 
current learner as follows otherwise it is kept unaltered.  
 
Lower : xk

iter+1, d = xk
new, d + rand X (xk

new, d – xr
new, d) 

 
Higher : xk

iter+1, d = xk
new, d + rand X (xr

new, d – xk
new, d),     k = 1(1)n, d = 1(1)3     (4.17) 

     
Step 7 : Calculate SR ratio along all three dimensions C, ε and σ. Store the maximum among the 

three values of SR ratio in a separate matrix called “DECISION”. If iter < 5, set iter = iter 
+ 1 and go to step 3, otherwise, go to step 8. 
 

Step 8 : If the maximum of last five consecutive entries in matrix “DECISION” contains SR ratio 
values is lower than 5%, then, current teacher of the learners would be declared as the 
optimum setting of C, ε and σ, stop the simulation and minimum achievable MATE in 
estimation of response is calculated with obtained optimum set of C, ε and σ, otherwise, 
go to step 9.  
 

Step 9 : If iter = itermax, then, go to step 2, restart the simulation with higher itermax, otherwise, iter 
= iter + 1, go to step 3. 

 
Therefore, latest teacher is selected as optimum settings of C, ε and σ. With the optimum settings of 
C, ε and σ, set of Lagrange multipliers is calculated and thus the model of the corresponding 
response could be represented by equation (4.1). Using this equation, value of response parameter is 
estimated and finally achieved training error (MATE) is determined. The above mentioned steps for 
tuning of internal structural parameters of SVM regression, C, ε and σ, by modified TLBO and thereby 
for prediction of MRR and ASR separately are coded in the platform of MATLAB. Simulated results 
and some performance measurements are given in table 4.5.  

 
Table 4.5 Results of tuning internal structural parameters of SVM regression by modified TLBO 

 

Response 

Optimum internal structural 
parameters of SVM regression Simulation 

time (s) 

No. of 
support 
vectors 

bias 
Performance 

C ε σ 
MATE 

(%) 
r2 

MRR 28.0986 0.3968 0.4642 323.5959 41 0 5.55 0.9867 
ASR 9.00 0.2127 0.4642 303.9827 41 0 3.76 0.9622 

 
Optimum values of C for both of the MRR and ASR are shifted towards the upper end of search 
space. This indicates the complexity of the model which is in favor of the stochastic behavior of EDM 
process. The random fluctuations could be controlled by proper choice of ε. Here, lower values of ε for 
both of MRR and ASR indicate that the complex models could be able to absorb the random 
variations adequately. Besides, small σ values for both MRR and ASR indicate that oscillatory 
patterns in outputs outside the insensitive zones are properly entrapped.  
 
With the optimum set of C, ε and σ, corresponding set Lagrange multipliers for each of the responses, 
MRR and ASR, is calculated (refer table D.7). Models of MRR and ASR could be represented using 
equation (4.1). Finally achieved MATEs are determined using the representative models (equations 
(4.18) and (4.19)) fed by their corresponding sets of Lagrange multipliers.  
 
MRR: f(x) = ∑ (αi − αi

∗)N
i=1  K (xi, x) + b   

 

 
C = 28.0986 
ε = 0.3968 
σ = 0.4642     

 
 
 

(4.18) 
 
 

with K (xi, x) = e
− 

‖xi−𝒙‖
2

2σ2  

 
 
σ = 0.4642     
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ASR: f(x) = ∑ (αi − αi
∗)N

i=1  K (xi, x) + b   
 

 
C = 9.0000 
ε = 0.2127 
σ = 0.4642     

 
 
 

(4.19) 
 
 

with K (xi, x) = e
− 

‖xi−𝒙‖
2

2σ2  

 
 
σ = 0.4642     

 

 
Marching steps for optimum selection of C, ε and σ in estimation of MRR and ASR separately are 
given in the following flow chart (figure 4.7). Gradual decaying patterns of MATE in estimation of MRR 
and ASR are represented in figures 4.8 through 4.11. 
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                 Fig. 4.7 Detailed steps in modeling by modified TLBO assisted SVM regression 

 
Fig. 4.8 Marching steps to minimize MATE in estimation of MRR with C, ε and σ tuned by modified 

TLBO 

Consider MATE in estimation of 
response as objective function 

(equation (4.5)) 

Normalize the control 
parameters – cur, ton and 
toff using equation (4.4) 

Stop simulation and latest teacher is declared 
as the optimum setting of C, ε and σ  

Calculate searching ranges 
of C, ε, σ (table 4.2) 

using equation (4.2) & (4.3)  

If termination 
criterion is 
satisfied 

Calculate objective function 
values for current set of learners 

(C, ε and σ) in estimation of 
response using equation (4.5) 

Randomly generate 20 set of 
learners (table D.4) with SR 
ratio along each dimension > 

40% within search space  
 

Find out mean and the teacher of the current 
set of learners, modify the teaching factor  

Calculate SR ratio along 
all dimensions (C, ε and σ) 

(equation (4.6)) 

Update learners by sharing knowledge 
among themselves (equation (4.17)) 

Set termination criterion 
(SR ratio along all 

dimensions < 5%) in 
consecutive 5 iterations 

 

Update learners by 
teaching of current teacher  

Set n = 20, itermax 
= 250 and iter = 1  

If  
iter = itermax iter = iter + 1  

Restart the simulation 
with higher itermax  
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Fig. 4.9 Changes of SR ratios along C, ε and σ tuned by modified TLBO to minimize MATE in 

estimation of MRR 
 

 
Fig. 4.10 Marching steps to minimize MATE in estimation of ASR with C, ε and σ tuned by modified 

TLBO 
 

 
Fig. 4.11 Changes of SR ratios along C, ε and σ tuned by modified TLBO to minimize MATE in 

estimation of ASR 
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In case of minimizing MATE in estimation of MRR, relative to C and σ, the effect of ε is lower, as SR 
ratio for ε decreases at a faster rate than that of C and σ (figure 4.9). Whereas, all three parameters 
C, ε and σ influence the model of ASR to almost same pattern (figure 4.11). 
 
Though, the higher values of coefficient of determinations, r2 (table 4.5), indicate the high correlation 
between experimental and estimated values of response parameter from the trained models 
(equations (4.18) and (4.19)), still, testing of the models with separate data sets from training sets is 
necessary for using the models as representatives of the EDM process outcomes.    
              
4.3.2 Testing of estimated models  
 
Trained models of MRR and ASR, equations (4.18) & (4.19), are tested with 10 disjoint data sets 
obtained from separate follow up experimental runs.  
 

Table 4.6 Testing of estimated MRR model with C, ε and σ tuned by modified TLBO 
 

Sl. 
no. 

Machining condition Material removal rate 

cur  
(A) 

ton  
(μs) 

toff  
(μs) 

Experimental 
(mm3/min) 

Estimated 
(mm3/min) 

Absolute 
error (%) 

1 6 100 50 5.48126 5.20824 4.98 

2 6 100 200 2.25924 2.40183 6.31 

3 6 200 150 4.56557 4.74119 3.85 

4 9 100 100 9.13364 8.62213 5.60 

5 9 150 50 13.50951 12.70765 5.94 

6 9 200 100 10.48887 10.34725 1.35 

7 12 50 50 14.41525 15.39080 6.77 

8 12 150 200 11.36906 11.40655 0.33 

9 15 100 100 18.06487 16.59244 8.15 

10 15 150 50 24.95816 25.56967 2.45 

Mean absolute testing error (%) 4.57 

 
Table 4.7 Testing of estimated ASR model with C, ε and σ tuned by modified TLBO 

 

Sl. 
no. 

Machining condition Average surface roughness 

cur  
(A) 

ton  
(μs) 

toff  
(μs) 

Experimental 
(μm) 

Estimated 
(μm) 

Absolute 
error (%) 

1 6 100 50 4.61 4.44 3.69 

2 6 100 200 5.05 4.95 1.98 

3 6 200 150 4.21 4.27 1.43 

4 9 100 100 5.79 6.03 4.15 

5 9 150 50 6.95 6.66 4.17 

6 9 200 100 6.22 6.47 4.02 

7 12 50 50 5.98 6.23 4.18 

8 12 150 200 7.35 7.62 3.67 

9 15 100 100 7.48 7.23 3.34 

10 15 150 50 8.49 8.31 2.12 

Mean absolute testing error (%) 3.27 

 
Mean absolute testing errors (table 4.6 and 4.7) for both MRR (4.57%) and ASR (3.27%) indicate the 
practical adequacy of the models in their experimental ranges.  
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However, independent models of MRR and ASR in EDM process with internal structural parameters, 
C, ε and σ, tuned by modified PSO and modified TLBO are separately developed with SVM 
regression based learning systems. In next section, comparison between performances two 
evolutionary algorithms, modified PSO and modified TLBO for independent learning system 
development is discussed. 
 
4.4 Comparison between SVM regression based independent model building assisted by 
      modified PSO and modified TLBO 
 
Simulated results and performances of modified PSO and modified TLBO in searching of optimum 
sets of C, ε and σ separately for MRR and ASR are listed in table 4.8.   
 

Table 4.8 Comparison between modified PSO and modified TLBO in tuning of C, ε and σ 
 

  
Optimization 

technique 
Optimum value 

MRR ASR 

Internal 
structural 

parameters  
of SVM 

regression 

C 
modified PSO 28.0969 9.00 

modified TLBO 28.0986 9.00 

ε 
modified PSO 0.3999 0.2127 

modified TLBO 0.3668 0.2127 

σ 
modified PSO 0.4642 0.4642 

modified TLBO 0.4642 0.4642 

Performance 
measurements 

MATE (%) 
modified PSO 5.55 3.76 

modified TLBO 5.55 3.76 

r2 
modified PSO 0.9869 0.9622 

modified TLBO 0.9867 0.9622 

Mean absolute 
testing error (%) 

modified PSO 4.80 3.27 

modified TLBO 4.57 3.27 

Simulation time 
(s) 

modified PSO 10338.9618 15160.9776 

modified TLBO 323.5959 303.9827 

 
Though, the simulated optimum sets of C, ε and σ, training errors, r2 values and mean absolute testing 
errors for MRR and ASR are almost same, still, simulation time in modified PSO is much higher 
(about 30 times for MRR and 50 times for ASR) than simulation time in modified TLBO. More 
simulation time causes higher computational cost. Therefore, it can be concluded that modified TLBO 
procedure is much more efficient in respect of computational time than the modified PSO. Hence, 
independent learning systems developed with the aid of modified TLBO (equations (4.18) & (4.19)) 
are used as representative models of EDM process in the experimental domain of present work. 
 
4.5 Effects of machining control parameters on MRR and ASR 
 
To depict the effects of different machining control parameters (current, pulse on time and pulse off 
time) on responses, surface plots for MRR and ASR are generated using the estimated models with 
parameters tuned by modified TLBO (equations (4.18) & (4.19)) being trained by their corresponding 
training data sets and shown in figure 4.12 through 4.17.  
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Fig. 4.12 Effects of current & pulse on time on MRR at pulse off time = 125 µs 

 

 
Fig. 4.13 Effects of current & pulse off time on MRR at pulse on time = 125 µs 

 

 
Fig. 4.14 Effects of pulse on time & pulse off time on MRR at current = 10.5 A 
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Fig. 4.15 Effects of current & pulse on time on ASR at pulse off time = 125 µs 

 

 
Fig. 4.16 Effects of current & pulse off time on ASR at pulse on time = 125 µs 

 

 
Fig. 4.17 Effects of pulse on time & pulse off time on ASR at current = 10.5 A 
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For both MRR and ASR, current shows a strong positive influence, whereas, other two control 
parameters, pulse on time and pulse off time, are found to be not so effective with their changes. At 
lower values of current, effects of both pulse on time and pulse off time on MRR and ASR are almost 
insignificant. In the higher zone of current values, higher MRR could be obtained by increasing pulse 
on time or lowering pulse off time. Though, variation of pulse off time does not show significant 
change in ASR even at higher values of current, but with increase of pulse on time, ASR is found to 
be increased at upper zone of current space.  
 
With the aid of modified TLBO, internal structural parameters of SVM regression are tuned for 
developing two independent learning systems, one for each of the two individual process outcomes, 
MRR and ASR, in EDM process. Compared to modified PSO, selection of internal parameters of 
optimization technique itself is no longer required in modified TLBO. Thus, methodology of 
independent learning systems becomes user-friendly, yet, multiple sets of optimum internal structural 
parameters of learning system do not permit use of the methodology for concurrent predictions of 
multiple responses, MRR and ASR, for the same set of input parameters. Therefore, a unified learning 
system is developed that could estimate multiple responses from a single set of internal structural 
parameters. 
 
4.6 Unified learning system development using modified TLBO 
 
In the present section, development of a unified structure of SVM regression for predicting multiple 
responses is attempted. Unified learning is performed by simultaneous minimization of errors in 
estimation of MRR and ASR by modified TLBO. This development is an advancement of 
mathematical modeling towards the compact virtual data generator. In the proposed modified TLBO, 
combined rank method, an improvement in multi-objective optimization by TLBO, is suggested for 
simultaneous optimization of multiple objective functions and an optimum unique set of C, ε and σ is 
obtained. With the optimum unique set of SVM internal structural parameters, C, ε and σ, two 
separate sets of Lagrange multipliers one for each of the MRR and ASR are calculated on feeding 
respective training vectors. Subsequently, MRR and ASR are estimated from the calculated 
corresponding sets of Lagrange multipliers. It is to be noted that in subsection 4.3.1, two sets of 
Lagrange multipliers (each for MRR and ASR) from two independent sets of C, ε and σ are 
generated. The novelty of the present section lies in the development of such unification of SVM 
regression structures for concurrent predictions of conflicting type multiple responses with the aid of 
modified TLBO. This modification could be generalized for solving any such multiple objective 
functions in efficient way. The proposed procedure may become a building block for expert system. 
 
For the purpose of building a unified structure of SVM regression learning system that provides 
concurrent predictions of multiple responses, randomly 54 data sets are taken for training. Different 
sets of randomly chosen 54 data are taken and same results are obtained. Here, results of learning 
system development with a typical set of randomly chosen 54 data are reported. Fitted learning 
systems are tested through rest 10 sets of data.  
 
Structure of SVM regression learning system should vary for each of the different input-output 
combinations. In case of multiple process outcomes of a manufacturing process with same settings in 
machine control parameters, there should be separate sets of optimum C, ε and σ for each of the 
process outcomes. In the present section, a methodology is proposed to develop a unified structure of 
SVM regression learning system for concurrent predictions of multiple process outcomes of a 
manufacturing process. That is, an optimum unique set of internal structural parameters, C, ε and σ, 
is searched to exist instead of multiple sets of optimum C, ε and σ corresponding to multiple 
responses. Robust optimization techniques could be employed to tune the internal structural 
parameters, C, ε and σ. In this regard, algorithm-specific parameter-less teaching learning based 
optimization (TLBO) would be a justified choice. 
 
In the present section, TLBO is modified by introducing a combined ranking method with weight 
infected rank selection (wherever necessary) for simultaneous optimization of multiple objective 
functions and thus employed for tuning the internal structural parameters of SVM regression. Different 
modifications as discussed in subsection 4.3.1, namely population based termination criterion, 
initialize population with high dispersion and way of choosing guide in case of multiple best learners 
performing same score, are also adapted. 
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4.6.1 Marching procedure and results 
 
Proper choice of searching ranges is prerequisite for faster convergence of modified TLBO. In 
addition, objective function should be justifiably selected according to the proposed goal.  
 
Searching ranges of C, ε and σ are decided based on the experimental values of respective response 
parameter. In the present subsection, as an optimum unique set of C, ε and σ for both of MRR and 
ASR is to be looked, searching ranges of C, ε and σ for MRR and ASR should be the same. 
Experimental values of MRR and ASR lie in different ranges. Therefore, they are normalized using 
equation (4.20).  
 

MRRnorm = 
MRR−1.00

28.25−1.00
 ; ASRnorm = 

ASR− 3.50

9.25−3.50
                                                                                    (4.20) 

 
Limits of searching ranges are revised based on the normalized response values. Combined 
searching range is obtained by union operation between the two individual searching ranges of C, ε 
and σ. For example, based on normalized MRR and ASR, searching ranges of ε are calculated first 
using equation (4.2) and (4.3). For MRR it is (0.0123, 0.0369) and for ASR (0.0167, 0.0501). 
Performing union operation between the two ranges, combined search range is identified. Lower limit 
of combined searching range of ε is estimated as max (0.0123, 0.0167) and upper limit as min 
(0.0369, 0.0501). Finally, combined search range of ε is decided as (0.0167, 0.0369). Similarly, 
searching ranges of C and σ are also identified. Optimum unique values of C, ε and σ are to be 
searched within their corresponding combined searching ranges (table 4.9). 
 

Table 4.9 Searching ranges of internal structural parameters of SVM regression for unified learning 
 

SVM internal 
structural parameters 

Material removal 
rate 

Average surface 
roughness 

Combined 

C (0.0000, 1.0000) (0.0000, 1.0000) (0.0000, 1.0000) 
ε (0.0123, 0.0369) (0.0167, 0.0501) (0.0167, 0.0369) 
σ (0.4642, 0.7937) (0.4642, 0.7937) (0.4642, 0.7937) 

 
Choice of different sets of internal structural parameters, C, ε and σ, changes the values of Lagrange 
multipliers for each of MRR and ASR.  
 
To build the best structure of the learning system for near-accurate predictions of responses, chance 
of generalization errors should be reduced in learning process. Hence, internal structural parameters 
(C, ε and σ) must be tuned in such a fashion as to reduce the training errors in learning process. 
Thereby, in this subsection also, mean absolute training errors (MATE) in prediction of process 
responses, MRR (MATE1) and ASR (MATE2), are chosen as two objective functions (refer equation 
(4.5)).  
 
Training by experimental results with proper internal structural parameters of SVM regression (C, ε 
and σ) is necessary to get near-exact representation of the process. The three internal structural 
parameters should be optimally tuned for each individual output-input combination. Thus, for multiple 
responses of a process with same input control parameters, separate sets of optimum C, ε and σ for 
different responses are expected. In this subsection, a methodology is proposed to build a unique 
structure of SVM regression for predicting multiple responses, that is, to search an optimum unique 
set of C, ε and σ instead of separate sets of C, ε and σ for the responses. In the proposed steps, 
simultaneous minimization of MATE1 and MATE2 is carried out for selection of optimum unique set of 
internal structural parameters of SVM regression. Teaching learning based optimization with certain 
modifications is employed for this tuning operation. During simulation process, different sets of C, ε 
and σ reshape the learning system. With same training input vectors and a particular set of C, ε and 
σ, two different sets of Lagrange multipliers for two responses are calculated using corresponding 
individual training output vectors. Subsequently, with the two sets of Lagrange multipliers, normalized 
MRR and normalized ASR are predicted. The predicted values are denormalized with the help of 
equation (4.20) and corresponding MATEs are evaluated using equation (4.5) based on denormalized 
MRR and ASR. Finally, two different sets of Lagrange multipliers are calculated from the simulated 
optimum unique set of C, ε and σ. When training errors become stable at their achievable minimum 
value, with corresponding set of Lagrange multipliers, MRR and ASR are estimated separately using 
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equation (4.1). Here, this multiobjective optimization is performed by algorithm-specific parameter-less 
modified TLBO. 
 
Within the estimated searching ranges (table 4.9), modified TLBO is applied for simultaneous 
minimization of MATE1 and MATE2. Though, TLBO is a parameter less optimization technique, still, to 
get this benefit in optimizing any non-linear high-dimensional objective function, termination criteria 
should be logically defined. As discussed in the subsection 4.3.1, SR ratio of the latest population that 
is learners in each direction, C, ε and σ, is used as termination criterion and simulation is terminated 
when SR ratio values along all dimensions (C, ε and σ) satisfy the termination criterion that is go 
below 1% in last consecutive 5 iterations. To ensure better exploration in whole searching range, 
considering initial SR ratio as at least 40% along each of the three directions, a set of 20 learners are 
randomly generated within specified search space (table 4.9). For maintaining the repeatability of the 
simulation steps, initial learners are given in table D.8. 
 
In each step of iteration, with different set of learners that is set of C, ε and σ, shape of learning 
system changes. Teacher of any iteration should be selected as that set of C, ε and σ having lowest 
training error (MATE) value. When optimizing multiple objective functions, the same set of C, ε and σ 
might not give minimum value for both the objective functions. To overcome this difficulty, here, 
combined ranking method is proposed. In a typical iteration, at first, rank the learners separately 
according to the values of objective functions. Thus, the current set of learners gets two sets of ranks, 
rank1 based on MATE1 and rank2 based on MATE2. The two rank matrices are element-wise 
multiplied to get a combined rank for all of the current set learners. Say, a learner that is a set of C, ε 
and σ, gets two ranks namely 4 and 17. The two rank values are multiplied that is 17 X 4 = 68. 
Similarly, combined ranks of other learners are calculated. The combined rank values always lie 
between 1 and (number of learners)2. According to this combined rank matrix, best learner is marked 
and set as teacher for subsequent teaching purpose. Here, values of objective functions are not 
multiplied at all, combined rank values are obtained only by element-wise multiplication of rank1 and 
rank2 matrices.   
 
Though, combined rank values are proposed to select the current teacher, still, difficulty is present to 
select the current teacher if multiple learners give same combined rank value. Improper choice may 
guide the following iterations in wrong way and finally might be trapped inside any local optimum. A 
weight combining method is already proposed in subsection 4.3.1. Though, the proposed method is 
applied on learners having same objective function value, here, similar approach is taken on learners 
give same combined rank value. In the present subsection, a weighted combination of all those 
learners is to be evoluted such that new evoluted learner must give both MATE1 & MATE2 lower 
(higher for maximization) than either of the MATE1 & MATE2 corresponding to the learner having 
second best combined rank at current population applicable only for first iteration or the minimum 
MATE1 & MATE2 gained at immediate last iteration. For example, in case of simultaneous 
minimization of bi-variable two objective functions within search space ([0, 20], [0, 20]), at any 
iteration, one learner (9.7, 13.5) gets two ranks as 12 and 3 and another learner (18.2, 7.3) gets two 
ranks as 4 and 9. Therefore, two learners have same combined rank 12 X 3 = 4 X 9 = 36. At last 
iteration, minimum MATE1 and minimum MATE2 were 53.92 and 24.73 respectively. Now, it is 
required to choose the teacher among the two learners for next iteration. No such clear guidance is 
reported till now to choose the right one among the two. Here, a weighted combination of the two 
learners along their respective dimensions is calculated. Randomly two weights (rw1, rw2) are 
generated between (0, 1) such that rw1 + rw2 = 1. A new learner is evoluted as (rw1 X 9.7 + rw2 X 
18.2, rw1 X 13.5 + rw2 X 7.3). For rw1 = 0.4 and rw2 = 0.6, new learner would be (14.80, 9.78) which 
gives MATE1 as 19.66 and MATE2 as 10.29.  New evoluted learner gives both MATE1 and MATE2 
less than the minimum MATE1 (53.92) and MATE2 (24.73) gained at last iteration. In case of first 
iteration, comparison would be done with MATE1 and MATE2 corresponding to the learner having 
second best combined rank at current population. Thus, learner (14.80, 9.78) would be the teacher for 
next iteration otherwise the steps are repeated with another random set of weights (rw1, rw2) till the 
above said condition is fulfilled. However, there is no need to update current population with this 
evoluted teacher. This proposition is expected to be effective to avoid ambiguity to choose the right 
teacher at any iteration. 
 
Adapting all the above said modifications, steps of modified TLBO algorithm used for searching 
optimum unique set of C, ε and σ by simultaneously minimizing MATEs (refer equation (4.5)) in 
estimation of both the responses MRR (MATE1) and ASR (MATE2) are discussed below.  
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Step 1 : Normalize the control parameters, cur, ton, toff, and process responses, MRR and ASR, 
using equations (4.4) and (4.20) respectively. Mean absolute training errors (refer 
equation (4.5)) in estimation of MRR (MATE1) and that of ASR (MATE2) are separately 
considered as two objective functions. Set n = 20 and itermax = 250. 
 

Step 2 : Calculate two searching ranges of C, ε and σ based on normalized MRR and ASR 
separately. Do the union operation between the two searching ranges and get the 
combined searching ranges of C, ε and σ (table 4.9). 
 

Step 3 : Set iter = 1 and termination criterion as SR ratio along all three dimensions < 1% in 
consecutive 5 iterations. Randomly (following uniform distribution) generate 20 set of 
learners (refer table D.8) with SR ratio along each dimension > 40% within 
corresponding search space.  
  

Step 4 : With normalized training input and output vectors, for each of the current set of 20 
learners, two different sets of Lagrange multipliers for normalized MRR and normalized 
ASR are calculated separately. With the Lagrange multipliers, normalized MRR and 
normalized ASR are estimated corresponding to current set of learners. The estimated 
normalized MRR and normalized ASR are denormalized with the help of equation 
(4.20), corresponding MATE1 and MATE2 are calculated. 
 

Step 5 : Rank all 20 learners with respect to their corresponding MATE1 and MATE2, store the 
two sets of ranks in rank1 and rank2 matrices respectively. Get combined rank by 
element-wise multiplication of rank1 and rank2 matrices. If multiple learners have same 
best combined rank, go to step 6, otherwise, learner having best combined rank is 
selected as CTiter and go to step 7. 
 

Step 6 : Learners having same best combined rank are identified. Make a weighted combination 
of those identified learners such that the new evoluted learner must give both MATE1 & 
MATE2 lower than either the MATE1 & MATE2 corresponding to the learner having 
second best combined rank at current population (applicable only for first iteration) or 
the minimum MATE1 & MATE2 gained at immediate last iteration. The new evoluted 
learner is selected as CTiter.  
 

Step 7 : Find out mean of current all 20 learners and estimate adapted teaching factor (TF) using 
equation (4.15). 
 

Step 8 : Calculate SR ratio along all three dimensions namely C, ε and σ. If termination criterion 
is satisfied, stop simulation and latest teacher is declared as the optimum unique set of 
C, ε and σ, otherwise, go to step 9. 
 

Step 9 : If iter = itermax, then, go to step 3 and restart the simulation with higher itermax, otherwise, 
set t = 1 and go to step 10.  
      

Step 10 : Calculate new tth learner taught by CTiter following the equation (4.16). 
 

Step 11 : If MATE1, new t < MATE1, t and MATE2, new t < MATE2, t, then, replace tth learner of current 
population by new tth learner and go to step 12, otherwise, tth learner of current 
population is kept unaltered and go to step 12.  
 

Step 12 : If t = n, then, set k = 1 and go to step 13, otherwise, set t = t + 1 and go to step 10. 
 

Step 13 : Select random integer r between 1 and n except k. 
 

Step 14 : If MATE1, k < MATE1, r and MATE2, k < MATE2, r, then, calculate new kth learner sharing 
knowledge with current rth learner using equation (4.21) and go to step 16, otherwise, go 
to step 15. 
 
xk

iter+1, d = xk
iter, d + rand X (xk

iter, d – xr
iter, d),     d = 1(1)3                                               (4.21) 

 



81 
 

Step 15 : If MATE1, k > MATE1, r and MATE2, k > MATE2, r, then, calculate new kth learner sharing 
knowledge with current rth learner using equation (4.22) and go to step 16, otherwise, kth 
learner of current population is kept unaltered and go to step 16. 
 
xk

iter+1, d = xk
iter, d + rand X (xr

iter, d – xk
iter, d),     d = 1(1)3                                               (4.22) 

 
Step 16 : If k = n, replace the learners of current population by corresponding new learners, set 

iter = iter + 1 and go to step 4, otherwise, set k = k + 1 and go to step 13. 
 
Therefore, latest teacher is selected as optimum unique set of C, ε and σ. With the optimum unique 
set of C, ε and σ, two separate sets of Lagrange multipliers are calculated using the corresponding 
normalized training output vectors of MRR and ASR. The unified structure of SVM regression learning 
system of EDM process could be represented by equation (4.1). Predictions of normalized MRR and 
normalized ASR could be done separately by pouring their respective set Lagrange multipliers into 
this equation (4.1). Predicted normalized MRR and ASR are denormalized and subsequently finally 
achieved training errors, MATE1 and MATE2, are estimated. The above mentioned steps for searching 
of optimum unique set of internal structural parameters of SVM regression, C, ε and σ, by modified 
TLBO and thereby for prediction of MRR and ASR simultaneously are coded in the platform of 
MATLAB. 
 
Now, using the above said modified teaching learning based optimization algorithm adapted with all 
discussed modifications, training errors in prediction of MRR (MATE1) and that of ASR (MATE2) are 
minimized simultaneously for different settings of C, ε and σ within combined searching ranges (table 
4.9). As the simulation marches, with different sets of values of C, ε and σ, shapes of learning system 
are getting modified and consequently training errors are changed. Finally, the optimum unique set of 
C, ε and σ within the specified searching ranges (refer table 4.9) with achievable minimum mean 
absolute training errors, MATE1 and MATE2, is found and reported in table 4.10.  
 

Table 4.10 Results of tuning internal structural parameters of SVM regression for unified learning 
 

Response 

Optimum unique internal structural 
parameters of SVM regression for 

normalized responses 
Simulation 

time (s) 

No. of 
support 
vectors 

bias 
Performance 

C ε σ 
MATE 

(%) 
r2 

MRR 
1.0000 0.0167 0.4642 871.0905 

37 0 6.50 0.9855 

ASR 49 0 3.31 0.9527 

 
Optimum unique value of C is shifted towards the upper end of search space. This indicates the 
complexity of the model which is in favor of the chaotic behavior of EDM process. The irregular 
fluctuations could be controlled by proper choice of ε. Here, lower value of ε indicates that the learning 
system could be able to absorb the random variations adequately. Besides, small σ value claims that 
the unified learning system is stable and generalized by entrapping the oscillatory patterns in outputs 
outside the insensitive zones. The higher values of coefficient of determinations, r2 (table 4.10), 
indicate the strong correlations between experimental and estimated responses (denormalized).  
 
With the optimum unique set of C, ε and σ (table 4.10), two sets of Lagrange multipliers (αi, αi*) for 
normalized MRR and that for ASR are calculated separately (refer table D.9). Representative models 
of the developed unified structure of SVM regression learning system are given by equation (4.23). 
  

f(x) = ∑ (αi −  αi
∗)N

i=1 j K (xi, x) + b   

                                                                                                 

 
C = 1.0000 
ε = 0.0167 
σ  = 0.4642 

 
 
 

(4.23) 
 
with j = 1 for normalized MRR, 2 for normalized ASR and  
                              

 with K (xi, x) = e
− 

‖xi−𝒙‖
2

2σ2  

 
 
σ = 0.4642 
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Marching steps for searching optimum unique set of C, ε and σ in simultaneous estimation of MRR 
and ASR are given in figure B.1 in appendix B. Corresponding to current teacheriter of each iteration, 
MATE1 and MATE2 are calculated and their gradual decaying patterns are represented in figures 4.18 
and 4.19. Observing the components of SR ratio of current population at the end of each iteration, 
influence of three internal structural parameters, C, ε and σ, on simultaneous minimization could be 
understood (figure 4.20).  
 

 
Fig. 4.18 Changes of MATE in estimation of MRR (MATE1) 

 
Fig. 4.19 Changes of MATE in estimation of ASR (MATE2) 
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Fig. 4.20 Changes of SR ratios along C, ε and σ during simultaneous minimization of MATE1 and 

MATE2 
 
In case of minimizing MATEs, MATE1 and MATE2, relative to C and ε, the effect of σ is marginally 
lower, as SR ratio for σ decreases at a faster rate relative to C and ε (figure 4.20). After few iterations, 
absence of irregular fluctuations of SR ratios along all three dimensions indicates the convergence of 
simulation procedure towards global optimum in smooth way. Steps for concurrent estimations of 
MRR and ASR in testing are shown in figure 4.21. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.21 Detailed steps for concurrent estimations of MRR and ASR from unified learning system 
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(refer table 4.10)  

Lagrange multipliers 
for normalized MRR 

(see table D.9)  

Normalize training input 
vectors - cur, ton and toff 

using equation (4.4) 

Lagrange multipliers 
for normalized ASR 

(see table D.9)  

Normalize training 
output vectors of MRR 
using equation (4.20)  
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equation (4.20) 

Estimated 
MRR is found  
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ASR is found  

Unified learning 
system for both 
MRR and ASR 
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4.6.2 Testing of unified learning system  
 
Unified learning system of MRR and ASR, equation (4.23), is tested with 10 disjoint data sets 
obtained from separate follow up experimental runs. For testing purpose, testing input vectors are 
normalized using equation (4.4). Sets of Lagrange multipliers of normalized MRR and normalized 
ASR (refer table D.9) are separately fed to the learning system, equation (4.23), and testing output 
vectors, normalized MRR and normalized ASR, are estimated separately. The estimated normalized 
outputs are denormalized with the help of equation (4.20). The absolute errors in prediction with 
corresponding experimental values are calculated and presented in table 4.11 and 4.12.  
 

Table 4.11 Testing of estimated MRR from unified learning system 
 

Sl. 
no. 

Machining condition Material removal rate 

cur  
(A) 

ton  
(μs) 

toff  
(μs) 

Experimental 
(mm3/min) 

Estimated 
(mm3/min) 

Absolute 
error (%) 

1 6 100 50 5.48126 5.51254 0.57 

2 6 200 150 4.56557 4.79086 4.93 

3 9 100 100 9.13364 8.60628 5.77 

4 9 150 50 13.50951 12.70528 5.95 

5 9 200 100 10.48887 10.45321 0.34 

6 12 50 100 9.46479 9.93234 4.94 

7 12 100 50 19.36570 18.94783 2.16 

8 12 150 200 11.36906 11.43744 0.60 

9 15 100 100 18.06487 16.80110 7.00 

10 15 150 50 24.95816 25.65435 2.79 

Mean absolute testing error (%) 3.51 

 
Table 4.12 Testing of estimated ASR from unified learning system 

 

Sl. 
no. 

Machining condition Average surface roughness 

cur 
(A) 

ton 
(μs) 

toff 
(μs) 

Experimental 
(μm) 

Estimated 
(μm) 

Absolute 
error (%) 

1 6 100 50 4.61 4.59 0.43 

2 6 200 150 4.21 4.31 2.38 

3 9 100 100 5.79 6.00 3.63 

4 9 150 50 6.95 6.40 7.91 

5 9 200 100 6.22 6.20 0.32 

6 12 50 100 5.88 5.78 1.70 

7 12 100 50 7.44 6.90 7.26 

8 12 150 200 7.35 7.55 2.72 

9 15 100 100 7.48 7.26 2.94 

10 15 150 50 8.49 8.12 4.36 

Mean absolute testing error (%) 3.37 

 
Mean absolute testing errors (table 4.11 and 4.12) for both MRR (3.51%) and ASR (3.37%) indicate 
the practical adequacy of the developed unified structure of SVM regression learning system for 
prediction of MRR and ASR in EDM process within their experimental ranges.  
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4.7 Summary 
 
In the present chapter, independent models of MRR and ASR are first trained through SVM 
regression based learning system with internal parameters tuned by modified PSO as well as 
modified TLBO. Conclusions drawn are listed below. 
 

 As regularization parameter (C) of SVM regression makes a tradeoff between flatness and 
complexity of trained learning system, therefore, higher value of C for each of the MRR and 
the ASR indicates complex relation among machining control parameters and process 
outcomes.  
 

 ε-insensitive hyper-tube of support vector machine is capable to effectively capture the 
uncontrollable fluctuations in responses of EDM which is beneficial for other researchers to 
apply the models on different products obtained in different batches. 

 

 High-dimensional effects of machining control parameters on MRR and ASR can be handled 
through kernel function namely Gaussian radial basis function. 
 

 Current population based stopping criterion, as proposed in the present chapter, could be a 
prominent global guideline for termination of population based evolutionary optimization 
techniques.  
 

 Initial population with stopping criterion based high relative dispersion could ensure better 
exploration of search space.  
 

 Proposition of weight combining method for selection of guide (pbest, gbest for PSO, teacher for 
TLBO) for next iteration in case of multiple particles or learners having same optimum score 
could be implemented for other population based evolutionary optimization methods. 
  

 With the proposed modifications, modified TLBO gives more smoothing convergence 
compared to modified PSO.  

 

 Modified TLBO is found as computationally more efficient than modified PSO. 
 
Next, a simple methodology is devised to develop a unified structure of SVM regression based 
learning system of material removal rate (MRR) and average surface roughness (ASR) in EDM 
process with internal structural parameters tuned by modified TLBO. The conclusions drawn are 
 

 Modification over standard TLBO, combined rank method, as introduced for simultaneous 
minimization of MATEs in estimation of MRR and ASR, could be employed for handling 
multiple objective functions in multiobjective optimization.  

 

 In combined rank method, learners of current population are to be combined with weight 
vectors instead of objective functions (MATE1 and MATE2) to reserve the independent 
impacts of objective functions.  

 

 An optimum single set of SVM regression internal structural parameters, C, ε and σ, for both 
the MRR and the ASR could be obtained instead of two separate sets of C, ε and σ for two 
individual responses.  

 
Though, independent learning system is almost capable to capture irregular fluctuations in process 
outcomes of EDM process, still, use of the data generator is not readily amenable for shop-floor use. 
Therefore, to meet the specific need-based customer demand, optimum selection of control 
parameters in EDM process is necessary. Considering developed independent learning systems as 
representative models of EDM process, an easy way out for selection of optimum levels of control 
parameters is proposed in the next chapter. It is to be noted here that while MRR is increased in 
EDM, surface finish reduces and thus, a trade-off is necessary between them.  
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5.1 Introduction 
 
In the previous chapter, representative model for each of MRR and ASR in EDM process is developed 
through SVM regression based learning system. Though, capability of SVM regression based learning 
system is found as efficient in handling of uncontrollable fluctuations in process outcomes, yet, due to 
lack of tractable representation of the system, it would become difficult for workshop use by 
engineers. On the other hand, to freeze the design at product development stage, selection of near-
optimum setting of control parameters in EDM machine to obtain the specific need based MRR-ASR 
combination is necessary. A procedure is proposed in this chapter to that effect.  
   
In the present chapter, power law models of MRR and ASR are developed first using proposed 
independent learning systems as virtual data generators. Then, varying the weight factors, different 
weighted combinations of the inverse of MRR and the ASR are minimized by modified TLBO. Pseudo 
Pareto front passing through the optimum results, thus obtained, gives a guideline for selection of 
optimum achievable value of ASR for a specific demand of MRR. Further, inverse solution procedure 
is elaborated to find the near-optimum setting of machining control parameters in EDM machine to 
obtain the specific need based MRR-ASR combination. Sequence diagram for proposed optimization 
of EDM process is shown in figure 5.1. 
 

 
 
 
 
 
 
 
                                                                                                                                         
 
 
 
                         
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.1 Sequence diagram for proposed optimization of EDM process 
 
5.2 Pseudo Pareto optimization 
 
Using the SVM regression based independent learning systems (refer equations (4.18) & (4.19)) as 
the virtual data generators, data sets of the two responses, MRR and ASR, are generated with 64 
different combinations of the levels of machining control parameters. The generated data sets are 
further used for developing power law models of MRR and ASR. Generated data are fitted through 
power law model due to its ready amenability and easy back tracking to process parameters from 
need based requirements of process outputs.  
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Here, power law models (PLM) of MRR and ASR are considered as 
 
MRR = ea0 cura1 ton

a2 toff
a3                                                                                                                   (5.1) 

ASR = eb0 curb1 ton
b2 toff

b3                                                                                                                   (5.2) 
 
To estimate the unknown coefficients, natural logarithm is taken at both sides.  
 
ln (MRR) = a0 + a1 ln (cur) + a2 ln (ton) + a3 ln (toff)                                                                             (5.3) 
ln (ASR) = b0 + b1 ln (cur) + b2 ln (ton) + b3 ln (toff)                                                                              (5.4) 
 
The coefficients are estimated by linear regression with 64 non-repeated data sets generated from 
SVM regression based learning systems (refer equations (4.18) & (4.19)). Using linear multivariable 
regression analysis, coefficients of equations (5.3) and (5.4) are estimated as follows. 
 
ln (MRR) = - 0.9421 + 1.5264 ln (cur) + 0.4418 ln (ton) – 0.5176 ln (toff)                                            (5.5) 
ln (ASR) = - 0.1080 + 0.5484 ln (cur) + 0.1203 ln (ton) + 0.0238 ln (toff)                                             (5.6) 
 
Finally, the fitted power law models (PLM) are represented as 
 
MRR = e-0.9421 cur1.5264 ton

0.4418 toff
-0.5176                                                                                               (5.7) 

ASR = e-0.1080 cur0.5484 ton
0.1203 toff

0.0238                                                                                                (5.8) 
 
The above developed fitted models are used as representatives of MRR and ASR for pseudo Pareto 
optimization. In case of machining, rate of material removal determines the productivity of the process 
that is higher MRR results higher productivity. Besides, to meet the specific functional aspects of 
product, quality must be maintained. One of the major surface quality measurements is the average 
surface roughness. As they are conflicting in nature, therefore, a tradeoff between MRR and ASR is 
expected to exist. Hence, the process should be controlled to meet both of the features in an optimal 
way. Conflicting type performance measures of any manufacturing process still involve a difficulty to 
get simultaneous optimum outcomes. Concept of Pareto optimality of multiple outcomes is expected 
to be useful in this regard. 
 
In contrast to single objective optimization, a solution to a multiobjective problem is more of a concept 
than a definition. In case of single objective problem, the global optimum is unique. For multiobjective 
cases, in many of the situations, there exists a number of solution set of parameters, all of which 
equally satisfy the optimality criterion.  
 
For any given multiobjective optimization problem, there may be an infinite number of pseudo Pareto 
optimal points constituting the pseudo Pareto optimal set. But the engineers are very much concerned 
on the extreme limit of the solution spectrum, called pseudo Pareto front. Practically, pseudo Pareto 
front suggests a guideline to engineers not to go beyond this limit.  
 
By definition, pseudo Pareto solution set is the non-dominated solutions among the all optimum 
points. The predominant concept in defining an optimal point is that of pseudo Pareto optimality [221] 
which is defined as follows.  
 
Definition 1: Pseudo Pareto Optimal: A point, x*Єx, is pseudo Pareto optimal if there does not exist 

another point, x#Єx, such that F(x#) ≤ F(x*), and Fi(x#) < Fi(x*) for at least one function. 
 
All pseudo Pareto optimal points lie on the boundary of the optimum criterion space [222]. Often, 
algorithms provide solutions that may not be pseudo Pareto optimal but may satisfy other criteria, 
making them significant for practical applications. For instance, weakly pseudo Pareto optimal is 
defined as follows. 
 
Definition 2: Weakly pseudo Pareto Optimal: A point, x*Єx, is weakly pseudo Pareto optimal if there 

does not exist another point, x#Єx, such that F(x#) < F(x*).  
 
A point is weakly pseudo Pareto optimal if there is no other point that improves all of the objective 
functions simultaneously. In contrast, a point is pseudo Pareto optimal if there is no other point that 
improves at least one objective function without detriment to another function. All pseudo Pareto 
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optimal points are weakly pseudo Pareto optimal, but all weakly pseudo Pareto optimal points are not 
pseudo Pareto optimal. 
  
A pseudo Pareto set is developed using the concept of an archive where the non-dominated solutions 
seen so far are stored and is constantly updated. In the present chapter, the developed power law 
models (equations (5.7) and (5.8)) are used for pseudo Pareto optimization within their experimental 
range of inputs and outputs. To maintain both the productivity and quality of products, higher MRR 
and lower ASR are always preferred. So, functions of MRR and ASR (equations (5.7) and (5.8)) are to 
be maximized and minimized respectively. In general, TLBO is used for minimization purpose. 
Reciprocal of MRR is therefore, taken to convert it into a minimization problem (equation (5.9)).  
 

f1 (cur, ton, toff) = 
1

MRR
                                                                                                                          (5.9) 

f2 (cur, ton, toff) = ASR                                                                                                                       (5.10)                                                   
 
For pseudo Pareto optimization, a weighted combination of the functions (equations (5.9) and (5.10)) 
are considered. With different combination of weight factors (w1, w2), objective function is modified. 
Further, each of the responses is to be normalized to avoid the effects of their different scale ranges.  
 

Objective function = w1 
f1 − (

1

MRRexp
)min

(
1

MRRexp
)max – (

1

MRRexp
)min

   + w2  
f2  – (ASRexp)min

(ASRexp)max –(ASRexp)min
                      (5.11) 

 
Here, 1001 different combinations of weight factors (w1, w2) between (0, 1) are chosen subject to the 
condition of w1 + w2 = 1. As a result, almost all possible practical combinations are considered and 
near exhaustive search is done. Two extreme combinations are nothing but the normalized f1 (for w1 = 
1 & w2 = 0) and f2 (for w1 = 0 & w2 = 1) respectively. So, starting from one normalized response, as 
the weight factors change, the objective function gradually shifts to the other normalized response. 
For minimization of the objective function (equation (5.11)), modified TLBO as proposed in section 4.3 
is again employed.  
 
In every iteration during optimization, evaluations of MRR and ASR from equations (5.7) and (5.8) are 
restricted to 10% of the lower end and the upper end of experimental observations (equations (5.12) 
and (5.13)), so as to get a Pareto front very close to the exact experimental boundaries. 
 
0.9(MRRexp)min ≤ MRR ≤ 1.1(MRRexp)max                                                                                         (5.12) 
0.9(ASRexp)min ≤ ASR ≤ 1.1(ASRexp)max                                                                                            (5.13) 
 
The constraints are tagged with previously discussed modified TLBO in section 4.3. Number of 
learners is also kept at 20. Searching range of each of the three machining control parameters is thus 
obtained (table 5.1). 

 
Table 5.1 Searching ranges of machining control parameters for pseudo Pareto optimization 

 

Machining control parameter Searching range 

Current (A) (6, 15) 
Pulse on time (μs) (50, 200) 
Pulse off time (μs) (50, 200) 

 
To maintain the repeatability of the simulation process initial setting of learners in modified TLBO is to 
be memorized. A wide spread (SR ratio above 40%) initial settings are generated within searching 
range subject to the constrained criteria (equations (5.12) and (5.13)). The initial settings are listed in 
appendix D (refer table D.10). Objective functions (equation (5.11)) with 1001 different weighted 
combinations are then minimized by modified TLBO. Each of the weight factor combinations gives a 
set of optimum MRR and ASR. Thus, 1001 sets of optimum MRR and ASR are found (figure 5.2). A 
typical variation in marching steps to minimize objective function (equation (5.11)) with w1 = 0.88 and 
w2 = 0.12 under constraint equations (5.12) and (5.13) is shown in figure 5.3. Corresponding changes 
of SR ratios along cur, ton and toff are plotted in figure 5.4. Obtained optimum control parameters are 
curopt = 11.92, ton,opt = 200.00 and toff,opt = 50.00 and corresponding minimum objective function value 
is 0.0849. 
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Fig. 5.2 Pseudo Pareto front 

 

 
Fig. 5.3 Marching steps to minimize a typical objective function (equation (5.11)) with w1 = 0.88 and 

w2 = 0.12 by modified TLBO 
 

 
Fig. 5.4 Changes of SR ratios along cur, ton and toff in minimization of a typical objective function 

(equation (5.11)) with w1 = 0.88 and w2 = 0.12 by modified TLBO 
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As, almost all the points lie on a non-linear curve, a 4th order polynomial is fitted through the optimum 
MRR and ASR combinations and represented as  
 
ASR = 3.1883986596 + 0.2404369670 (MRR) - 0.0019712434 (MRR)2 - 0.0000808326 (MRR)3    
           + 0.0000018202 (MRR)4                                                                                                       (5.14) 

 
This representation of ASR, as a function of MRR, indicates the pseudo Pareto front (figure 5.2) and 
suggests the limiting situation. Significance of this pseudo Pareto front is that, no other optimum 
setting of both the responses, MRR and ASR, could be achieved simultaneously below this boundary. 
For a particular MRR, different values of ASR are achievable, but lowest possible value lies on that 
pseudo Pareto front. Pseudo Pareto front is validated (table 5.2) through follow up experimental 
observations. Optimum ASR, that is estimated from equation (5.14), lies within 10% from 
corresponding experimental values (table 5.2).  
 

Table 5.2 Pseudo Pareto front validation 
 

Sl. 
no. 

Material 
removal rate 
(mm3/min) 

Average surface roughness 

Experimental 
(μm) 

Estimated 
(μm) 

Absolute 
error (%) 

1 4.40340 4.22 4.20 0.41 

2 4.56557 4.21 4.24 0.67 

3 24.03488 7.38 7.31 0.90 

4 5.17459 4.43 4.37 1.36 

5 14.41525 5.98 6.08 1.69 

6 18.36007 6.83 6.64 2.71 

7 22.91674 6.99 7.19 2.90 

8 10.69728 5.64 5.46 3.20 

9 6.30850 4.79 4.61 3.77 

10 5.48126 4.61 4.44 3.79 

11 23.41897 7.58 7.25 4.39 

12 28.09859 8.13 7.73 4.93 

13 5.61611 4.23 4.46 5.53 

14 11.16288 5.94 5.54 6.69 

15 13.49733 6.42 5.94 7.54 

16 12.58347 5.33 5.79 8.56 

17 7.48679 5.31 4.85 8.67 

18 19.36570 7.44 6.77 8.95 

19 3.72697 4.47 4.05 9.32 

 
5.3 Inverse solution to meet specific need based requirement  
 
Pseudo Pareto front suggests a boundary for setting simultaneous optimum MRR and ASR. This near 
exhaustive search meets almost all of the practical possible requirements of customer within the 
experimental domain. For each combination of optimum MRR and ASR, corresponding to each point 
of figure 5.2, a set of optimum machining control parameters (cur, ton, and toff) exists, though, it is 
difficult to set the exact value in real world EDM machine. So, near-optimum settings should be found 
out to get a particular MRR and ASR combination. Here, the inverse solution of this problem is 
outlined. 
 
Maintaining a specific productivity, products with different quality are possible, that is to meet a 
particular MRR value, different ASR could be achieved. Lower ASR is always preferred. The pseudo 
Pareto front guides to select possible minimum ASR for a particular MRR value. Using equation 
(5.14), optimum ASR is found for a specific MRR requirement. Yet, setting of the machining control 
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parameters (cur, ton, and toff) is to be determined to get the optimum combination of MRR and ASR. 
Thus, a back tracking is required. Power law model is therefore, chosen for the inverse solution. 
 
Once, the desired value of MRR and corresponding estimated optimum value of ASR value are put in 
equations (5.5) and (5.6), it just becomes a set of two linear equations with three unknowns (cur, ton, 
and toff), and has infinite number of solutions. As, pulse off time (toff) has lowest influence on the 
responses compared to current (cur) and pulse on time (ton), some specific values might be set for this 
purpose. For the sake of simplicity, four available setting of toff are chosen (50 μs, 100 μs, 150 μs and 
200 μs). Putting each of the four values of toff, the equations become a set of two equations with two 
unknowns and has one exact solution set. With four different values of toff, four different sets of (cur 
and ton) are found. Each of them yields the same specific MRR-ASR combination. However, out of 
range settings are just omitted for the lack of availability in machine settings.  
 
As for example, to obtain MRR as 13.50951 mm3/min, different ASR values are possible. Using 
pseudo Pareto front equation (5.14), lowest possible ASR value is found as 5.94 μm. The two values 
are then put in equations (5.5) and (5.6) to yield the equations (5.15) and (5.16). 
 
ln (13.50951) = - 0.9421 + 1.5264 ln (cur) + 0.4418 ln (ton) – 0.5176 ln (toff)                                   (5.15) 
ln (5.94) = - 0.1080 + 0.5484 ln (cur) + 0.1203 ln (ton) + 0.0238 ln (toff)                                           (5.16)                                                                        
 
The equations have infinite number of solutions and so, we put either of 50 μs, 100 μs, 150 μs or 200 
μs for toff. In case of 50 μs, equations (5.15) and (5.16) become  
 
ln (13.50951) = - 0.9421 + 1.5264 ln (cur) + 0.4418 ln (ton) – 0.5176 ln (50)                                   (5.17) 
ln (5.94) = - 0.1080 + 0.5484 ln (cur) + 0.1203 ln (ton) + 0.0238 ln (50)                                           (5.18) 
 
Equations (5.17) and (5.18) have an exact set of solution that is cur = 8.21 A and ton = 207.43 μs. 
Other solutions obtained from putting pulse off time as 100 μs, 150 μs and 200 μs, the estimated 
combinations of cur and ton are far away from available experimental settings of machining control 
parameters.  
 
All 64 experimental values of MRR are set on pseudo Pareto front equation and corresponding 
optimum ASR are estimated. Following the above procedure, with four values of toff, combinations of 
optimum cur and ton are calculated. Some of the results within the experimental zone are listed in 
table 5.3. Nearest available machining control parameter settings and corresponding outcomes are 
compared with the solution from above mentioned back tracking steps.   
    

Table 5.3 Validation of optimum machining control parameter settings 
 

Sl. no.  cur (A) ton (μs) toff (μs) MRR (mm3/min) ASR (μm) 

1 

Optimum 5.79 94.99 50.00 5.61611 4.46 

Experimental 6.00 100.00 50.00 5.48126 4.61 

Absolute error (%) 3.50 5.01 - 2.46 3.47 

SVM generated 6.00 100.00 50.00 5.08446 4.45 

Absolute error (%) 3.50 5.01 - 10.46 0.22 

2 

Optimum 5.80 89.48 50.00 5.48126 4.44 

Experimental 6.00 100.00 50.00 5.48126 4.61 

Absolute error (%) 3.33 10.52 - - 4.55 

SVM generated 6.00 100.00 50.00 5.08446 4.45 

Absolute error (%) 3.33 10.52 - 7.80 0.22 

3 

Optimum 8.21 207.43 50.00 13.50951 5.94 

Experimental 9.00 200.00 50.00 12.58347 5.33 

Absolute error (%) 8.78 2.71 - 7.36 11.44 

SVM generated 9.00 200.00 50.00 12.98027 5.54 

Absolute error (%) 8.78 2.71 - 4.08 7.22 
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Sl. no. 
 

cur (A) ton (μs) toff (μs) MRR (mm3/min) ASR (μm) 

4 

Optimum 7.81 209.49 50.00 12.58347 5.79 

Experimental 9.00 200.00 50.00 12.58347 5.33 

Absolute error (%) 13.22 4.74 - - 8.63 

SVM generated 9.00 200.00 50.00 12.98027 5.54 

Absolute error (%) 13.22 4.74 - 3.06 4.51 

5 

Optimum 8.60 204.80 50.00 14.41525 6.08 

Experimental 9.00 200.00 50.00 12.58347 5.33 

Absolute error (%) 4.44 2.40 - 14.56 14.07 

SVM generated 9.00 200.00 50.00 12.98027 5.54 

Absolute error (%) 4.44 2.40 - 11.05 9.75 

6 

Optimum 8.20 207.47 50.00 13.49733 5.94 

Experimental 9.00 200.00 50.00 12.58347 5.33 

Absolute error (%) 8.89 3.73 - 7.26 11.44 

SVM generated 9.00 200.00 50.00 12.98027 5.54 

Absolute error (%) 8.89 3.73 - 3.98 7.22 

7 

Optimum 12.10 200.22 50.00 24.03488 7.31 

Experimental 12.00 200.00 50.00 24.03488 7.38 

Absolute error (%) 0.83 0.11 - - 0.95 

SVM generated 12.00 200.00 50.00 23.63808 7.59 

Absolute error (%) 0.83 0.11 - 1.68 3.69 

8 

Optimum 11.76 198.18 50.00 22.91674 7.19 

Experimental 12.00 200.00 50.00 24.03488 7.38 

Absolute error (%) 2.00 0.91 - 4.65 2.57 

SVM generated 12.00 200.00 50.00 23.63808 7.59 

Absolute error (%) 2.00 0.91 - 3.05 5.27 

9 

Optimum 12.37 201.93 50.00 24.95816 7.41 

Experimental 12.00 200.00 50.00 24.03488 7.38 

Absolute error (%) 3.08 0.96 - 3.84 0.41 

SVM generated 12.00 200.00 50.00 23.63808 7.59 

Absolute error (%) 3.08 0.96 - 5.58 2.37 

10 

Optimum 13.32 204.63 50.00 28.09859 7.73 

Experimental 15.00 200.00 50.00 28.09859 8.13 

Absolute error (%) 11.2 2.31 - - 4.92 

SVM generated 15.00 200.00 50.00 27.70179 7.92 

Absolute error (%) 11.2 2.31 - 1.43 2.40 

11 

Optimum 11.91 199.07 50.00 23.41897 7.25 

Experimental 12.00 200.00 50.00 24.03488 7.38 

Absolute error (%) 0.75 0.46 - 2.56 1.76 

SVM generated 12.00 200.00 50.00 23.63808 7.59 

Absolute error (%) 0.75 0.46 - 0.93 4.48 

 
Optimum machining control parameters lay within 15% of corresponding experimental setting and 
claim in favor of the practical applicability of this study. 
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Above proposed steps for power law model development, pseudo Pareto front generation and inverse 
solution for selection of nearest available machining control parameter settings to meet specific need-
based MRR-ASR combination are given in figure 5.5. 
 

 
 
 
 
 
 
 
                                                                                                                                         
 
 
 
                         
 
 

 
                             
 
 
                                                   
 
                                                                              
                                                                               
                                              
                                                                                                  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.5 Detailed steps in pseudo Pareto optimization and inverse solution for optimum available 
machining control parameter settings to meet specific MRR with near-optimum ASR 

 
 
 

Power law models of MRR 
and ASR are assumed (refer 

equations (5.1) and (5.2)) 

MRR and ASR are evaluated 
separately at 64 different 
combinations of control 

parameters – cur, ton and toff 
using equations (4.18) and (4.19) 

Power law models of MRR and 
ASR are fitted separately (refer 

equations (5.7) and (5.8)) 

Coefficients of linearized models 
are estimated based on 64 data 

sets of individual response  

Functions f1 and f2 are 
normalized within 
their respective 

experimental ranges  

Reciprocal of MRR and the ASR 
are considered separately as two 

functions (f1 and f2) of control 
parameters – cur, ton and toff 

(refer equation (5.9) and (5.10))  
 

Normalized functions are 
combined to weighted sum 

objective function using 
weight factors (w1 and w2 = 
1-w1) (refer equation (5.11))  

Expected values of MRR 
and ASR are constrained 
within a band whose both 
ends are extended up to 

10% of respective 
experimental observations 
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objective function as 
equation (5.11), select weight 
factors (w1, w2) within [0, 1] in 

1001 uniform steps 

Assumed power law 
models are linearized  

 

For each set of (w1, w2), 
modified TLBO is employed to 
minimize equation (5.11) and 
optimum control parameters - 
cur, ton and toff are obtained 

1001 sets of optimum (MRR, 
ASR) are obtained using 
equations (5.7) and (5.8) 

Polynomial curve, 
called as pseudo 

Pareto front (equation 
(5.14)), is fitted through 
the lower boundary of 
the optimum spectra 

For a specific demand of 
MRR, possible near-

optimum ASR is estimated 
using pseudo Pareto front 

(equation (5.14))  

Put this combination (MRR, 
ASR) into equations (5.5) and 

(5.6) and get a set of two linear 
equations with three unknowns 
– equations (5.15) and (5.16)  

Choose different toff 
and put into equations 

(5.15) and (5.16)  

For each toff, obtain a set of two 
equations with two unknowns – 

equations (5.17) and (5.18) 

Solve the two equations 
simultaneously and get 
optimum set of (cur, ton) 

Among different sets 
of (cur, ton), values far 
away from available 
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Closest available machining 
control parameters in the machine 
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with near-optimum ASR  
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front development 

Inverse solution 
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development 
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5.4 Summary 
 
Conclusions drawn from the work presented in this chapter are listed as follows. 
 

 Complex representation of SVM regression based learning system is taken as virtual data 
generator and simplified power law models (PLM) of process outcomes are developed for 
ready accessibility in shop-floor use.  
 

 Pseudo Pareto front of two conflicting type EDM responses, MRR and ASR, would guide to 
achieve highest possible quality of surface without sacrificing the production rate.  

 

 The inverse solution procedure helps for reverse mapping of process response to machining 
control parameters.  

 
The proposed inverse solution procedure, a novel advancement in searching of near-optimum levels 
of machining control parameters to meet specific MRR-ASR combination in EDM process, would be 
applicable for pseudo Pareto optimization of conflicting process outcomes in any such process. 
 
In last two chapters 4 and 5, irregular fluctuations are taken into account in building near-accurate 
representation of process outcomes and thereby setting of machining control parameters to meet 
specific need based optimum process outcomes is confirmed. Further investigation for the complex 
surface generation process is necessary (refer chapter 3). In the next chapter, a generalized structure 
is framed to reveal the underlying features of surface generation process in EDM through methodical 
assessment of machined surface topography. 
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6.1 Introduction 
 
In chapter 4, it is observed that insensitive zones wrapped around the estimated representative 
models of EDM process effectively capture the uncontrollable fluctuations in process outcomes. As, 
the process outcomes are results of some complex phenomena involved in mechanism of material 
removal, so, further investigation of surface generation process would be helpful for near-accurate 
representation of EDM process. Requirement of kernel function in intelligent modeling indicates the 
possibility of the presence of underlying features in high-dimensional space. Surface generated in 
EDM is a superposition of craters formed by series of discrete high frequency, high power density, 
spatial and sporadic electric discharges (sparks). Thus, mechanism of material removal is preserved 
in surface topography. Engraved features of erosion mechanism of parent machining operation could 
be postulated by analyzing the surface profiles.  
 
In the present chapter, therefore, an organized approach is expounded to analyze the surface 
characteristics of electric discharge machined surface. Sequence diagram for assessment of surface 
topography is shown in figure 6.1. To start with, representative time series corresponding to each of 
the roughness profiles is generated by image analysis. The generated time series are used for 
characterization of machined surface topography. Contributive effects of randomness and periodicity 
in roughness profiles are assessed using autocorrelation function. Investigation for the presence of 
chaos in generated surface topography is performed next.  
 
 

 
 
 
 

Fig. 6.1 Sequence diagram for assessment of surface topography in EDM process 
 

6.2 Generation of representative time series of roughness profile 
 
Roughness profiles of evaluation length 3.2 mm along three directions at 120o apart, measured on 
each of the 64 machined surfaces, are collected in image format. For each of the combinations of 
different levels of cur, ton and toff, three images containing apparently erratic fluctuations of profile 
heights are stored. Sequence of peaks and valleys for each of the profiles is extracted by image 
analysis. 
 
In the image of roughness profile, pixels along the roughness profile have distinct color. Hence, based 
on the color of pixel, identification of either peak or valley is done. A typical roughness profile 
measured along a specific direction on machined surface is presented in figure 6.2 in next page.  
 
From figure 6.2, it is observed that grids along horizontal and vertical axes have different color than 
the fluctuating roughness profile. In the following image analysis, colors of all the pixels are stored in a 
matrix. Position of the horizontal zero line is identified. From this horizontal zero line, positions of other 
pixels are calculated. Ordinates of the pixels on roughness profile from this zero line give the 
corresponding profile heights. Scale is required to convert the pixel height from number of pixels to 
micron. Profile heights in micron are shown along vertical axis. Scale is evaluated from suitable 
choices of pixel heights on vertical axis. In figure 6.2, heights of the pixels corresponding to +50 µm 
and -50 µm from zero line are counted. From the two values, average value of each pixel in micron 
along vertical direction is estimated. This value is considered as scale factor in this image analysis.  
 
Variations of profile heights at different locations along horizontal zero line are measured. Selection of 
the measurement locations is a critical issue in image analysis. Measurement locations at long gap 
may not capture the true fluctuating behavior of roughness profile. On the other hand, very close 
locations may gather redundant information. Hu et al. [209] studied the cross-scale behavior of runoff 
time series in an inland river of Central Asia. They concluded that time series having finer resolution 
would be able to reveal more complex underlying features of time series than coarser scales. In the 
present study, possible finest resolution is 8 µm. Hence, measurement of profile heights is done at 
locations of 8 µm apart. At a uniform gap of 8 µm along horizontal zero-reference line, measuring 
locations are decided. From the length of 3.2 µm long roughness profile, 401 measuring locations are 
set. At each location, colors of the pixels along vertical direction are checked. As pixels lying on 

Collection of 
roughness profile 
in image format  

Generation of 
representative 

time series  

Evaluation of contributive 
effects of randomness 

and periodicity 

Investigation for 
chaos in surface 

topography 
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roughness profile have a distinct color value, thus, corresponding pixel along vertical direction at each 
of the measuring locations is identified. Ordinate of the profile at the measuring location is calculated 
by multiplying the scale factor with the measured pixel height from zero line. This calculated value 
gives profile height in µm at this specific location. Similarly, profile heights at all 401 measuring 
locations are evaluated. Mean of all absolute values of 401 profile heights is calculated as 6.36 µm 
which deviates 0.93% from the value of average surface roughness shown in Talysurf (6.42 µm). 
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 Stylus travel distance (mm) 

(a) Roughness profile (measured Ra = 6.42 μm) 
 

 
(b) Generated time series (estimated Ra = 6.36 μm) 

Fig. 6.2 Roughness profile and corresponding generated representative time series 
(Treatment - cur = 12 A, ton = 50 µs and toff = 150 µs) 

 
Thus, from the image of a roughness profile measured along a specific direction, a sequel of 401 
ordinates is found. Average of the 401 absolute values gives the arithmetic average surface 
roughness of that machined surface in measured direction. It is found that for all 192 roughness 
profiles, calculated surface roughness value varies with 3% average error from the measured 
arithmetic average surface roughness (Ra) obtained from Talysurf.  

 
Each sequence of ordinates is a collection of finite numerical data measured at uniform interval with 
one observation at a specific location on the machined surface. Therefore, the set of 401 ordinate 
values in successive order is considered as a finite time series presenting the corresponding 
roughness profile (figure 6.2). Steps for generation of time series from corresponding roughness 
profile are given in figure 6.3. 
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Fig. 6.3 Steps for generation of representative time series of roughness profile 

 
The generated 192 representative time series are first used for the assessment of contributive effects 
of randomness and periodicity and then for evaluations for chaotic nature of surface topography. 
 
6.3 Evaluation of contributive effects of randomness and periodicity  
 
Autocorrelation function (ACF) is taken as an effective tool for comparative study of random and 
periodic behavior of the surface. Each of the ACF curves is assumed as a sum of multiple freely 
induced decays (FIDs) which are exponentially damped sinusoidal in nature. Parameters namely 
amplitude, decay rate, frequency and phase of FIDs are estimated by backward linear prediction 
method. With the estimated decay rate and frequency, characteristic correlation lengths and periods 
buried in the surface are calculated. Based on a non-dimensional index, periodicity to randomness 
ratio (PR ratio) is estimated. It is then, employed for comparing the relative effects of randomness and 
periodicity under different machining conditions. Variations of PR ratios and characteristic correlation 
lengths within and between treatments are studied through a non-parametric statistical test. The 
estimated PR ratios of EDM generated surfaces are further correlated with machining process 
parameters. The organized procedure for assessment of contributive effects of randomness and 
periodicity is shown in figure 6.4. 
  

 
 
 
 
 
 
 
 
                                                                                                                                         
 
 
 
 
                         
 
 
                             
 

Fig. 6.4 Sequence diagram to calculate PR ratio for assessment of contributive effects of randomness 
and periodicity 

 
6.3.1 Formation of ACF from time series 
 
In the present study, ACF is chosen as representative of generated machined surface features. In this 
connection, autocorrelation function (ACF) for different lags (τ) are calculated from the discrete time 
series containing roughness profile information using the following formula [223]. 
 

ACF(τ)= 
1

n
∑ (yi−y̅)(yi−y̅)n−τ

i=1

σ2 ,     τ =0(1)N-1                                                                                         (6.1) 
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where, n = number of profile heights collected, yi = ith profile height, y̅ = mean of n profile heights and 
σ2 = variance of n profile heights. This ACF could give an indication of expected relative relation 
between different zones of the time series. Typical ACF curves are shown in figure 6.5. ith lag in mm is 
obtained by multiplying horizontal resolution, that is, 0.008 mm with corresponding lag τi. 
 

 
Fig. 6.5 Correlograms of roughness profiles measured along three directions (120o apart) on   

machined surface generated in the treatment - cur = 12 A, ton = 150 µs and toff = 150 µs 
 

Autocorrelation function value indicates the extent of correlation present between two time series of 
same length collected from same parent time series separated by a definite lag value e.g. from a time 
series having length of 400 observations, two time series of length 300 are generated like one from 
observation 1 to 300 and another from observation 7 to 306. They are correlated with lag 6. Higher 
ACF value that is close to 1, implies that there might be high correlation between the two time series, 
whereas, close to mean value implies no such significant correlation existed between the time series. 
Therefore, significant correlation may not found beyond that lag where ACF values are damped close 
to their corresponding mean value. Hence, significant portion of each of the ACF curves is to be 
identified before further analysis. 
 
6.3.2 Truncation of ACF curve 
 
Values of autocorrelation function at different lags are calculated from the discrete time series. The 
generated discrete time series is a sample of total population consisting of profile peaks or valleys at 
some specific locations (8 µm apart) of the whole machined surface which is generated at a particular 
combination of levels of machining parameters. In practice, population mean and population variance 
are unknown. Yet, it could be estimated from sample statistics. Thus, sample mean (x̅) and sample 
standard deviation (s) which are considered as mean and standard deviation of autocorrelation 
function are calculated. Following t-distribution, 99% confidence interval is identified about the mean 
value of ACF. Boundary values of the 99% confidence interval (CI) around mean value are marked 
using the following formula [210] 
 

CI = x̅ ± tα,ν
∗  

s

√n
                                                                                                                                 (6.2) 

 

where, n = sample size (here n = 401), t*α, ν is estimated from the probability density function of t(x̅, 
s

√n
) 

with degrees of freedom ν = n - 1 and α is 0.005 for both sides. From available standard table, it is 
found that for ν larger than 120, t*0.005, ∞ = 2.576.  
 
For each of the ACF curves, the lag value is marked beyond which fluctuation of ACF curve is 
completely damped within its corresponding confidence interval (CI) around mean value obtained 
from equation (6.2). Significance of this confidence interval is that with 99% confidence, it could be 
said that significant autocorrelation could be found up to this marked lag value. Hence, each of the 
ACF curves is trimmed off at their corresponding marked lag value. The remaining ACF values 
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corresponding to lag zero to the marked one are stored. Only the truncated ACF curves are used for 
further analysis. Truncation of a typical ACF curve in direction 1 of figure 6.5 (refer table D.11) is 
presented in figure 6.6.    
 

 
Fig. 6.6 Truncation of a typical ACF curve 

 
6.3.3 Formulation of truncated ACF curve with constituent FIDs 
 
Sharp falling of ACF curves to zero within 0.05 to 0.10 mm lag and then damped fluctuations around 
mean line (not necessarily zero) are observed as common features of correlograms (refer figure 6.5). 
Still, no such exact decay rate or period is observed. For pure random observations of a time series, 
ACF at lag zero is 1, after that a sharp fall towards mean value is observed. Whereas, for time series 
values with exact periodic nature, ACF exhibits damped periodic pattern with fixed period. Typical 
patterns of ACF curves, observed in the present study (refer figure 6.5), indicate the presence of both 
the features, random and periodic, at multiple levels in each ACF curve. Thus, a number of 
independent damped sinusoids might be buried. 
 
Therefore, the truncated ACF is represented as a sum of multiple exponentially damped sinusoids 
with different decay rates and periods (equation (6.3)).  
 

ACF(τ) = ∑ Aie
−αi𝝉K

i=1 cos(ωi𝝉 + φi),     τ =0(1)N-1                                                                   (6.3) 

 
where, A, α, ω and φ are amplitude, decay rate, angular frequency and phase angle (in radian) 
respectively. Decomposition of ACF curve to K free-induced-decay (FID) may provide a measurement 
of random and periodic behavior existed in the roughness profile. Decay rate of exponential term and 
frequency of trigonometric term of each FID would exhibit possible random and periodic features.  
 
Hence, estimation of A, α, ω and φ from each of the truncated ACF curves are to be done to identify 
the expected random and periodic feature buried in it. Complex variable analysis is an efficient tool to 
solve this problem. Cosine term of equation (6.3) can be expressed as 
 

cos(ωi𝝉 + φi) = Real ej(ωi𝝉+ φi),     j = √−1                                                                  (6.4) 

 
As, all ACF values are real and no imaginary values are present, equation (6.3) is rewritten as [224] 
 

ACF(τ) = ∑ Aie
−αi𝝉K

i=1  ej(ωi𝝉+ φi)                                                                                                   (6.5) 

 
Further, variable and constant parts with respect to τ of equation (6.5) are separated.  
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ACF(τ) = ∑ CAi
K
i=1 SPi                                                                                                                   (6.6) 

 

where, CAi = Aie
jφi  and SPi = e(−αi+ jωi)𝝉 

 
Autocorrelation function (ACF) is thus represented as sum of K FIDs and each FID is expressed as a 
product of constant "complex amplitude" (CA) and variable "signal pole" (SP) terms [225]. The 
unknown coefficients of CA and SP are to be estimated from the truncated ACF curves. 
 
Complexity of the nonlinear behavior of equation (6.6) causes the estimation of unknown coefficients 
troublesome. This problem is circumvented by employing linear prediction with singular value 
decomposition (LPSVD) technique. There are two types of linear prediction techniques namely 
forward and backward. For stable response, in backward prediction method, only significant signal 
poles lie outside the unit circle and insignificant ones lie inside. Whereas, in forward prediction, no 
such clear boundary between signal poles could be drawn [226]. As, significant FIDs are need to be 
picked out, thus, backward prediction should be more feasible one in the present work. 
   
6.3.4 Extraction of significant FIDs 
 
In the backward linear prediction with predictor order L, ACF(τ) is expressed as a linear combination 
of its L succeeding values. N-L equations are generated. Then, prediction coefficients dis are to be 
estimated. 
 

ACF(τ) = ∑ diACF(𝝉 + i)L
i=1 ,     τ=1(1)N-L                                                                                      (6.7)                                                          

 
Left-side of equation (6.7), ACF(τ), will form a Hankel matrix H of order N-L x L. Choice of predictor 
order (L) plays a crucial role in prediction accuracy. Near the lower values of L where L< K cannot be 
able to dig the most effective signals out. Whereas, at the higher side of L values where L > N/2 may 
include more insignificant signals to significant zone [225]. Hence, a judicious selection is L ≤ rank of 
Hankel matrix (H). For L > 0.5N, this condition will not be satisfied. Therefore, L is selected as the 
largest integer ≤ 0.5N. It is expected that number of most effective FIDs are far below L. 
 
Different algebraic techniques are available to calculate dis. Techniques using inverse operation 
would not be a robust choice because value of N/2 may differ from L and for large data set, 
computation time will be too high. In this regard, singular value decomposition (SVD), a signal-
subspace technique could be implemented to avoid the cumbersome inverse operation. Besides, 
rank-revealing feature of SVD [224] may help to identify the most significant FIDs.  
 
Singular value decomposition of H (equation (6.8)) gives a set of singular values arranged in 
descending order along principal diagonal of SH. 
 
H (n-L x L) = UH

(n-L x n-L) SH
(n-L x L) (VH

(L x L)) T                                                                                            (6.8)  
 
Number of singular values not exceedingly close to zero is one guideline for determining the rank of 
H. Here, a gradual monotonically decreasing pattern of singular values is observed. Singular values 
below 10% of SH

max are considered (refer table D.12) as it may not provide any such significant 
information regarding the features of machined surface. Corresponding to those singular values, 
respective parts of UH and VH are separated. Insignificant part of H, that is, Hinsign is enumerated as    
  
Hinsign (N-L x L) = UH

insign (N-L x N-L) SH
insign (N-L x L) (VH

insign (L x L)) T                                                               (6.9)  
 
Hinsign (N-L x L) is Hankelized by averaging the anti-diagonal elements and ACF(τ)insign is constructed.  
 
ACF(τ)sign = ACF(τ) - ACF(τ)insign                                                                                                      (6.10)  
 
Hence, truncated ACF(τ) is modified by subtracting ACF(τ)insign (refer table D.11). Separation of 
corresponding ACF(τ)sign and ACF(τ)insign of a typical truncated ACF curve (refer figure 6.6) is shown in 
figure 6.7.    
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Fig. 6.7 Separation of ACF(τ)sign and ACF(τ)insign of a typical truncated ACF curve 

 
The ACF(τ)sign is decomposed with the help of corresponding significant parts of UH or UH

sign, of SH or 
SH

sign and of VH or VH
sign. Then, parameters, A, α, ω and φ, of constituent significant FIDs of 

ACF(τ)sign, are estimated. First, parameters of signal poles, αis and ωis, are determined and other two 
parameters related to complex amplitude, Ais and φis, are found by substituting the values of 
estimated "signal pole" SPis in equation (6.6). 
 
6.3.4.1 Estimation of α and ω 
 
Backward linear prediction coefficients dis are estimated using the following formula. 
 
d(L x 1) =  VH

sign (N-L x N-L) (SH
sign (N-L x L) ((UH

sign (L x N-L)) T ACF(τ)sign (N-L x 1)))                                          (6.11)   
 
Decay rate (α) and angular frequency (ω) of FIDs encoded in prediction coefficients (dis) are 
extracted from the following polynomial [227].  
 

RL - ∑ di𝑹
L−iL

i=1  = 0                                                                                                                      (6.12) 

 
Roots of the equation (6.12) will give the signal poles of truncated significant ACF. Roots of the 
equation (6.12) are calculated and plotted on argand diagram. For a typical set of dis (corresponding 
to figure 6.7), obtained roots Ris are shown in figure 6.8 (refer table D.13).  
 
In figure 6.8, it is observed that most of the L roots (Ris) lie inside the unit circle drawn in the complex 
plane. Backward linear prediction technique is employed for estimation of signal poles due to its 
exclusive capability to classify the estimated poles. The most contributive signal poles, which lie 
outside the unit circle (distance from origin greater than one unit), are to be selected. As signal poles, 
lie outside the unit circle contain complex conjugates, signal poles found in 1st quadrant and outside 
the unit circle are marked (figure 6.8). The marked signal poles are considered for identifying the most 
effective FIDs.  
 
Natural logarithms of the marked poles (refer table D.13) are taken.  
 
Ri' = ln(Ri

outside)                                                                                                                                 (6.13) 
   
Real and imaginary part of Ri's give decay rate (αi) and angular frequency (ωi) respectively.   
 
αi = Real(Ri'), ωi = Imag(Ri')                                                                                                             (6.14)  
 
From estimated angular frequencies (ωis), length of the periods in mm are calculated as follows 
(horizontal resolution 8 µm).  
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λi = 0.008 
2π

ωi
                                                                                                                                    (6.15) 

 

 
Fig. 6.8 Argand diagram of roots (R) of equation (6.12) consisting of dis obtained from a typical 

ACFsign curve 
 
Values of λ greater than 1 mm are discarded. Finally, the FIDs having λi < 1 mm are considered as 
most effective and corresponding αis are picked out. For each of the 3 replications of 64 treatments 
comprising of different levels of machining control parameters, namely current, pulse on time and 
pulse off time, the most contributive FIDs are identified. Number of FIDs buried in a particular 
roughness profile varies from 2 to 15. To represent the behavior of each FID, along with the estimated 
αis and ωis, other two coefficients Ais and φis of equation (6.3) are to be determined.  
 
6.3.4.2 Estimation of A and φ 
 
Most effective signal poles SPis are thus found. With the known values of SPis, equation (6.6) 
becomes a system of simultaneous linear equations with unknown coefficients CAis. To avoid the 
unacceptable rounding errors in inverse operation, the unknown coefficients (CAis) are estimated 
through a stable linear least square technique [224, 225]. 
 
Using linear least square technique, values complex amplitude CAis are estimated. From the 
estimated values of CAis, amplitude and phase angles are extracted. Using the polar form in complex 
variable, Ais and φis are calculated using the following formulae. 
 
Ai = 2 x modulus (CAi)                                                                                                                   (6.16a) 
φi = angle (CAi)                                                                                                                              (6.16b) 
 
Hence, with all the estimated Ai, αi, ωi and φis for each of the ACF curves, respective FIDs could be 
reconstructed. Set of FIDs of a typical ACFsign curve (refer figure 6.7) is shown in figure 6.9 and 
estimated parameters of those FIDs, Ai, αi, ωi and φi, are given in table 6.1. 
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Fig. 6.9 The most effective constituent FIDs of a typical ACFsign curve 

 
Table 6.1 Estimated parameters of the most effective constituent FIDs of a typical ACFsign curve 

 

FIDs 
Parameters of the most effective constituent FIDs 

A α ω φ 

FID1 0.1139 0.0146 0.3966 0.2269 
FID2 0.1264 0.0079 0.0846 -0.1022 
FID3 0.5252 0.0079 0.1852 -0.0272 
FID4 0.1202 0.0038 0.1302 0.0350 
FID5 0.0579 0.0028 0.2290 0.6100 

 
All the above steps are summarized in the flow chart in figure 6.10 in next page. 
 
6.3.5 Results 
 
Parameters of buried FIDs are estimated and respective FIDs of that roughness profile are 
constructed. From the estimated parameters, αis and ωis, extent of randomness and periodicity 
present in the underlying FIDs could be understood. In the next subsection, relative contributions of 
randomness and periodicity on surface characteristics are evaluated using a non-dimensional index, 
PR ratio, and variations of PR ratios with different levels of machining control parameters are 
discussed. Further, representative model for average PR ratio is developed.  
 
6.3.5.1 Calculation of PR ratio 
 
Each of the FIDs for a particular roughness profile has its own set of (A, α, ω and φ). Therefore, 
different decay rates and angular frequencies are buried on the surface. Exponential part of equation 
(6.3) provides information regarding randomness. Here, a measurement of randomness called as 
correlation length (β) is considered. Correlation length is the minimum lag after which profile heights 
are not correlated further as the random events die out. Correlation length is calculated (in mm) as the 
length along τ axis, at which exponential part falls down to 10% of its maximum initial amplitude 
(equation (6.17), horizontal resolution 8 µm) [190]. Higher value of βi claims in favor of random 
characteristics of surface.  
 

Aie
−0.008αiβi   = 

Ai

10
                                                                                                                          (6.17) 
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Fig. 6.10 Detailed steps for estimation of parameters of the most effective constituent FIDs of 
representative time series 

 
As, each of the roughness profiles is found as summation of multiple FIDs, so, multiple sets of (β, λ) 
exist in each of the roughness profile (refer table D.14). To compare the relative contributions of 
randomness and periodicity, a non-dimensional index, periodicity to randomness ratio (PR ratio), is 
considered [193].  
 

PR ratio of ith FID = 
λi

βi
                                                                                                                      (6.18) 

 
Lower PR ratios of FIDs of a particular surface mean large correlation length and small period. It 
indicates the presence of wide band of random fluctuation and small repetition distance in the surface.  

 
 
 
 
 
 
 

Step 1 
Calculate ACF(τ) 
of time series at 

lag 0 to 400 
(equation (6.1)) 

Following t-distribution, 
99% CI around mean 

ACF value is calculated  

Choose predictor order 
L=0.5N and construct Hankel 
matrix using equation (6.7) 

Effects of singular values below 
0.10SH

max are treated as insignificant 
and with the SH values, corresponding 

portions of UH, VH are separated 

Perform SVD of 
constructed 

Hankel matrix  
(equation (6.8)) 

Roots (R) lie outside the 
unit circle in argand diagram 

are marked (Ri
outside)  

Roots (R) of the polynomial 
(equation (6.12)) with 

coefficients di are calculated 

Find backward linear 
prediction 

coefficients (d) using 
equation (6.11) 

Significant part of ACF(τ) is 
reconstructed by algebraic 
subtraction of ACF(τ)insign 

(equation (6.10)) 

Decay factor (α) and 
frequency (ω) are 
calculated from Ri' 

using equation (6.14)   

ACF values lie 
within this CI are 

truncated and 
rest portion is 

stored 

Take natural logarithm of 
marked Ri

outside and get Ri' 
(equation (6.13)) 

Solve the system of simultaneous linear 
equations by linear least square technique 
and get amplitude (A) and phase angle (φ) 

Truncated ACF(τ) is 
considered as sum of K 
exponentially damped 

sinusoids (equation (6.3))  

Calculate period (λ) 
using equation (6.15)  

Sets of (α, ω) only where λi < 1 mm are stored  

A system of simultaneous 
linear equations with 

unknown coefficients (CA) is 
obtained by putting the sets 
of (α, ω) in equation (6.6)  

Sets of (A, α, ω and ϕ) for all the 
most effective constituent FIDs of 
the roughness profile are obtained 

Hinsign matrix is 
constructed using 

equation (6.9) 
and Hankelized 

ACF(τ)insign is 
generated from 

Hankelized Hinsign 

Step 2.1 

Step 3 

Step 4.2 

Step 4.1 

Step 2.2 
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6.3.5.2 Variations of PR ratios with different treatments 
 
To depict the variations of PR ratios, PR ratio vs λ plots are drawn for roughness profiles. For each of 
the treatments, comprising of different combinations of different levels of current, pulse on time and 
pulse off time, three surface profiles are collected. Following the above steps, for each setting of (cur, 
ton and toff), three sets of (PR ratio, λ) are obtained corresponding to three directions. All the three sets 
are taken together and shown in a single PR ratio vs λ plot (figure 6.11). 
 

 
Fig. 6.11 Obtained PR ratios in all three directions and class averages 

(Treatment - cur = 12 A, ton = 150 µs and toff = 150 µs) 
 

Along the λ axis, 10 equi-length classes are marked. Mean value of all PR ratios corresponding to the 
λis fall in each class are calculated (refer table D.14). Mean PR ratio is considered as a representative 
index of that λ-zone and is drawn at mid-value of that class (figure 6.11). With this scheme of 
representation, variations of mean PR ratios of different classes with change in levels of current, pulse 
on time and pulse off time are plotted (refer figure C.1 through C.4 in appendix C). 
 
In overall, a very low PR ratio is observed in figures C.1 through C.4. Near zero PR ratio claims large 
correlation length (β) that means random characteristics of machined surface continues over a long 
distance. Thus, randomness predominates on the surface topography and thereby in surface 
development process.  
 
6.3.5.3 Contributive effects of machining control parameters on randomness 
 
In the present study, main objective is to explore the irregular features of the surface caused by the 
complex erosion mechanism of the concerned machining operation EDM. Thus, a further study is 
done to estimate the contributive effects of different machining control parameters, current, pulse on 
time and pulse off time, on random characteristics of machined surface. Characteristic correlation 
length (β) of surface is chosen as a measure of randomness present on the surface. For each of the 
surface profiles, multiple βis are found. To perform the analysis of variance, a representative measure 
for each of the replications should be identified and all of which together are expected to follow normal 
distribution. Different measures like maximum, mean of all βis found in each profile, etc. are checked 
but normality condition is not satisfied at all. Therefore, non-parametric statistical test [228] is 
considered.   
 
In non-parametric statistical test, to bypass the necessity of normality condition, a rank is assigned to 
each of the βis instead of using their original values. For ranking purpose, at first, βis corresponding to 
all 192 profiles are listed together. Total 1399 βis are found. All the listed βis are sorted and ranked in 
ascending order. Larger βi gets higher rank. Ascending order is selected because large βi indicates 
high randomness. Hence, each profile gets a set of rank values (not necessarily consecutive ranks) in 
place of βis. For each of the profile, mean of the assigned ranks is calculated and stored as an index 
of that profile (refer table D.14). With this mean rank values calculated for each replication of each of 
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the treatments, analysis of variance is performed in the same way as for parametric test. Results are 
shown in table 6.2.  

 
Table 6.2 Analysis of variance for mean rank 

 

 
Sum of 
squares 

%  
effect 

DOF Mean squares 
Test 

statistic 
F*0.05 
value 

cur 7286.1776 0.23 3 2428.7259 0.1469 2.65 
ton 28460.8970 0.89 3 9486.9657 0.5737 2.65 
toff 10840.1254 0.34 3 3613.3751 0.2185 2.65 
cur X ton  247052.2375 7.70 9 27450.2486 1.6600 1.93 
cur X toff  100519.8543 3.13 9 11168.8727 0.6754 1.93 
ton X toff  210096.2128 6.55 9 23344.0236 1.4117 1.93 
cur X ton X toff 486877.8411 15.18 27 18032.5126 1.0905 1.52 

Between treatments 1091133.3457 34.02 63 17319.5769 1.0474  

Within treatment 2116577.2381 65.98 128 16535.7597   

Total 3207710.5838  191    

 
It is observed from table 6.2 that contributive effects of each of the machining control parameters (cur, 
ton and toff), two factor interactions and three factor interaction are not significant at 95% confidence 
level. Total contribution of between treatments compared to variation within treatment is significantly 
lower. Contributive effect of variation within treatment on total variations is found as 66% which 
implies randomly dispersed observations among replications within a specific treatment [210]. 
Relatively large variation within treatment concludes that spatial distribution of the features of 
machined surface are highly random in nature.     
 
All the above steps for calculation of PR ratio, to study the variations of PR ratios with different 
treatments and to analyze the contributive effects of machining control parameters on randomness 
are summarized in figure 6.12. 

 
 
 
 
 
 
 

 
 
 
 
 
                                                                                                             
 
 
 
 
 
                         
 
 

   
 
 

 
 
 
 

Fig. 6.12 Detailed steps for calculations of variations of PR ratios with different treatments and 
contributive effects of machining control parameters on randomness 

All βis corresponding to 
192 roughness profiles 

are listed together  

Sets of (β, λ) for each 
of the roughness 

profiles are stored 

Characteristic correlation length (β) 
is calculated for each of the decay 
factors (α) using equation (6.17) 

Total 1399 βis are ranked 
in ascending order 

PR ratio is calculated 
for each set of (β, λ) 
using equation (6.18)  

Sets of (λ, PR ratio) for each of the 
roughness profiles are obtained 

 

Along λ axis 10 equi-length 
classes are marked 

between zero and 1 mm 

For each λ-zone, mid-
value of that class is 

marked as λclass 

Mean of all the ranks 
corresponding to a 
roughness profile is 
considered as index 

of that profile  
Sets of all (λ, PR ratio), calculated from roughness profiles 
measured along 3 directions on machined surface obtained 
in a treatment, fall within each class are grouped together  3-way ANOVA test with 

replication for the index 
values is performed  For each treatment, 

representative index 
vs λclass is plotted  

For each of the treatments, 
mean of grouped PR ratios 

within each class is 
calculated and taken as 

representative index of that 
λ-zone  

Contributive effects 
of machining 

control parameters 

on randomness 
Variations of PR ratios 

with different treatments 
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6.3.5.4 Development of correlation between PR ratioavg and machining control parameters 
 
Dominance of randomness over periodicity in surface topography of EDM generated surface for 
different combinations of levels of machining control parameters, cur, ton and toff, is revealed (refer 
subsection 6.3.5.2). Even, no significant contributive effects of machining control parameters on 
randomness are noticed in subsection 6.3.5.3. Therefore, a relationship between machining control 
parameters and PR ratio is built up for verification of the influence of machining control parameters on 
the change in values of PR ratio.   
 
Here, a mathematical approach is taken to build a representative model of PR ratio with current (cur), 
pulse on time (ton) and pulse off time (toff) as input parameters. Due to axis independence, affine 
invariance and tractable computation, Bezier hyper-surface with Bernstein function as blending 
function [229] is found as compatible in this regard.  
 
For each of the 64 mutually exclusive combinations of levels of machining control parameters, cur, ton 
and toff, all PR ratios along three directions are listed. From the listed values of PR ratios, average PR 
ratio (PR ratioavg) is estimated for each of the combinations of different levels of machining control 
parameters (refer table D.15). As for example, at cur = 12 A, ton = 150 µs and toff = 150 µs, all PR 
ratios along three directions are listed (refer table D.14). From the list of PR ratios, PR ratioavg is 
calculated as 0.0972 (refer table D.15).   
 
Vector valued parametric equation of Bezier hyper-surface (BHS) is given as follows [229]. 
 

BHS(u,v,w) = ∑ ∑ ∑ Bi−1,m−1(𝒖)Bj−1,n−1(𝒗)Bk−1,p−1(𝒘) xi,j,k
p
k=1

n
j=1

m
i=1                               (6.19) 

 
where, BHS(u,v,w) = [cur(u,v,w)   ton(u,v,w)   toff(u,v,w)   PR ratioavg (u,v,w)],  
            u, v, w are parameters along three dimensions of corresponding machining control 
            parameters namely cur, ton and toff  
            u, v, w Є [0,1],  
            m, n, p are number of control points along three dimensions u, v, w (here, m=n=p=4),  
            Bi-1,m-1(u), Bj-1,n-1(v), Bk-1,p-1(w) are Bernstein basis functions with relations  
            Bi-1,m-1(u) = m-1Ci-1 ui-1(1-u)m-i,   
            Bj-1,n-1(v) = n-1Cj-1 vj-1(1-v)n-j,  
            Bk-1,p-1(w) = p-1Ck-1 wk-1(1-w)p-k  
     and xi,j,k is the control point on hyper-surface. 
 
Now, putting the values of PR ratioavg in equation (6.19), vector valued parametric form of PR ratioavg 
is obtained as 
 

PR ratioavg (u,v,w) = ∑ ∑ ∑ ai,j,k
3
k=0

3
j=0

3
i=0 𝒖i𝒗j𝒘k                                                                       (6.20) 

 
where, ai,j,k is coefficient of parametric equation of PR ratioavg (refer table D.16) and u, v, w are 
computed as follows. 
 

ui = 
cur−6

15 − 6
 , vj = 

ton − 50

200 − 50
 and wk = 

toff − 50

200 − 50
                                                                                      (6.21) 

 
To depict the effects of change in values of machining control parameters on PR ratioavg, the bi-cubic 
Bezier surfaces are generated and presented in figure 6.13 through 6.15. 
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Fig. 6.13 Bi-cubic Bezier surface for PR ratioavg at toff = 125 µs 

 

 
Fig. 6.14 Bi-cubic Bezier surface for PR ratioavg at ton = 125 µs 

 

 
Fig. 6.15 Bi-cubic Bezier surface for PR ratioavg at cur = 10.5 A 
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Variations of PR ratioavg are found within the range between 0.0534 and 0.1797 which is almost 
12.63% of the possible total range [0,1] of PR ratio. From figure 6.13 through 6.15, it is observed that 
there is as such no remarkable influence of different levels of any of the three machining control 
parameters, current, pulse on time and pulse off time, or their interactions on the values of PR ratioavg. 
The insignificant impacts of machining control parameters on PR ratioavg indicate that EDM generated 
surface topography is predominantly random in nature. As randomness in surface topography 
predominates, surface topography might be chaotic in nature. In the next section, a logical 
investigation for the presence of chaos in surface topography is conducted.   
 
6.4 Investigation for chaos in surface topography 
 
In the last section, predominance of randomness in EDM generated surface topography is confirmed. 
The word "random" is commonly used for the system having seemingly irregular fluctuations in output 
variable. In the branch of science that deals with nonlinear dynamics of system, behavior of system 
during evolution and final outcome are the two most important aspects. Based on final outcome, a 
system would be either predictable or unpredictable. On the other hand, evolution of dynamic system 
either follows a governing law or not. If the evolution of a dynamic system follows a governing law, 
then, it is obvious that evolutionary pattern exhibits sensitive dependence on initial condition. A small 
perturbation in initial state will cause almost impossible rendering of long-term prediction [206, 230] 
leading to chaos. If it does not follow a governing law, the evolution is chaotic by itself [206, 230].  
 
Compared to the definition of chaos, it is easier to describe the properties of a system as chaotic [231, 
232]. A dynamic system having almost predictable outcome, that is, a regular system has a clear 
distinction from chaotic system. Chaotic system is always unpredictable. Since the pioneer work of 
Lorenz [206] on chaotic dynamics, different mathematical and statistical approaches are devised by 
researchers to comment on the underlying dynamics of various practical problems. In section 6.3, 
predominance of randomness in surface topography is observed. Therefore, to gain further insight 
into the surface topography, test for chaos is required.         
 
In the present section, an organized procedure is structured to investigate the possibility of presence 
of chaos in EDM generated surface topography using representative time series and two different 
approaches (figure 6.16).  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                                                         
 
 
 
 
 
                         
 
 

Fig. 6.16 Sequence diagram of investigation for chaos in surface topography 
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For each of the 64 machined surfaces, three roughness profiles are measured along three 120o apart 
directions. Using the above discussed steps in figure 6.3, three sequences of profile heights are 
obtained from corresponding roughness profiles. For the purpose of better characterization of 
roughness profiles, it is suggested [233] that time series of length n > 1000 gives almost reliable 
interpretation for system having 1 to 7 degrees of freedom. In the present study, three most significant 
machining control parameters of EDM, current, pulse on time and pulse off time, are considered. 
Therefore, time series containing at least 1000 observations is necessary for analysis of surface 
topography generated by EDM. Hence, three sequences of profile heights measured on same 
machined surface are appended together. As a result, for each of the 64 combinations of different 
levels of cur, ton and toff, a time series of length 1203 is obtained. With the 64 representative time 
series corresponding to different values of cur, ton and toff, presence of chaos in EDM generated 
surface topography is investigated. This investigation is carried out from two different directions. In the 
first approach, phase space is reconstructed from representative time series and test is performed on 
the reconstructed phase space. In the second approach, test is done directly from representative time 
series.   
 
6.4.1 Test for chaos through phase space reconstruction  
 
Behavior of dynamic system could be better understood in reconstructed phase space than 
representative one dimensional time series. The dispersive patterns and relative locations of phase 
vectors in phase space give a good indication of the nature of the dynamic system. To characterize 
the distributional properties of phase vectors typical measurements are used namely correlation 
dimension [234, 235], maximum Lyapunov exponent [236] etc.  
 
Presence of self-similarity [236] in one dimensional time series is investigated by estimating fractal 
dimension. A second-order fractal dimension, called as correlation dimension (CD), represents the 
space-filling property of underlying dynamic evolution. To quantify the extent of proximity during 
dynamic evolution, correlation dimension is estimated through relative measurement of inter-point 
distances in phase space [237]. Hyper-spheres of different radii are placed at each of the points on 
the trajectory in phase space and number of points lie inside the hyper-spheres are counted. Number 
of counted points is related with the scale parameter that is radii of hyper-sphere by power-law 
relationship. The exponent of scale parameter gives the estimation of a invariant measure called as 
correlation dimension [234]. Through the steps of the evaluation of correlation dimension, presence of 
chaos in surface topography will be tested. 
 
6.4.1.1 Evaluation of correlation dimension 
 
At first, one dimensional time series is mapped to a phase space with chosen set of embedding 
dimension (m) and embedding delay (τopt). Next, all the inter-point Euclidian distances are calculated. 
If there are M points in phase space, then, total M*(M-1) non-zero distances are obtained. Now a 
hyper-sphere with a particular radius is selected and placed at all the points in phase space one by 
one. At each point, number of neighbors lie inside the hyper-sphere are counted. Counted neighbors 
are those whose Euclidean distances from the center point of hyper-sphere are lesser than radius of 
the hyper-sphere. With the change of radius of hyper-sphere, number of neighbors inside the hyper-
sphere may vary. Therefore, for different radii, a list is obtained containing the number of neighboring 
points having Euclidean distance less than corresponding radius. Total number of neighbors lie within 
the hyper-sphere of specific radius (r) is divided by the total number of possible inter-point distances 
in phase space (equation (6.22)) and called as correlation sum (CS) [236].  
 

CS(r) = 
2

M(M−1)
∑ ∑ H(𝒓 − |𝒀𝒊 − 𝒀𝒋|)M

j=i+1
M−1
i=1                                                                           (6.22) 

 
where, H is Heaviside step function with H(x) = 0 for x ≤ 0 and H(x) = 1 for x > 1, Yi = phase vector on 
the trajectory of dynamical system at ith evolution with embedding dimension (m) and embedding 
delay (τ) and M is the number of phase vectors. Hence, choices of different radii give sets of CS 
values (equal values of CS are also possible). If variation of the values of CS with different radii is 
plotted in log-log scale, then, a linear zone is expected to exist. In this linear zone, slope of the graph 
is calculated. This slope is called as correlation exponent (CE) of the time series at that given 
embedding dimension. Therefore, selection of the scaling region that is linear part in log-log graph is 
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important for proper estimation of correlation exponent [238] and thereby correlation dimension from 
one dimensional representative time series of surface topography.  
 
As discussed above, appropriate phase space reconstruction is prerequisite to evaluate correlation 
exponents, thus, before going into detail calculations of correlation exponents, a brief discussion on 
phase space reconstruction is given. 
 
6.4.1.2 Phase space reconstruction 
 
To investigate the chaotic behavior of surface generation process from one dimensional time series 
y1, y2, ….., yn, phase space of the dynamical system is to be reconstructed. According to Takens’ 
embedding theorem [239], m-dimensional phase space portraying the underlying dynamical system of 
surface generation process could be presented as 
 
Yi = [yi yi+τ yi+2τ ……… yi+(m-1)τ],     i=1(1)M                                                                                       (6.23) 
 
where, Yi = phase vector on the trajectory of dynamical system at ith evolution, yi = value of one 
dimensional time series at ith position, m = embedding dimension, τ = embedding delay and M = 
number of phase vector = n-(m-1)τ. The trajectory of phase vectors, called as attractor, is followed 
during the dynamic evolution of underlying system. As time evolves, states of the dynamical system 
would be uniquely defined by the points on the attractor. From equation (6.23), it is observed that 
phase space reconstruction from one dimensional time series depends on embedding dimension (m) 
and embedding delay (τ).  
 
Embedding dimension (m) should be adequately selected to uniquely define any state of the system 
in constructed phase space. Appropriate value of m should be greater than active degrees of freedom 
of the underlying system [236]. Value of embedding delay (τ) controls time coverage by each of the 
points in phase space. Lower value of τ may not capture adequate new information which may lead to 
underestimation of the dimension, whereas, for large τ, dimension might be overestimated as relevant 
information regarding the divergence of neighboring trajectories may not be gathered. Hence, for 
characterization of underlying system through phase space reconstruction, optimum values of two 
prerequisite parameters, m and τ, should be justifiably selected. 
 
In the methods, based on autocorrelation function, average mutual information is generally used for 
selection of optimum delay. Still, selections of m and τ using the techniques are not independent to 
each other. Luo and Small [234] proposed a methodology based on second order autocorrelation 
(SOAC) to select a suitable delay without any information regarding the embedding dimension. 
 
According to information theory, small τ leads to gather redundant information between yi and yi+τ, 
whereas, yi+τ contains irrelevant information with respect to yi when τ is large. As τ increases, 
redundancy decreases but irrelevance increases. Therefore, a tradeoff between the redundancy and 
irrelevance should exist. Luo and Small [234] suggested a statistic to measure the tradeoff between 
redundancy and irrelevance which is defined as follows.  
 

RITE(τ) = 
y2̅̅̅̅  SOAC(𝝉)+ y̅2 (1−SOAC(𝝉))

y2̅̅̅̅ +y̅2                                                                                               (6.24) 

 

where, RITE = redundance and irrelevance tradeoff exponent, SOAC(τ)= 
〈(yi−y̅)(yi+τ−y̅)〉

σy
2   and <···> 

denotes the expectation over i. From equation (6.24), it is observed that RITE(τ) is calculated as a 
weighted combination of the two measurements namely redundancy and irrelevance. SOAC(τ) 

controls the measures of redundancy with a weight factor 
y2̅̅̅̅

y2̅̅̅̅ +y̅2 and 1-SOAC(τ) controls the 

measures of irrelevance with weight factor 
y̅2

y2̅̅̅̅ +y̅2. As embedding delay increases from zero, value of 

RITE(τ) drops from 
y2̅̅̅̅

y2̅̅̅̅ +y̅2. After a certain value of embedding delay, RITE(τ) again increases. Hence, 

embedding delay corresponding to first local minimum of RITE(τ) would give optimum embedding 
delay (τopt) of the phase space reconstructed from original one dimensional time series. With the 
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obtained optimum embedding delay, phase spaces at different embedding dimensions are 
constructed and corresponding correlation exponents are estimated. Marching procedure and results 
for evaluation of correlation exponents are discussed in next subsection.  
 
6.4.1.3 Marching procedure and results 
 
The optimum phase space reconstruction from one dimensional time series is thus prerequisite for 
estimation of correlation exponents. To construct the optimum phase space, optimum values of τ and 
m are to be decided first. Detailed steps of phase space construction and selection of optimum 
embedding delay are discussed in subsection 6.4.1.2. 
 
For better characterization, each of the representative time series (y) of length 1203 is normalized 
using equation (6.25).  
 

ynorm = 
𝒚− ymin

ymax− ymin 
                                                                                                                          (6.25) 

 
Using equation (6.24), for τ = 0 to integer(n/2) that is 601, values of RITE(τ) are calculated for ynorm. 
First local minimum of RITE(τ) indicates the optimum embedding delay (τopt) of the corresponding one 
dimensional time series. Typical variations of RITE is given in figure 6.17. 
 

 
Fig. 6.17 Typical variations of RITE with embedding delays  

(Treatment - cur = 9 A, ton = 150 µs and toff = 200 µs) 
 

In the present study, for each of the 64 representative normalized time series (ynorm) of length 1203, 
optimum embedding delay (τopt) is evaluated by employing RITE method. The results are given in 
table 6.3.  The optimum embedding delays (τopt) are considered for further analysis. 
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Table 6.3 Values of optimum embedding delay (τopt) and correlation dimension (CD)  
 

Sl. 
no. 

Machining condition 
τopt CD 

Sl. 
no. 

Machining condition 
τopt CD cur 

(A) 
ton 

(µs) 
toff 

(µs) 
cur 
(A) 

ton 
(µs) 

toff 
(µs) 

1 6 50 50 13 7.84 33 12 50 50 16 5.73 
2 6 50 100 10 8.02 34 12 50 100 14 7.91 
3 6 50 150 13 6.04 35 12 50 150 11 8.37 
4 6 50 200 9 7.44 36 12 50 200 24 7.06 
5 6 100 50 12 7.97 37 12 100 50 15 7.33 
6 6 100 100 12 8.06 38 12 100 100 14 7.52 
7 6 100 150 11 7.66 39 12 100 150 16 5.05 
8 6 100 200 12 6.03 40 12 100 200 15 6.73 
9 6 150 50 13 7.11 41 12 150 50 17 8.03 
10 6 150 100 12 6.90 42 12 150 100 13 7.52 
11 6 150 150 22 6.12 43 12 150 150 20 6.62 
12 6 150 200 11 5.92 44 12 150 200 18 8.71 
13 6 200 50 11 7.68 45 12 200 50 16 5.02 
14 6 200 100 12 10.29 46 12 200 100 18 6.03 
15 6 200 150 21 7.21 47 12 200 150 17 5.03 
16 6 200 200 12 6.52 48 12 200 200 21 5.75 
17 9 50 50 12 7.98 49 15 50 50 20 6.88 
18 9 50 100 10 5.00 50 15 50 100 12 6.94 
19 9 50 150 11 8.58 51 15 50 150 15 6.39 
20 9 50 200 17 7.08 52 15 50 200 10 7.00 
21 9 100 50 14 8.43 53 15 100 50 19 6.11 
22 9 100 100 15 9.07 54 15 100 100 18 6.11 
23 9 100 150 14 7.11 55 15 100 150 11 7.18 
24 9 100 200 13 6.79 56 15 100 200 15 8.04 
25 9 150 50 15 7.09 57 15 150 50 21 4.84 
26 9 150 100 14 7.08 58 15 150 100 19 8.04 
27 9 150 150 16 6.45 59 15 150 150 15 7.06 
28 9 150 200 14 8.14 60 15 150 200 17 6.32 
29 9 200 50 15 6.69 61 15 200 50 26 4.06 
30 9 200 100 17 8.07 62 15 200 100 17 5.86 
31 9 200 150 14 6.89 63 15 200 150 17 8.97 
32 9 200 200 12 7.82 64 15 200 200 20 6.56 

 
Therefore, for each of the 64 treatments, phase vectors could be regenerated at given m-dimensional 
phase space with calculated τopt (refer table 6.3). On the reconstructed phase space, correlation 
exponents are evaluated and thereby corresponding correlation dimension is estimated.  
 
As discussed earlier, to estimate the correlation dimension, hyper-spheres of different radii are to be 
placed at different points on phase space. In the present study, machined surfaces are generated with 
different levels of cur, ton and toff. Therefore, with each of the estimated τopt, phase spaces are 
reconstructed from the corresponding representative normalized time series (ynorm) of length 1203 at 
the embedding dimensions (m) 3 to 35. 
 
For a particular set of τopt and m, all inter-point Euclidean distances in reconstructed phase space are 
measured. During measurement of inter-point Euclidean distances, temporally correlated pairs of 
phase vectors which lie within Theiler window (W) that is which are "accidentally" very close to each 
other are discarded [240]. By trial and error and space-time separation plot [241], it is found that pairs 
which are separated by at least W = 5*τopt, may be ignored. 
 
Radii of hyper-spheres are selected within the range of measured Euclidean distances. In logarithmic 
scale, 500 equi-length bins [242] are generated between the obtained range of Euclidean distances. 
Logarithmic scale is chosen to select more radii in lower zone. Upper boundaries of the 500 bins are 
considered for radii of hyper-spheres. For each of the 500 radii (r), total number of points lie inside the 
hyper-sphere are counted by placing the hyper-sphere at all points in phase space one by one and 
value of corresponding CS(r) is evaluated using equation (6.22).    
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Thus, for particular embedding dimension (m), 500 values of CS are obtained for 500 different radii. 
The above steps are repeated for different values of m ranging from 3 to 35. For each of the values of 
m, obtained values of CS are plotted against r in log-log scale. Different curves are obtained for 
different embedding dimensions. A typical variation of CS with r in log-log scale is shown in figure 
6.18. Now, slope of the near linear zone of each curve is estimated. Identification of near linear zone 
is very crucial [243]. 
 

 
Fig. 6.18 Typical variations of correlation sums with radii in log-log scale 

(Treatment - cur = 9 A, ton = 150 µs and toff = 200 µs) 
 
By trial and error, out of 500 points on each curve, points lie above the cumulative position of 225 
points are fitted with average error below 3%. For each curve, a scale of 50 points are set. 
Consecutive near linear zones are marked and slopes are evaluated for each near linear zone. Mean 
value of all near linear zone on each curve is taken as representative correlation exponent. In this 
way, for each embedding dimension ranging from 3 to 35, correlation exponents are calculated. 
Typical variations of correlation exponents are shown in figure 6.19. 
 

 
Fig. 6.19 Typical variations of correlation exponents with embedding dimensions 

(Treatment - cur = 9 A, ton = 150 µs & toff = 200 µs) 
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It is observed that, for each of the 64 representative time series, correlation exponents increase with 
the increase of embedding dimensions but saturate after certain embedding dimension (refer figures 
C.5 through C.8 in appendix C). This saturation indicates the presence of chaos in surface 
topography. Saturated value of correlation exponents gives correlation dimension [244] of that 
particular surface topography. Values of correlation dimension for different treatments are given in 
table 6.3. All values of correlation dimension are fraction and vary from 4.06 to 10.29. Detailed steps 
for calculation of correlation dimension is shown in figure 6.20. 
 
 
 
 
 
 
 
 
                   
                                                                                                                                         
 
 
 
 
 
             
 
 
 
                                Yes 
 
                                             No 
                                                  
                                                                                  
                                                                                          
                                                                                   
                                                                                          
 
                                              No                                                                          Yes                                                                         
                                                                                                                                              
                                                                                                             

Fig. 6.20 Detailed steps in test for chaos through phase space reconstruction 
 

Hence, chaotic nature of surface generation in EDM is confirmed through fractal dimension based 
approach. It is observed that, mapping of one dimensional time series to high dimensional phase 
space is necessary for this approach. Thus, reconstruction of phase space and selection of near-
linear zone play crucial role in estimation of correlation dimension. Presence of noise in underlying 
system and finite length of time series data restrict the robustness of this approach. Therefore, in the 
next subsection, an exclusive approach is devised directly from one dimensional representative time 
series to comment on the presence of chaos in surface topography. A value between 0 and 1 is 
squashed from each of the 64 representative time series through some mathematical transformations. 
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6.4.2 Test for chaos directly from time series 
 
As mentioned at the end of last subsection, rigorous computation is necessary to calculate the 
correlation dimension after phase space reconstruction from time series. Without phase space 
reconstruction, Gottwald and Melbourne [245] proposed a universally acceptable 0-1 test on dynamic 
system to distinguish between chaotic and non-chaotic behavior. This method for distilling a binary 
quantity from power spectrum is further modified [246] to handle the time series even contaminated by 
moderate level of noise.  
 
6.4.2.1 0-1 test 
 
In 0-1 test, a unique value between 0 and 1 is condensed from representative one dimensional time 
series of length (n) 1203. At first, one dimensional time series y1, y2, ….., yn is converted to two 
translational vectors pc(t) and qc(t) using the following relations. 
 

pc(t) = ∑ yicos(ic)t
i ,     t=1(1)n                                                                                                       (6.26) 

qc(t) = ∑ yi sin(ic)t
i ,     t=1(1)n                                                                                                       (6.27)           

 
where, c is a randomly chosen value in the range (0, π). In general, different regular patterns are 
found in pc-qc plot for regular system but for the case of chaotic system, diffusive behavior might be 
observed [245, 246].  
 
For a selected value of c, patterns of translational vectors pc and qc are quantified by calculating the 
mean square displacement Mc(t). Mean square displacement Mc(t) is enumerated using equation 
(6.28) [246] 
 

Mc(t) = 
1

n−t
 ∑ [{pc(i + t) − pc(i)}2 + {qc(i + t) − qc(i)}2]n−t

i ,     t=1(1)ncut≪n                      (6.28) 

 
For regular system, Mc(t) is a bounded function of n but for chaotic system Mc(t) almost maintains 
linear relationship with t. Measurement of the asymptotic growth of Mc(t) is the foundation of 0-1 test 
for chaos. For better convergence, Mc(t) is further modified to Dc(t) using equation (6.29). This 
modification regularizes the linear behavior of Mc(t) by subtracting the oscillatory part [246].   
 

Dc(t) = Mc(t) - �̅�2 1−cos(𝑡𝑐)

1−cos(𝑐)
,     t=1(1)ncut≪n                                                                                    (6.29) 

 
Hence, for each of the values of t, corresponding value of Dc(t) is calculated. Now, asymptotic growth 
rate of Dc(t), denoted by Kc, is calculated by correlation method. For the evaluation of Kc, two new 
variables ξ and δ are defined as [246]  
 
ξ = [1, 2, ………….., ncut],     t=1(1)ncut≪n                                                                                       (6.30) 
δ = [Dc(1), Dc(2), ………….., Dc(ncut)],     t=1(1)ncut≪n                                                                    (6.31)   
 
To measure the strength of correlation between Dc(t) and linear growth, asymptotic growth rate Kc is 
calculated as the correlation coefficient (refer equation (6.32)) between ξ and δ.  
 

Kc = 
covariance(ξ,δ)

σξσδ
                                                                                                                          (6.32) 

 
Near 1 value of Kc indicates a strong correlation between mean square displacement and linear 
growth and thereby the system is chaotic in nature, whereas, close to zero value of Kc suggests non-
chaotic behavior of the underlying system [245, 246].  
 
However, for a particular choice of c within the range (0, π), a value of Kc is obtained. As, Kc is 
dependent on c, thus, multiple values of c are chosen randomly within the specified range. For each 
of the randomly selected values of c, value of corresponding Kc is estimated. Finally, the median of 
the values of Kc (K) is evaluated and considered as the distinguishing criterion between chaos and 
regular [245, 246]. 
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The above discussed method is now implemented on each of the representative 64 time series 
obtained from the surface generated in different combinations of levels of cur, ton and toff. 
 
6.4.2.2 Results and discussion   
 
To investigate the possibility of presence of chaos in surface topography, 0-1 test is conducted on 
each of the 64 representative time series. From each of the representative time series y, two 
translational vectors, pc and qc, are to be generated using equation (6.26) and (6.27). According to 
equation (6.26) and (6.27), for the calculation of pc and qc, proper selections of c and ncut are 
necessary. Gottwald and Melbourne [246] reported to randomly select 100 to 1000 values of c within 

the range (
π

5
, 4π

5
) to avoid the distortion of results due to resonance in the system. They also 

suggested to choose ncut = n/10 to reduce finite size effects. Therefore, in the present study, 1000 

values of c are randomly selected within the range (
π

5
, 4π

5
). For each of the selected values of c and 

ncut = n/10, pc and qc are calculated using equation (6.26) and (6.27). A typical plot of the two 
translational vectors pc and qc is shown in figure 6.21. 
 

 
Fig. 6.21 Patterns of translational vectors in 0-1 test for chaos  

(Treatment - cur = 12 A, ton = 50 µs and toff = 150 µs) 
 
Diffusive patterns in figure 6.21 give a glimpse of the presence of chaos in surface topography. From 
the obtained pc and qc, modified mean square displacements are calculated using equations (6.28) 
and (6.29) for each of the randomly preselected values of c. Then, for each of the 1000 values of c, 
asymptotic growth rate Kc is evaluated using equations (6.30) - (6.32). Finally, median of the 1000 
values of Kc that is K for representative time series is estimated (table 6.4).  
 
From table 6.4, it is observed that for all the combinations of the different levels of cur, ton and toff, 
values of K are very close to 1. The lowest K is found as 0.9655. All near to 1 values of K assert the 
chaotic behavior of surface topography. Detailed steps involved in test for chaos are given in figure 
6.22. 
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Table 6.4 Values of K in 0-1 test for chaos 
 

Sl. 
no. 

Machining condition 
K 

Sl. 
no. 

Machining condition 
K cur 

(A) 
ton 

(µs) 
toff 

(µs) 
cur 
(A) 

ton 
(µs) 

toff 
(µs) 

1 6 50 50 0.9952 33 12 50 50 0.9923 
2 6 50 100 0.9941 34 12 50 100 0.9914 
3 6 50 150 0.9953 35 12 50 150 0.9965 
4 6 50 200 0.9968 36 12 50 200 0.9951 
5 6 100 50 0.9951 37 12 100 50 0.9946 
6 6 100 100 0.9945 38 12 100 100 0.9919 
7 6 100 150 0.9956 39 12 100 150 0.9899 
8 6 100 200 0.9951 40 12 100 200 0.9862 
9 6 150 50 0.9945 41 12 150 50 0.9866 
10 6 150 100 0.9942 42 12 150 100 0.9929 
11 6 150 150 0.9971 43 12 150 150 0.9882 
12 6 150 200 0.9942 44 12 150 200 0.9895 
13 6 200 50 0.9961 45 12 200 50 0.9917 
14 6 200 100 0.9948 46 12 200 100 0.9928 
15 6 200 150 0.9904 47 12 200 150 0.9896 
16 6 200 200 0.9951 48 12 200 200 0.9655 
17 9 50 50 0.9964 49 15 50 50 0.9929 
18 9 50 100 0.9957 50 15 50 100 0.9968 
19 9 50 150 0.9959 51 15 50 150 0.9874 
20 9 50 200 0.9935 52 15 50 200 0.9963 
21 9 100 50 0.9836 53 15 100 50 0.9938 
22 9 100 100 0.9933 54 15 100 100 0.9940 
23 9 100 150 0.9905 55 15 100 150 0.9953 
24 9 100 200 0.9931 56 15 100 200 0.9954 
25 9 150 50 0.9839 57 15 150 50 0.9917 
26 9 150 100 0.9922 58 15 150 100 0.9868 
27 9 150 150 0.9830 59 15 150 150 0.9897 
28 9 150 200 0.9929 60 15 150 200 0.9921 
29 9 200 50 0.9843 61 15 200 50 0.9822 
30 9 200 100 0.9883 62 15 200 100 0.9895 
31 9 200 150 0.9933 63 15 200 150 0.9824 
32 9 200 200 0.9932 64 15 200 200 0.9850 
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Fig. 6.22 Detailed steps in test for chaos directly from time series 

Set ncut = n/10, i = 1 
and imax = 1000 

Calculate mean square 
displacement (Mc) 

using equation (6.28)    

Select c randomly in 
the range (π/5, 4π/5) 

Remove oscillatory 
part of Mc and get Dc 
using equation (6.29)  

Define ξ and δ (refer 
equation (6.30) and (6.31))  

Collect representative time 
series (y) of surface topography  

Generate translational 
vectors pc and qc using 

equation (6.26) and (6.27)  

If  
t < n 

Estimate 
y̅   

Set  
t = 1 

Estimate median (K) 
from all values of Kc  

t = t+1 

If  
K ≈ 1 

Chaotic 

Regular 

Set  
t = 1 

If  
t < ncut 

t = t+1 

Estimate correlation 
coefficient (Ki

c) 
between ξ and δ  

If  
i < imax 

i = i+1 



125 
 

However, evidence in favor of chaotic behavior of surface topography is also found in subsection 
6.4.1. As, calculation of correlation dimension is done there through phase space construction, 
separate approach, which is based on time series directly, is further considered. Thus, presence of 
chaos in EDM generated surface topography is substantiated explicitly.   
 
In qualitative support of the analysis made so far, typical scanning electron micrographs of EDM 
generated surfaces are presented in figure 6.23. The EDM generated surface is composed of pock 
marks resulting as a consequence of bursting of blisters, remelting and redeposition of debris mostly 
in globular form complete or incomplete and resolidification of unexpelled molten material in and 
around the crater formed in an uncontrollable fashion by each spark [35]. The features attribute to the 
formation of chaos in the EDM generated surface topography. Lower is the spark energy, lesser are 
the above mentioned effects and smoother is the surface. 
 

  
 

(a) cur = 6 A, ton = 50 µs and toff = 200 µs 
 

(b) cur = 15 A, ton = 50 µs and toff = 200 µs 
Fig. 6.23 Scanning electron micrographs of EDM generated surfaces 

 
6.5 Summary 
 
Surface generated through any machining process carries the inherent features of that process. 
Therefore, inspecting the surface characteristics, a frame of unseen behavior of that surface 
development process could be drawn. Meticulous analysis of a justifiably selected observed variable 
of a dynamic system is an indirect way to reveal the characteristics of underlying dynamical system. In 
the present chapter, roughness profiles measured on EDM generated surface are considered as time 
series. The time series are analyzed through autocorrelation function and following conclusions are 
drawn.  
 

 Sharp drooping and subsequent damped oscillating behavior of ACF curves suggest the 
existence of both random and periodic features in the EDM generated surface. 
 

 Two-stage filtering of ACF curves and the exclusive distributional properties of roots in 
backward linear prediction are proposed to estimate the parameters of the most effective 
constituent FIDs. 
 

 Variation of characteristic correlation lengths (β) within treatment is found as the most 
contributive on overall variations in all treatments with their replications. This claims in favor of 
the randomness of the surface generated in EDM process. 
 

 A non-dimensional index, PR ratio, for each of the FIDs is calculated to assess the relative 
contribution of randomness and periodicity in the surface topography. In all cases, near zero 
values of PR ratio at different machining conditions indicate overall randomness of machined 
surface irrespective of the settings of machining control parameters.  
 

 The correlation between PR ratioavg of surface topography and machining control parameters 
(cur, ton and toff) further substantiates the predominant randomness in EDM generated surface 
topography. 
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Further, nonlinear time series analysis is performed to investigate the presence of chaos in surface 
topography and thereby in the surface generation process of EDM. As the outcome, following 
conclusions are drawn.  
 

 Saturation of correlation exponents for all 64 treatments claims in favor of the presence of 
chaos in EDM generated surface topography. 
 

 Non-integer values of correlation dimension indicate the fractal nature of surface topography. 
 

 Patterns of translational vectors pc and qc suggest the diffusive behavior of the surface 
generation process. 
 

 Values of K obtained from 0-1 test for all the 64 treatments are close to 1 which substantiate 
the presence of chaos in generated surfaces and thereby in the occurrence of discharges 
during surface generation by EDM itself. 
 

The proposed methodology could be applied in general, to any such process to directly unveil the 
underlying features of surface generation from surface profiles. This layout could be used for 
extraction of unseen characteristic attributes of surface generation in any such process.  
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Based on the work presented in the previous chapters, the following conclusions are drawn. 
Recommendations and the scope for future work are also presented. 
 
CONCLUSIONS 
 

(i) The latest modeling techniques are suffering from curse of dimensionality of process 
parameters, efficiency of training, efficiency of testing, over-fitting and algorithm parameter 
tuning. In EDM, irregular variations in material removal rate (MRR) and average surface 
roughness (ASR), obtained at different treatments of machining control parameters, suggest 
that robust modeling method is necessary for near-accurate representation of the process.  

 
(ii) Experimental values of MRR and ASR show that surface finish decreases with increase of 

production rate. Therefore, a tradeoff is required. Results of modern optimization methods are 
not yet completely effective as their performances are affected by selection of their own 
internal parameters, choice of termination criteria etc. Algorithm-specific parameter-less 
optimization method with some pertinent modifications, like population base termination 
criterion, appears to be effective in this regard.  

 
(iii) It is observed from experimental study that for skewness and kurtosis of profile height 

distribution, variation within treatment is more significant than between treatments. Measured 
values of developed length of roughness profile indicate openness of machined surface. 
Scanning electron micrographs of EDM generated surfaces exhibit complex pattern, erratic 
fluctuations and overall random features. Hence, assessment of surface topography is 
inevitable. 

 
(iv) In support vector machine (SVM) regression based both independent and unified learning 

systems of MRR and ASR, higher values of optimum regularization parameter (C) indicate 
complex relation among machining control parameters and process outcomes.  

 
(v) ε-insensitive hyper-tube wrapped around SVM regression based learning system absorbs the 

irregular fluctuations in efficient way and estimated models allow to do the production within 
predefined tolerance effectively. 

 
(vi) During model development by SVM regression based methodology, high dimensional input 

space is mapped to a comparatively low dimensional feature space through kernel function. 
Use of kernel function helps to circumvent the curse of dimensionality that is adverse effects 
of complex interactive patterns are bypassed. 

 
(vii) In searching of the optimum set of internal structural parameters of SVM regression based 

models, particle swarm optimization (PSO) and teaching learning based optimization (TLBO) 
are implemented with some proposed modifications. Modifications, namely current population 
based stopping criterion, initial population with stopping criterion based high relative 
dispersion and weight combining method for selection of guide (pbest, gbest for PSO, teacher for 
TLBO) for next iteration in case of multiple particles or learners having same optimum score, 
are improvised and worked successfully towards the smoother convergence.  

 
(viii) With the proposed modifications, modified TLBO is proved to be computationally more 

efficient than modified PSO as modified PSO takes 30 and 50 times more simulation time 
than modified TLBO in searching of optimum set of C, ε and σ for SVM regression based 
modeling of MRR and ASR respectively. 

 
(ix) Separate learning system for each of the process outcomes demands an independent set of 

internal structural parameters of SVM regression based model. In the present work, method 
for developing a SVM regression based unified learning system for both the MRR and the 
ASR that uses a unique set of C, ε and σ is proposed and expounded. The developed 
procedure works effectively. 
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(x) In multiobjective optimization, way of handling of multiple objective functions imposes a huge 
impact in final results. In the context of simultaneous minimization of training errors during the 
development of unified learning system of MRR and ASR, combined rank method, a new way 
of handling multiple objective functions by preserving their individual impacts is devised. It 
performs adequately. 

 
(xi) Pseudo Pareto optimization of two conflicting type responses, MRR and ASR, is proposed 

considering different sets of weight factors for the purpose of combining the representative 
models of MRR and ASR. The generated pseudo Pareto front provides a guideline to achieve 
highest possible quality of surface without sacrificing the production rate.  

 
(xii) Setting of the optimum available levels of machining control parameters in EDM machine to 

get optimum combination of MRR and ASR is a tedious job to process engineers. In the 
present work, a readily accessible idea, inverse solution procedure, is framed to get near-
optimum levels of machining control parameters to achieve customer demand based pseudo 
Pareto optimum combination of MRR and ASR.  

 
(xiii) For assessment of surface topography, ordered sequence of profile heights, measured on 

EDM generated surface, is considered as representative time series of that machined surface 
and autocorrelation function is taken as a typical analytical tool for the assessment purpose. 
Sharp drooping and damped oscillating behavior of ACF curves anticipate the presence of 
both random and periodic features in surface topography. 

 
(xiv) Each of the ACF curves is assumed as a summation of multiple exponentially damped 

sinusoidal freely induced decays. Two-stage filtering of ACF curves and the exclusive 
distributional properties of roots in backward linear prediction are proposed that could 
estimate the parameters of the most effective constituent freely induced decays buried in 
machined surface. 

 
(xv) Characteristic correlation length (β) is considered as a typical yardstick for randomness 

present in the machined surface and evaluated from the estimated parameters of freely 
induced decays. Variation of β within treatment is found as the most contributive on overall 
variations in all treatments with their replications. This claims in favor of the predominance of 
randomness in the surface generated and thereby the random nature of surface development 
in EDM process. 

 
(xvi) A non-dimensional index, PR ratio, is calculated from the estimated parameters of freely 

induced decays and taken as a derived measurement of the relative contributive effect of 
randomness and periodicity. Close to zero value of PR ratio for all the treatments and 
negligible variation with chosen levels of machining control parameters indicate overall 
randomness of machined surface and thereby random behavior of surface generation 
process in EDM.  

 
(xvii) Analysis of surface topography through phase space reconstruction shows the saturation of 

correlation exponents with the increase of embedding dimension and thereby indicates the 
chaotic nature of surface topography. Non-integer value of correlation dimension claims in 
favor of the fractal nature of surface topography. 

 
(xviii) Chaotic nature of the surface topography and thereby the presence of chaos in the 

occurrence of discharges during surface generation by EDM are further substantiated by 0-1 
test which is conducted directly on representative time series without phase space 
reconstruction. In 0-1 test, patterns of translational vectors also suggest diffusive behavior of 
surface topography.  

 
(xix) Chaos in topography of EDM generated surface justifies the application of SVM regression 

method in model building of EDM. 
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RECOMMENDATIONS AND FUTURE SCOPE 
 

(i) Robust model development by SVM regression methodology could be implemented for 
representative model building for any such machining process.  

 
(ii) As, ε-insensitive zone around estimated SVM regression based model absorbs the irregular 

variations in process outcome, so, the proposed model could help other researchers to apply 
the model on different products obtained in different batches. 

 
(iii) Proposed modifications on PSO and TLBO could be generalized and improvised to other 

population based evolutionary optimization methods.  
 
(iv) The suggested procedure of pseudo Pareto front generation for conflicting type responses 

and inverse solution method could be implemented in any such process. 
 
(v) The proposed way of handling multiple objective functions is a novel advancement in 

multiobjective optimization problem and could be applied to other optimization methods with 
large number of objective functions. 

 
(vi) Further study on chaos is necessary to identify whether it is deterministic or stochastic in 

nature. 
 
(vii) Inverse procedure for virtual generation of 3D surface topography in EDM from developed 

models could be attempted for the purpose of off-line analysis and prediction. 
 
(viii) The proposed methodology for modeling, optimization and assessment of surface topography 

could be implemented in any such manufacturing process for building an expert system. 
 
(ix) The analysis of randomness, periodicity and estimation of PR ratio on surface topography 

could be employed for identifying impending vibration in machines tools.  
 
(x) Experimental conformation of the chaotic nature of surface topography might be performed by 

measurement and analysis of sporadic spark locations on EDM surface. 
 
(xi) Molecular dynamics based approach could be attempted for better understanding of chaotic 

surface topography in EDM.   
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A.1 Support vector machine (SVM) regression  
 
Suppose, a representative model is developed for a disjoint, independent and identical distributed 
data set {(x1, y1), (x2, y2), …… (xN, yN)} in d dimensional input space (i.e. x Є Rd). Target function may 
be represented in the form [146] 
 
f(x) = ‹w, x› + b                                                                                                                                 (A.1) 
 
where < , > indicates dot product in vector space. Nonlinearity in the relation between input and 
output pattern (figure A.1) [145] is handled through mapping the high dimensional input space to a 
feature space Φ(x) via kernel functions. So, optimal choice of weight factor w and threshold b (bias 
term) is prerequisite of accurate modeling. Flatness of the model is controlled by minimizing Euclidean 
norm ||w||. Besides, empirical risk of training error should also be minimized [147]. So, regularized risk 
minimization problem for model developing can be written as follows. 
 

R reg (f) = 
‖𝒘‖2

2
 + C ∑ LN

i=1 (yi, f(xi))                                                                                                    (A.2) 

 
 

 
 
 
 
 
 
 
 
 
 
 

  Fig. A.2 ε-insensitive loss function 
 
 
 

            Fig. A.1 Non-linear SVM regression model 
 
Weight vector w and the bias term b can be estimated by optimizing this function (equation (A.2)) 
which minimizes empirical risk along with reduction of generalization error that is over fitting of model 
simultaneously. Thus, regularization parameter (C) and loss function are introduced to penalize over 
fitting of model with training vectors. 
  
Different loss functions namely quadratic loss function, Huber loss function, ε-Insensitive loss function 
etc. are developed for handling different types of problems [148]. In general, the loss functions are 
some modified measurements of distances between the points and their corresponding estimated 
values. Squared value of the distance is considered for assigning loss in quadratic loss function. 
Quadratic loss function corresponds to the conventional least square error criterion. Huber loss 
function is the combination of linear and quadratic loss functions. This robust loss function exhibits 
optimal properties when the underlying distribution of the data is unknown. Still, the above said two 
loss functions, quadratic and Huber, will produce no sparseness in the support vectors. To address 
the issues, Vapnik [144] proposed ε-insensitive loss function as a trade-off between the robust loss 
function of Huber and one that enables sparsity within the support vectors. ε-Insensitive loss function 
(refer figure A.2) may be defined as [145] 
 
L (yi, f(xi)) = |y i, experimental – f(xi)| - ε,     if |y i, experimental – f(xi)| ≥ ε 
                 = 0,                                     if |y i, experimental – f(xi)| < ε                                                        (A.3) 

 
In most of the model building techniques, data are fitted through least training error calculation to 
estimate the unknown coefficients or weight vectors associated with training inputs. All the data are 
tried to fit as close as possible to the deemed model. In SVM regression, an insensitive zone wrapped 
around the estimated function is defined. This insensitive zone is expected to capture the fluctuations 
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within predefined permissible tolerance. Thereby, radius of this hyper tube directly controls the 
allowable complexity of the learning system. In nomenclature, the outliers around this tube are named 
as support vectors. Here, ε-insensitive loss function (refer equation (A.3)) is considered to penalize 
over fitting of the system.   
 
As, this radius of insensitive hyper-tube increases, model would become more flat and become 
unable to reveal the unseen nature of variations in the outcomes, whereas, lower radius might make 
the model more complex. Thus a trade-off between complexity and flatness of the estimated model is 
required. Two positive slack variables ξi and ξi* are introduced [144, 146] to cope with infeasible 
constraints of the optimization problem. Hence the constrained problem can be reformulated as 
 
minimize: ‖𝒘‖2

2
 + C ∑ (ξi +  ξi

∗)N
i=1   

yi,exp - ‹w, x›i - b ≤ ε + ξi  

 

   
subject to: ‹w, x›i + b – yi,exp ≤ ε + ξi* 

ξi, ξi* ≥ 0,     i = 1(1)N 
 

(A.4) 
 
This problem can be efficiently solved by standard dualization principle utilizing Lagrange multipliers. 
A dual set of variables is introduced for developing Lagrange function. It is found that this function has 
a saddle point with respect to both primal and dual variables at the solution. Lagrange function can be 
stated as  
 

L = 
‖𝒘‖2

2
 + C ∑ (ξi +  ξi

∗)N
i=1  - ∑ (ηiξi +  ηi

∗ξi
∗)N

i=1  - ∑ 𝛼𝑖(ε + ξi −  yi +  〈𝒘, 𝒙〉i  +  bξi
∗)N

i=1   

     - ∑ αi
∗(ε + ξi

∗ +  yi −  〈𝒘, 𝒙〉i −  b)N
i=1                                                                                    (A.5) 

 
where L is the Lagrangian and ηi, ηi*, αi, αi* are Lagrange multipliers satisfying ηi, ηi*, αi, αi* ≥ 0. So, 
partial derivatives of L with respect to w, b, ξi, ξi* will give the estimates of w and b.  
 
Support vectors can be easily identified from the values of differences between Lagrange multipliers 
(αi, αi*). Very small values (close to zero) indicate the points inside the insensitive hyper-tube but non-
zero values belong to support vector group [149]. The w can be calculated as follows [146].  
  

w = ∑ (αi −  αi
∗) Φ(xi)

N
i=1                                                                                                               (A.6) 

 
The idea of kernel function K (xi, x) gives a way of addressing the curse of dimensionality [148]. It 
helps to enable the operations to be performed in the feature space (Φ (x)) rather than potentially high 
dimensional input space. A number of kernel functions satisfying Mercer’s condition are suggested by 
researchers [149, 150]. Each of the functions has its own specialized applicability. Use of Polynomial 
kernel function is a popular method for non-linear modeling. The long established multi-layer 
perceptron with a single hidden layer has a valid kernel representation for certain values of the scale 
and offset parameters. Fourier series kernel is probably not a good choice because of poor 
regularization capability, which is evident by consideration of its Fourier transform. Among different 
splines, specifically B-Spline is also a popular choice for its better flexibility. Exponential radial basis 
function produces a piecewise linear solution which can be attractive when discontinuities are 
acceptable. Apart from all the kernel functions, Gaussian radial basis function gets significant 
attention as this kernel is implicit with each support vector contributing one local Gaussian function 
centered at that data point.  
 
Here, Gaussian radial basis function with σ standard deviation (equation (A.7)) is used for its better 
potentiality to handle higher dimensional input space.   
                              

 K (xi, x) = e
− 

‖xi−𝒙‖
2

2σ2  

 
 
σ optimum 

 
 

(A.7) 
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However, representative model of the learning system with optimum choices of the most significant 
internal structural parameters, namely C, ε and σ, may be presented as [146] 
 

f(x) = ∑ (αi −  αi
∗)N

i=1  K (xi, x) + b   

                                                                                                 

 
C optimum 
ε optimum 
σ optimum 

 
 
 

(A.8) 
                              
To get the benefit of this exclusive feature of SVM regression over other model development 
techniques, internal structural parameters of SVM regression, namely the regularization parameter (C) 
which controls the penalty associated with support vector, radius of insensitive tube (ε) and standard 
deviation of Gaussian radial basis kernel function (σ), are to be properly tuned. Improper choice of the 
three parameters may lead to under-fitting or over-fitting of the actual process. Thus, for each set of 
input-output combination, an optimum set of SVM internal structural parameters, C, ε and σ, is 
expected.  
 
A.2 Particle swarm optimization (PSO) 
 
Particle swarm optimization (PSO) technique is one of the most advanced evolutionary computational 
intelligence based optimization methodologies for optimizing real world multimodal problems. Particle 
swarm optimization mimics natural behavior found in flock of birds or school of fish seeking their best 
food sources [178]. In this population based swarm intelligence technique, a set of randomly initialized 
particles is always updated in position and velocity by gathering information from themselves. Effect of 
each particle and experience of the whole swarm modify the position of population forwarding to 
optimum zone. Rate of convergence is purposefully controlled by different factors. Convergence is 
delayed due to improper choice or may lead to entrapping in local optima. For multivariable problem in 
high dimensional space, time and memory space needed for reaching optimum solution by PSO are 
very important. Main steps involved in PSO are briefly listed as 
 
Step 1 : pbest and gbest from current particles are identified. 

 
Step 2 : Inertia factor, weight factor, cognitive and social acceleration coefficients, velocity of 

each of the particles in swarm are modified with current pbest and gbest.   
 

Step 3 : Velocity corrected position vector of each of the particles is evaluated.   
 

Step 4 : Check the termination criterion. If satisfied, current gbest is declared as optimum setting, 
otherwise repeat the steps with current upgraded particles till termination criterion is 
satisfied.  

 
Number of particles (n) in swarm should be within the range (10, 40) [212]. Lower choice may not 
gather information from whole space but higher value of n will take longer time to converge in 
optimum zone. 
 
Inertia factor (ω) controls the effect of previous velocity of individual particle on current velocity. To 
modify the rate of convergence another control on simulation is done by introducing constriction factor 
(Ψ) [213]. This term bounds the velocity effect of the particles on their positions avoiding clamping of 
particles to one end of search space [214]. So, higher values of inertia and constriction factor ensure 
wide searching which are necessary at initial stage but gradual convergence is enhanced at 
moderately lower values.  
 
Another two important factors are cognitive acceleration coefficient (c1) and social acceleration 
coefficient (c2) which greatly control the influence of the experience of the individual particle and the 
whole swarm respectively on new velocity of particle. Individual best of each particle that is pi 

best of ith 
particle influences the exploration in the search space but the best position of swarm that is g best 
always guide to converge near-optimum zone. Therefore, choice of the factors becomes important for 
converging to global optimum zone quickly avoiding premature entrapping in local optima.  
 
Different values of the control factors are proposed by the researchers for their different types of 
problems. However, in most of the cases, nearly a same range is suggested irrespective of the nature 



152 
 

of problem [215]. Shi and Eberhart [216] suggested linearly decreasing inertia factor from 0.9 to 0.4. 
Cognitive acceleration coefficient should vary linearly with iterations from 2.5 to 0.5 while the variation 
of social acceleration coefficient would occur just in reverse order [217]. Since constriction factor 
directly controls the optimization time, it may be considered as linearly time varying from 0.9 to 0.4. 
 
Further, maximum number of iterations is to be set properly. A large value is necessary for adequate 
convergence. In other words, simulation will be terminated before reaching this limiting value.  
 
A.3 Teaching learning based optimization (TLBO)  
 
Compared to traditional deterministic approaches for optimization of multimodal, high dimensional 
non-linear large scale engineering problems, metaheuristic algorithms exhibit more promising 
performances [219]. Natural phenomena inspired trajectory and population based different algorithms 
are still suffering from the problem of tuning their own internal parameters [184, 219]. Rao et al. [184] 
introduced an algorithm-specific parameter-less optimization technique which mimics the ideology of 
teaching-learning process, called as teaching learning based optimization (TLBO). A class of learners 
is considered as the population of the optimization algorithm. In TLBO, different subjects offered to 
the learners and scores of the learners in the offered subjects are analogous to different control 
variables and values of objective function respectively. Marching steps of TLBO to reach global 
optimum are broadly divided in two phases namely teacher phase and learner phase.  
 
In teacher phase, teacher always tries to pull forward the batch of learners aiming to his/her own level. 
Gaining more knowledge from teacher helps the learners to score better marks. Therefore, teacher 
gradually increases the mean score of the learners according to his/her own capability. Still the 
knowledge dissemination by the teacher and acquiring of knowledge by the learners are not always 
same for all teacher-learner combinations. Thus, a teaching factor should play a typical role in this 
teacher phase. In the present study, adaptive teaching factor [220] depending upon the current 
performance level of the whole batch is deployed instead of randomly selected integer between 1 and 
2 [219]. This adaptive teaching factor (TF), calculated as a ratio of mean of the values of learners to 
value of teacher of latest population [220], aids in converging the simulation with lesser time.  
 
Gaining of knowledge by the learners is further enhanced through different schemes of interactions 
among themselves namely group discussions, presentations, formal communications etc. The intra-
learner interactions are performed in the second phase that is learner phase. In this learner phase, 
each of the learners is randomly selected and compared with another randomly selected different 
learner. If the other learner has more knowledge than him/her, then, the former learner gains some 
knowledge from the other one. By this way, scores of the learners are increased. Main steps involved 
in TLBO are briefly listed as 
 
Step 1 : The learner having best score is identified and considered as teacher. 

  
Step 2 : Adaptive TF is calculated and all learners are modified towards the teacher.   

 
Step 3 : All modified learners (two at a time) are randomly selected and upgraded themselves.   

 
Step 4 : Check the termination criterion. If satisfied, current teacher is declared as optimum 

setting, otherwise repeat the steps with current upgraded learners till termination 
criterion is satisfied.  

 
However, exploitation of the search space is done in teacher phase, whereas, learner phase does the 
exploration. In every iteration, values of the objective function that is scores of the current learners in 
each subject gradually move towards optimum zone.  
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Fig. B.1 Sequence diagram of proposed modified TLBO to search optimum unique set of C, ε and σ by simultaneous minimization of MATE1 and MATE2 

MATEs (equation (4.5)) in 
estimation of MRR (MATE1) 

and that of ASR (MATE2) 
are separately considered 
as two objective functions;  
set n = 20 and itermax = 250 

Normalize the control 
parameters – cur, ton, t off 
and process responses – 

MRR and ASR using 
equation (4.4) and (4.20) 

Stop simulation 
and latest 
teacher is 

declared as the 
optimum unique 
set of C, ε and σ  

Get the combined 
searching ranges 

of C, ε and σ   
(refer table 4.9) 

If 
termination 
criterion is 
satisfied 

Randomly (following uniform 
distribution) generate 20 set of 

learners with SR ratio along 
each dimension > 40% within 
corresponding search space  

 

Find out mean 
of all 20 learners 
and estimate TF Calculate SR 

ratio along all 
dimensions (C, 

ε and σ) 
(equation (4.6)) 

Replace tth learner of current 
population by new tth learner 

Set iter = 1, termination 
criterion as SR ratio 

along all three 
dimensions < 1% in 

consecutive 5 iterations 

 

Calculate new tth learner 
taught by current teacher 

If  
iter = 
itermax 

iter = iter + 1  

Restart the 
simulation 
with higher 

itermax  

Calculate the searching ranges of 
C, ε and σ based on normalized 

MRR (refer table 4.9) 

Calculate the searching ranges of 
C, ε and σ based on normalized 

MRR (refer table 4.9) 

Do the union operation 
between searching ranges 

of C, ε and σ based on 
normalized MRR and 

normalized ASR  

With training input and output 
vectors, for each of the current 
set of 20 learners, Lagrange 

multipliers for normalized MRR 
and normalized ASR are 

calculated separately 

Normalized MRR and normalized 
ASR are estimated and 

denormalized, MATE1 and MATE2 
(equation (4.5)) are calculated 

Rank all 20 learners with 
respect to their corresponding 

MATE1 and MATE2, store 
these two sets of ranks in 
rank1 and rank2 matrices 

Get combined rank by element-
wise multiplication of rank1 and 
rank2 matrices, learner having 
best combined rank is selected 

as current teacher 

t = t + 1  
t = 1  

If  
t = n 

If  
MATE1, new t 
< MATE1, t 

If  
MATE2, new t 
< MATE2, t 

Select random integer r 
between 1 and n except k 

k = 1  

If  
k = n 

k = k + 1  

Calculate new 
kth learner 

sharing 
knowledge with 

rth learner 
(equation (4.21)) 

Replace the learners 
of current population 

by corresponding 
new learners If  

MATE1, k 
< MATE1, r 

If  
MATE2, k 

< MATE2, r 

If  
MATE1, k 

> MATE1, r 

If  
MATE2, k 

> MATE2, r 

Calculate new kth 
learner sharing 
knowledge with 

rth learner 
(equation (4.22)) 
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Fig. C.1. Variations of PR ratios at different combinations of levels of ton and toff at cur = 6 A 
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Fig. C.2. Variations of PR ratios at different combinations of levels of ton and toff at cur = 9 A 
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Fig. C.3. Variations of PR ratios at different combinations of levels of ton and toff at cur = 12 A 
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Fig. C.4. Variations of PR ratios at different combinations of levels of ton and toff at cur = 15 A 

 
 
 
 
 



 

1
6
3

 

 
Fig. C.5 Variations of correlation exponents at different combinations of levels of ton and toff at current = 6 A 
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Fig. C.6 Variations of correlation exponents at different combinations of levels of ton and toff at current = 9 A 
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Fig. C.7 Variations of correlation exponents at different combinations of levels of ton and toff at current = 12 A 



 

1
6
6

 

 
Fig. C.8 Variations of correlation exponents at different combinations of levels of ton and toff at current = 15 A 
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Table D.1 Plasma channel characteristics 
 

Sl. 
no. 

Ref. 
[Year] 

Plasma channel characteristics 

1 
32 

[1983] 

R (t) = K Qm tn ; K = 
𝐿

𝑙𝑀+0.5𝑁
 ; m = 0.5N and n = N 

R = spark radius, t = time, Q = discharge power, l = discharge length, m, n, K, M, N = 
constants 

2 
61 

[1986] 

Tb = 
𝐸0𝑅

𝐾𝜋0.5
 tan−1 [

4𝛼𝑡

𝑅2
]
0.5

 

Tb = boiling temperature, E0 = energy density, R = spark radius, α = thermal 
diffusivity, t = time, K = constants 

3 
62 

[1989]  
Rplasma (t) = Rpt0.75 

Rplasma = plasma channel radius (µm), t = time (µs), Rp = constant 

4 
63 

[1996] 
temperature of the plasma channel varies in the range of 8000-10000 K and 
decreases slowly with time  

5 
64 

[2000] 
R (t) = 2.85 Ip 0.53 t 0.38 

R = plasma channel radius, Ip = discharge current, t = time 

6 
65 

[2003] 
constant plasma channel radius = 0.75 μm 

7 
66 

[2004] 
plasma channel diameter = 50-400 μm, temperature = 8100± 1750 K, pressure = 4.5 
bar  

8 
67 

[2004] 
plasma channel temperature = 5500-7000 K 

9 
68 

[2005] 
plasma channel diameter varies in the range of 34-57 μm and temperature is about 
7000 K 

10 
69 

[2008] 
plasma channel diameter grows to about 250 μm after 1.7 μs of dielectric breakdown 

11 
70 

[2009] 
Rplasma (t) = Rpt0.2 

Rplasma = plasma channel radius (µm), t = time (µs), Rp = constant 

12 
71 

[2009] 

Rsp (t) = K Imton
n 

Rsp = plasma channel radius (μm), I = discharge current (A), ton = pulse on time, m, n, 
K = constants 

13 

72 
[2009], 

73 
[2010] 

Rsp = 2040 I 0.43 ton 0.44 

Rsp = plasma channel radius (μm), I = discharge current (A), ton = spark duration (µs) 

14 
21 

[2013] 
plasma channel radius = 0.2 mm at pulse duration = 105 μs 

15 
74 

[2013] 
R (t) = 0.0249 t 0.75 

R = plasma channel radius (m), t = discharge time (s) 

16 
75 

[2014] 

Rpc = Kten 

Rpc = plasma channel radius (mm), K, n = constants, te = pulse duration (µs), plasma 
channel radius = 0.11 mm at pulse duration = 52 μs, plasma channel radius = 0.43 
mm at pulse duration = 840 μs 
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Table D.2 Comparison among fundamental thermal models [86] 
 

                             Ref. 
                           [Year] 
Features 

87 
[1971] 

88 
[1974] 

89, 90 
[1981] 

91 [1982], 78 [1983], 61 
[1986] 

18 
[1989] 

Main considerations 

 Two dimensional heat 
flow 

 Semi-infinite cylinder 
with circular heat 
source 

 Two dimensional heat 
flow 

 Finite cylinder with 
circular heat source 
on the surface 

 Two dimensional heat 
flow 

 Semi-infinite cylinder 
heated over a disk-
shaped region 

 Two dimensional heat 
flow 

 Semi-infinite body with 
a disk heat source on 
the surface 

 One dimensional heat 
flow 

 Point heat source 

Assumptions 

 Upper part of electrode 
is adiabatic 

 Constant thermo-
physical properties of 
the material over the 
whole temperature 
range 

 Erosion takes place in 
the molten area of 
electrode 

 Constant heat flux 

 Upper part of 
electrode is adiabatic 

 Constant thermo-
physical properties of 
the material over the 
whole temperature 
range 

 Erosion takes place in 
the molten area of 
electrode 

 Constant heat flux 

 Surface beyond the 
disk region is 
insulated 

 Constant thermo-
physical properties of 
the material over the 
whole temperature 
range 

 Erosion takes place in 
the molten area of 
electrode 

 Constant heat flux 

 Uniform heat flux with 
constant radius 

 Constant thermo-
physical properties of 
the material over the 
whole temperature 
range 

 Erosion takes place in 
the molten area of 
electrode 

 Plasma channel is 
expanding with time 

 Heat flux from a point 
heat source 

 Average thermo-
physical properties of 
the material over the 
whole temperature 
range  

 Erosion takes place in 
the molten area of 
electrode 

 Plasma radius 
remains small during 
the discharge 

% of discharge energy 50 % 50 % 50 % 50 % 18 % 

Radius of heat flux Constant Constant Constant Expanding with time Not applicable 

Limitations 

 Approximation of heat 
flux radius is not readily 
available 

 Effects of vaporization 
is neglected 

 Guideline for the value 
of outer cylinder radius 
is not available 

 Approximation of heat 
flux radius is not 
readily available 

 The number of terms 
used highly affect the 
results 

 No guideline for the 
determination of 
electrode thickness 

 Approximation of heat 
flux radius is not 
readily available 

 Effects of vaporization 
is neglected 

 Direct application of a 
disk heat source 

 

 Effects of vaporization 
is neglected 

 Guideline for the value 
of outer cylinder 
radius is not available 

 In small ton, heat flux 
radius is large 
compared to crater 
radius  

 Effects of melting and 
vaporization is 
neglected 

 The crater profile 
resulted is 
hemispherical 
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Table D.3 Initial position vectors for modeling of MRR and ASR with C, ε and σ tuned by modified 
PSO 

 

Particle 
no. 

Material removal rate Average surface roughness 

C ε σ C ε σ 

1 2.8692 0.3741 0.6413 7.8464 0.2182 0.6413 

2 27.6309 0.3705 0.4735 8.5362 0.6271 0.4735 

3 27.3996 0.9601 0.4921 8.7711 0.6377 0.4921 

4 10.1175 0.3718 0.7914 4.7648 0.3734 0.7914 

5 24.0751 1.0408 0.7303 4.7332 0.4760 0.7303 

6 8.1387 0.4240 0.4764 8.9144 0.2271 0.4764 

7 25.8437 0.7102 0.7927 7.0968 0.6105 0.7927 

8 23.2679 1.0917 0.4666 4.1319 0.2278 0.4666 

9 2.6193 1.0371 0.6027 4.2077 0.4283 0.6027 

10 3.0346 0.6132 0.7503 8.9040 0.2768 0.7503 

11 28.0965 0.9792 0.7616 8.6920 0.2475 0.7616 

12 2.2017 0.4416 0.4731 6.1559 0.6164 0.4731 

13 21.1043 1.0947 0.7820 8.6928 0.5995 0.7820 

14 4.5689 1.1037 0.7528 4.5076 0.3030 0.7528 

15 25.3141 0.4255 0.7442 4.0201 0.2226 0.7442 

16 3.7709 0.6065 0.7526 3.9201 0.5580 0.7526 

17 6.1115 0.3996 0.7766 8.9605 0.4274 0.7766 

18 3.2125 0.3955 0.5132 7.5031 0.2547 0.5132 

19 22.3486 0.4083 0.4744 8.7844 0.6364 0.4744 

20 27.6509 0.7158 0.6943 8.9504 0.6188 0.6943 

Initial SR 
ratio (%) 

40.63 40.18 40.45 40.39 40.06 40.45 
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Table D.4 Initial velocity vectors for modeling of MRR and ASR with C, ε and σ tuned by modified 
PSO 

 

Particle 
no. 

Material removal rate Average surface roughness 

C ε σ C ε σ 

1 -1.1420 -0.5874 0.2550 -2.6903 0.0859 -0.0538 

2 16.1977 -0.4189 0.0710 1.4569 -0.1057 -0.3198 

3 -9.5219 0.3831 0.1616 2.4293 0.1356 -0.1096 

4 22.1250 0.0540 0.0253 -2.8482 -0.0470 -0.0311 

5 26.6057 0.2248 -0.2527 -1.0113 0.0115 -0.0026 

6 2.4647 0.5152 0.0114 -1.8713 0.0844 -0.1972 

7 22.7751 -0.6845 -0.1259 -4.7858 0.3492 0.0349 

8 -15.2420 -0.2692 0.1663 -0.7026 -0.2623 0.1614 

9 23.3150 -0.4363 0.1352 5.1228 0.3883 -0.3054 

10 -10.9557 -0.1002 -0.0747 -3.2326 -0.2852 0.0649 

11 -12.7906 -0.6022 -0.2867 -1.1405 -0.3512 0.3070 

12 20.9269 0.3702 0.1573 -3.0261 -0.3518 0.0198 

13 -26.1034 -0.6633 0.1473 5.0315 0.4215 0.0467 

14 16.6214 0.6079 0.2219 -1.7055 -0.3030 0.0026 

15 11.0503 0.5777 0.1754 5.0611 -0.3597 0.0269 

16 2.0973 -0.1111 -0.2908 -2.1017 0.1121 0.1956 

17 -5.3766 -0.2315 -0.1144 -0.5855 0.0967 -0.0398 

18 -1.4190 -0.5537 0.0976 2.4724 -0.0612 -0.0194 

19 -22.3169 0.3308 -0.2901 -3.1377 0.3914 0.0463 

20 3.8368 -0.2715 -0.0188 1.3004 0.0400 -0.0029 
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Table D.5 Difference of Lagrange multipliers (αi, αi*) for modeling of MRR and ASR with C, ε and σ 
tuned by modified PSO 

(# and ## indicate support vectors for MRR and ASR respectively) 
 

Sl. 
no. 

Training input vector  
(cur, t on, t off) 

Difference of Lagrange 
multipliers for MRR 

Difference of Lagrange 
multipliers for ASR 

1 (6, 50, 50) 0.3284838735# -0.0000000019 
2 (6, 50, 100) -0.0000000905 5.6135729118## 
3 (6, 50, 150) -0.0000000203 2.0112101327## 
4 (6, 50, 200) -0.0000000711 -1.5737082907## 
5 (6, 100, 100) -14.8346053071# -8.9977999768## 
6 (6, 100, 150) 1.3684640154# 3.8048789847## 
7 (6, 150, 50) 6.3557092185# 0.0000002966 
8 (6, 150, 100) 4.3634812387# 8.9977998358## 
9 (6, 150, 150) 13.4023480957# -8.9977997524## 
10 (6, 150, 200) -6.2513732208# -0.4504826345## 
11 (6, 200, 50) -1.0913087391# 0.8200597992## 
12 (6, 200, 100) -0.0000000620 -0.0000000345 
13 (6, 200, 200) -11.2255429582# 2.5978271284## 
14 (9, 50, 50) 4.0130967043# 2.9196954829## 
15 (9, 50, 100) 14.7045830684# -0.0000000117 
16 (9, 50, 150) -0.0000000984 -8.9977999552## 
17 (9, 50, 200) 0.0000000721 7.8455011954## 
18 (9, 100, 50) -0.0000008126 -1.0069938584## 
19 (9, 100, 150) 4.3716848306# 8.9977999651## 
20 (9, 100, 200) -0.0000000198 -2.3436175891## 
21 (9, 150, 100) -11.5410265525# 4.9310973956## 
22 (9, 150, 150) 0.0000000681 -4.1265497223## 
23 (9, 150, 200) -4.2034020028# 8.9977999350## 
24 (9, 200, 50) -0.6125952834# -3.4244267611## 
25 (9, 200, 150) -8.0299868114# -0.0000000197 
26 (9, 200, 200) 28.0968999783# 0.0000000132 
27 (12, 50, 100) -7.5900649457# -0.0000000104 
28 (12, 50, 150) -22.8724100613# -0.0000000480 
29 (12, 50, 200) 3.0917015612# 0.0000000244 
30 (12, 100, 50) 0.0000000608 0.0000000951 
31 (12, 100, 100) -13.1081281553# -3.7985708088## 
32 (12, 100, 150) 28.0968993179# 3.6022598205## 
33 (12, 100, 200) 0.0000000134 -7.9241061613## 
34 (12, 150, 50) -2.7063627361# 8.9977999519## 
35 (12, 150, 100) 28.0968999258# -8.9977999123## 
36 (12, 150, 150) -28.0968998613# -5.3085517713## 
37 (12, 200, 50) 17.2811542371# -4.0032855127## 
38 (12, 200, 100) -28.0968999601# 8.9977999680## 
39 (12, 200, 150) 28.0968998943# -0.0000000573 
40 (12, 200, 200) -16.3297770771# -0.0000000291 
41 (15, 50, 50) 22.6634341946# 8.9977999810## 
42 (15, 50, 100) -28.0968998729# -7.1733289197## 
43 (15, 50, 150) 25.1909322194# 8.9977999835## 
44 (15, 50, 200) -0.0000004244 -0.3260243248## 
45 (15, 100, 50) 15.1317773286# -4.5413407219## 
46 (15, 100, 150) 28.0968999745# 4.8724704393## 
47 (15, 100, 200) -28.0968998307# 0.0000000620 
48 (15, 150, 100) -28.0968999703# 8.9977999739## 
49 (15, 150, 150) -16.8305238557# -8.9977999844## 
50 (15, 150, 200) 28.0968997887# 5.8612259452## 
51 (15, 200, 50) 23.6216433811# 7.0837013616## 
52 (15, 200, 100) 0.0000000330 -8.9977999839## 
53 (15, 200, 150) 28.0968999403# 7.2968083326## 
54 (15, 200, 200) -13.5336530969# 3.2731726767## 
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Table D.6 Initial learner population for modeling of MRR and ASR with C, ε and σ tuned by modified 
TLBO 

 

Learner 
no. 

Material removal rate Average surface roughness 

C ε σ C ε σ 

1 2.8692 0.3741 0.6413 7.8464 0.2182 0.6413 

2 27.6309 0.3705 0.4735 8.5362 0.6271 0.4735 

3 27.3996 0.9601 0.4921 8.7711 0.6377 0.4921 

4 10.1175 0.3718 0.7914 4.7648 0.3734 0.7914 

5 24.0751 1.0408 0.7303 4.7332 0.4760 0.7303 

6 8.1387 0.4240 0.4764 8.9144 0.2271 0.4764 

7 25.8437 0.7102 0.7927 7.0968 0.6105 0.7927 

8 23.2679 1.0917 0.4666 4.1319 0.2278 0.4666 

9 2.6193 1.0371 0.6027 4.2077 0.4283 0.6027 

10 3.0346 0.6132 0.7503 8.9040 0.2768 0.7503 

11 28.0965 0.9792 0.7616 8.6920 0.2475 0.7616 

12 2.2017 0.4416 0.4731 6.1559 0.6164 0.4731 

13 21.1043 1.0947 0.7820 8.6928 0.5995 0.7820 

14 4.5689 1.1037 0.7528 4.5076 0.3030 0.7528 

15 25.3141 0.4255 0.7442 4.0201 0.2226 0.7442 

16 3.7709 0.6065 0.7526 3.9201 0.5580 0.7526 

17 6.1115 0.3996 0.7766 8.9605 0.4274 0.7766 

18 3.2125 0.3955 0.5132 7.5031 0.2547 0.5132 

19 22.3486 0.4083 0.4744 8.7844 0.6364 0.4744 

20 27.6509 0.7158 0.6943 8.9504 0.6188 0.6943 

Initial SR 
ratio (%) 

40.63 40.18 40.45 40.39 40.06 40.45 
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Table D.7 Difference of Lagrange multipliers (αi, αi*) for modeling of MRR and ASR with C, ε and σ 
tuned by modified TLBO 

(# and ## indicate support vectors for MRR and ASR respectively) 
 

Sl. 
no. 

Training input vector  
(cur, t on, t off) 

Difference of Lagrange 
multipliers for MRR 

Difference of Lagrange 
multipliers for ASR 

1 (6, 50, 50) 0.0985452973# -0.0000000019 
2 (6, 50, 100) -0.0000000667 5.6148847419## 
3 (6, 50, 150) -0.0000000073 2.0106555813## 
4 (6, 50, 200) -0.0000000369 -1.5740784925## 
5 (6, 100, 100) -13.2983888388# -8.9999999768## 
6 (6, 100, 150) 0.8764061745# 3.8069589873## 
7 (6, 150, 50) 5.7707546754# 0.0000002969 
8 (6, 150, 100) 3.4663380899# 8.9999998359## 
9 (6, 150, 150) 13.4288136957# -8.9999997512## 
10 (6, 150, 200) -5.9293581146# -0.4502415935## 
11 (6, 200, 50) -0.6208954285# 0.8196181922## 
12 (6, 200, 100) -0.0000000458 -0.0000000345 
13 (6, 200, 200) -11.3548631890# 2.5976328847## 
14 (9, 50, 50) 4.2271743808# 2.9196316326## 
15 (9, 50, 100) 13.8264608164# -0.0000000117 
16 (9, 50, 150) -0.0000000624 -8.9999999552## 
17 (9, 50, 200) 0.0000001010 7.8477271070## 
18 (9, 100, 50) -0.0000008475 -1.0075169275## 
19 (9, 100, 150) 4.0131307206# 8.9999999651## 
20 (9, 100, 200) -0.0000000104 -2.3467295622## 
21 (9, 150, 100) -11.1379333968# 4.9304497329## 
22 (9, 150, 150) 0.0000000542 -4.1272455872## 
23 (9, 150, 200) -4.1045021565# 8.9999999348## 
24 (9, 200, 50) -0.3924807537# -3.4239376413## 
25 (9, 200, 150) -7.9335655970# -0.0000000197 
26 (9, 200, 200) 28.0985999775# 0.0000000132 
27 (12, 50, 100) -7.1923780704# -0.0000000104 
28 (12, 50, 150) -21.9505006369# -0.0000000481 
29 (12, 50, 200) 2.8497760771# 0.0000000244 
30 (12, 100, 50) 0.0000000466 0.0000000948 
31 (12, 100, 100) -13.4751603748# -3.7973615552## 
32 (12, 100, 150) 28.0984051547# 3.6025617793## 
33 (12, 100, 200) 0.0000000174 -7.9242297948## 
34 (12, 150, 50) -2.2757843274# 8.9999999518## 
35 (12, 150, 100) 28.0985999195# -8.9999999123## 
36 (12, 150, 150) -28.0985998559# -5.3091413931## 
37 (12, 200, 50) 16.5896970704# -4.0055766596## 
38 (12, 200, 100) -28.0985999589# 8.9999999680## 
39 (12, 200, 150) 28.0985998783# -0.0000000575 
40 (12, 200, 200) -16.4516089037# -0.0000000291 
41 (15, 50, 50) 22.6528321236# 8.9999999810## 
42 (15, 50, 100) -28.0985998561# -7.1758555468## 
43 (15, 50, 150) 24.7428877743# 8.9999999835## 
44 (15, 50, 200) -0.0000000986 -0.3272010111## 
45 (15, 100, 50) 14.9719117155# -4.5434539453## 
46 (15, 100, 150) 28.0985999740# 4.8727915963## 
47 (15, 100, 200) -28.0985997841# 0.0000000620 
48 (15, 150, 100) -28.0985999697# 8.9999999739## 
49 (15, 150, 150) -16.7141066250# -8.9999999844## 
50 (15, 150, 200) 28.0985997378# 5.8624729960## 
51 (15, 200, 50) 23.8202712457# 7.0846846713## 
52 (15, 200, 100) 0.0000000285 -8.9999999839## 
53 (15, 200, 150) 28.0985999351# 7.2986283281## 
54 (15, 200, 200) -13.4986331556# 3.2720348057## 
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Table D.8 Initial learner population for searching of optimum unique set of C, ε and σ by modified 
TLBO 

 

Learner 
no. 

C ε σ 

1 0.0562 0.0169 0.6413 

2 0.9825 0.0168 0.4735 

3 0.9739 0.0329 0.4921 

4 0.3274 0.0168 0.7914 

5 0.8495 0.0352 0.7303 

6 0.2533 0.0182 0.4764 

7 0.9156 0.0261 0.7927 

8 0.8193 0.0365 0.4666 

9 0.0469 0.0351 0.6027 

10 0.0624 0.0234 0.7503 

11 0.9999 0.0335 0.7616 

12 0.0312 0.0187 0.4731 

13 0.7384 0.0366 0.7820 

14 0.1198 0.0369 0.7528 

15 0.8958 0.0183 0.7443 

16 0.0899 0.0232 0.7526 

17 0.1775 0.0176 0.7766 

18 0.0691 0.0175 0.5132 

19 0.7849 0.0178 0.4744 

20 0.9833 0.0262 0.6943 

Initial SR 
ratio (%) 

40.64 40.18 40.45 
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Table D.9 Difference of Lagrange multipliers (αi, αi*) for normalized MRR and normalized ASR 
(# and ## indicate support vectors for normalized MRR and normalized ASR respectively) 

 

Sl. 
no. 

Training input vector 
(cur, t on, t off) 

Difference of Lagrange 
multipliers for normalized MRR 

Difference of Lagrange 
multipliers for normalized ASR 

1 (6, 50, 50) -0.000000002796 -0.764554207673## 
2 (6, 50, 100) -0.000000009512 0.884361167229## 
3 (6, 50, 150) 0.000000000122 0.510197961001## 
4 (6, 50, 200) -0.000000016877 -0.999999994898## 
5 (6, 100, 100) -0.432080569555# -0.999999998139## 
6 (6, 100, 150) 0.000000032870 0.154408781906## 
7 (6, 100, 200) -0.000000005594 0.710914971657## 
8 (6, 150, 50) 0.127462045052# 0.037989657879## 
9 (6, 150, 100) 0.141377784440# 0.999999995288## 
10 (6, 150, 150) 0.464622968706# -0.999999995293## 
11 (6, 150, 200) -0.217389039837# -0.551957179210## 
12 (6, 200, 50) -0.009938496912# 0.000000001114 
13 (6, 200, 100) -0.000000004138 -0.135215960250## 
14 (6, 200, 200) -0.430589900521# 0.077156773467## 
15 (9, 50, 50) 0.355462431335# 0.999999994509## 
16 (9, 50, 100) 0.273609069455# -0.295041059654## 
17 (9, 50, 150) -0.000000002954 -0.999999996557## 
18 (9, 50, 200) 0.000000002403 0.999999996087## 
19 (9, 100, 50) -0.000000007705 -0.090219565910## 
20 (9, 100, 150) 0.217241099393# 0.999999996909## 
21 (9, 100, 200) -0.000000001207 -0.289849585477## 
22 (9, 150, 100) -0.420062202030# 0.999999997362## 
23 (9, 150, 150) 0.000000002994 -0.436752900699## 
24 (9, 150, 200) -0.138829893909# 0.999999998078## 
25 (9, 200, 50) -0.000000029292 -0.875041277073## 
26 (9, 200, 150) -0.273962234136# 0.000000001502 
27 (9, 200, 200) 0.999999998834# 0.321212248902## 
28 (12, 50, 50) -0.332688993668# -0.301423445472## 
29 (12, 50, 150) -0.725705107150# -0.000000010391 
30 (12, 50, 200) 0.071476440548# 0.079249244142## 
31 (12, 100, 100) -0.469673124348# -0.914066753160## 
32 (12, 100, 150) 0.898274485156# 0.770128415857## 
33 (12, 100, 200) 0.000000001649 -0.999999996900## 
34 (12, 150, 50) -0.000000013432 0.999999998585## 
35 (12, 150, 100) 0.999999995452# -0.917033628344## 
36 (12, 150, 150) -0.999999992952# -0.999999996259## 
37 (12, 200, 50) 0.538360015461# -0.086447265691## 
38 (12, 200, 100) -0.999999998048# 0.999999998030## 
39 (12, 200, 150) 0.999999993285# -0.000000009813 
40 (12, 200, 200) -0.574857959601# -0.094448806725## 
41 (15, 50, 50) 0.920212678063# 0.999999997745## 
42 (15, 50, 100) -0.999999996271# -0.828828033849## 
43 (15, 50, 150) 0.776567167323# 0.999999998710## 
44 (15, 50, 200) -0.000000001486 -0.451792235691## 
45 (15, 100, 50) 0.495825151268# -0.486546465507## 
46 (15, 100, 150) 0.999999998702# 0.913875910423## 
47 (15, 100, 200) -0.969917192846# 0.000000007371 
48 (15, 150, 100) -0.999999998601# 0.999999996940## 
49 (15, 150, 150) -0.568482595264# -0.999999998590## 
50 (15, 150, 200) 0.999999902894# 0.616622070391## 
51 (15, 200, 50) 0.846108281196# 0.587529799685## 
52 (15, 200, 100) 0.000000000960 -0.999999998437## 
53 (15, 200, 150) 0.999999996666# 0.832877246791## 
54 (15, 200, 200) -0.515946613189# 0.417561755751## 
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Table D.10 Initial learner population for pseudo Pareto optimization 
 

Learner 
no. 

Current 
(A) 

Pulse on 
time (μs) 

Pulse off 
time (μs) 

1 6.5059 51.2143 130.6446 

2 14.8425 50.4721 54.2352 

3 14.7647 170.5833 62.7075 

4 8.9462 50.7484 198.9359 

5 13.6454 187.0230 171.1407 

6 8.2800 61.3682 55.5847 

7 14.2408 119.6868 199.5464 

8 13.3736 197.3904 51.1178 

9 6.4218 186.2756 113.0718 

10 6.5616 99.9198 180.2544 

11 14.9993 174.4858 185.4086 

12 6.2812 64.9521 54.0596 

13 12.6452 198.0037 194.6900 

14 7.0781 199.8288 181.3827 

15 14.0625 61.6875 177.4929 

16 6.8095 98.5496 181.3064 

17 7.5975 56.3962 192.2230 

18 6.6215 55.5727 72.3168 

19 13.0641 58.1840 54.6807 

20 14.8493 120.8145 154.7704 

Initial SR 
ratio (%) 

40.63 40.18 40.45 
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Table D.11 Different ACF values  
 

Treatment - cur = 12 A, ton = 150 µs and toff = 150 µs  
(direction 1, refer figure 6.4) 

τ ACF ACFinsign ACFsign τ ACF ACFinsign ACFsign 

1 1.0000 0.0357 0.9643 51 -0.2480 -0.0093 -0.2387 
2 0.9545 0.0957 0.8588 52 -0.2626 -0.0115 -0.2512 
3 0.8671 0.0840 0.7831 53 -0.2683 -0.0145 -0.2539 
4 0.7401 0.0575 0.6826 54 -0.2653 -0.0202 -0.2450 
5 0.5997 0.0331 0.5666 55 -0.2482 -0.0244 -0.2239 
6 0.4522 0.0089 0.4433 56 -0.2182 -0.0277 -0.1906 
7 0.3107 -0.0094 0.3202 57 -0.1722 -0.0257 -0.1466 
8 0.1765 -0.0268 0.2033 58 -0.1163 -0.0218 -0.0945 
9 0.0617 -0.0355 0.0972 59 -0.0475 -0.0099 -0.0376 
10 -0.0346 -0.0383 0.0037 60 0.0227 0.0025 0.0202 
11 -0.1101 -0.0332 -0.0769 61 0.0862 0.0111 0.0751 
12 -0.1718 -0.0257 -0.1461 62 0.1360 0.0125 0.1235 
13 -0.2240 -0.0178 -0.2061 63 0.1705 0.0075 0.1630 
14 -0.2699 -0.0106 -0.2593 64 0.1899 -0.0020 0.1920 
15 -0.3129 -0.0054 -0.3075 65 0.1964 -0.0135 0.2099 
16 -0.3517 -0.0001 -0.3516 66 0.1938 -0.0238 0.2176 
17 -0.3868 0.0047 -0.3914 67 0.1828 -0.0335 0.2162 
18 -0.4174 0.0081 -0.4255 68 0.1685 -0.0393 0.2078 
19 -0.4404 0.0109 -0.4513 69 0.1551 -0.0394 0.1945 
20 -0.4536 0.0122 -0.4658 70 0.1448 -0.0333 0.1781 
21 -0.4527 0.0134 -0.4661 71 0.1362 -0.0240 0.1602 
22 -0.4374 0.0122 -0.4495 72 0.1296 -0.0120 0.1416 
23 -0.4074 0.0075 -0.4148 73 0.1203 -0.0024 0.1227 
24 -0.3616 0.0005 -0.3621 74 0.1062 0.0031 0.1031 
25 -0.2969 -0.0039 -0.2930 75 0.0855 0.0033 0.0822 
26 -0.2174 -0.0061 -0.2113 76 0.0593 0.0000 0.0592 
27 -0.1268 -0.0051 -0.1217 77 0.0289 -0.0046 0.0335 
28 -0.0371 -0.0070 -0.0301 78 -0.0033 -0.0080 0.0048 
29 0.0478 -0.0096 0.0574 79 -0.0390 -0.0120 -0.0270 
30 0.1202 -0.0150 0.1351 80 -0.0754 -0.0143 -0.0611 
31 0.1815 -0.0171 0.1986 81 -0.1128 -0.0167 -0.0961 
32 0.2281 -0.0165 0.2446 82 -0.1469 -0.0168 -0.1301 
33 0.2581 -0.0136 0.2717 83 -0.1769 -0.0159 -0.1611 
34 0.2682 -0.0117 0.2800 84 -0.2012 -0.0146 -0.1866 
35 0.2607 -0.0107 0.2714 85 -0.2163 -0.0118 -0.2045 
36 0.2394 -0.0095 0.2489 86 -0.2215 -0.0085 -0.2131 
37 0.2104 -0.0060 0.2164 87 -0.2171 -0.0061 -0.2110 
38 0.1788 0.0012 0.1776 88 -0.2031 -0.0051 -0.1980 
39 0.1438 0.0078 0.1361 89 -0.1823 -0.0079 -0.1744 
40 0.1067 0.0121 0.0946 90 -0.1498 -0.0085 -0.1413 
41 0.0651 0.0100 0.0551 91 -0.1089 -0.0082 -0.1006 
42 0.0242 0.0057 0.0185 92 -0.0611 -0.0064 -0.0547 
43 -0.0142 0.0011 -0.0153 93 -0.0126 -0.0066 -0.0060 
44 -0.0486 -0.0018 -0.0468 94 0.0351 -0.0077 0.0428 
45 -0.0846 -0.0076 -0.0769 95 0.0799 -0.0095 0.0894 
46 -0.1184 -0.0118 -0.1066 96 0.1217 -0.0100 0.1317 
47 -0.1499 -0.0138 -0.1362 97 0.1621 -0.0061 0.1682 
48 -0.1795 -0.0141 -0.1655 98 0.1990 0.0011 0.1979 
49 -0.2057 -0.0122 -0.1935 99 0.2303 0.0100 0.2204 
50 -0.2295 -0.0108 -0.2186 100 0.2527 0.0172 0.2355 
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Table D.11 (Contd.) Different ACF values 
 

Treatment - cur = 12 A, ton = 150 µs and toff = 150 µs  
(direction 1, refer figure 6.4) 

τ ACF ACFinsign ACFsign τ ACF ACFinsign ACFsign 

101 0.2637 0.0202 0.2435 151 -0.1531 0.0114 -0.1645 
102 0.2621 0.0174 0.2447 152 -0.1621 0.0157 -0.1779 
103 0.2507 0.0110 0.2397 153 -0.1622 0.0187 -0.1809 
104 0.2284 -0.0003 0.2286 154 -0.1538 0.0204 -0.1743 
105 0.2011 -0.0107 0.2118 155 -0.1383 0.0210 -0.1593 
106 0.1701 -0.0191 0.1892 156 -0.1169 0.0209 -0.1378 
107 0.1377 -0.0229 0.1606 157 -0.0917 0.0201 -0.1118 
108 0.1022 -0.0239 0.1261 158 -0.0660 0.0172 -0.0831 
109 0.0659 -0.0196 0.0855 159 -0.0397 0.0141 -0.0537 
110 0.0260 -0.0131 0.0391 160 -0.0161 0.0090 -0.0251 
111 -0.0151 -0.0029 -0.0123 161 0.0054 0.0036 0.0017 
112 -0.0587 0.0089 -0.0676 162 0.0244 -0.0016 0.0260 
113 -0.1050 0.0200 -0.1250 163 0.0413 -0.0062 0.0475 
114 -0.1571 0.0251 -0.1823 164 0.0571 -0.0090 0.0661 
115 -0.2099 0.0269 -0.2368 165 0.0718 -0.0101 0.0819 
116 -0.2599 0.0259 -0.2859 166 0.0842 -0.0108 0.0950 
117 -0.3027 0.0239 -0.3266 167 0.0954 -0.0100 0.1055 
118 -0.3343 0.0223 -0.3566 168 0.1063 -0.0068 0.1131 
119 -0.3558 0.0182 -0.3741 169 0.1189 0.0013 0.1176 
120 -0.3655 0.0123 -0.3778 170 0.1268 0.0083 0.1184 
121 -0.3628 0.0047 -0.3675 171 0.1300 0.0150 0.1151 
122 -0.3463 -0.0025 -0.3437 172 0.1277 0.0207 0.1070 
123 -0.3156 -0.0077 -0.3079 173 0.1152 0.0213 0.0940 
124 -0.2715 -0.0095 -0.2620 174 0.0975 0.0216 0.0760 
125 -0.2161 -0.0076 -0.2085 175 0.0717 0.0182 0.0535 
126 -0.1531 -0.0030 -0.1501 176 0.0389 0.0117 0.0272 
127 -0.0895 0.0001 -0.0895 177 0.0000 0.0015 -0.0015 
128 -0.0253 0.0039 -0.0292 178 -0.0407 -0.0099 -0.0308 
129 0.0372 0.0083 0.0289 179 -0.0798 -0.0201 -0.0596 
130 0.0954 0.0124 0.0830 180 -0.1110 -0.0250 -0.0861 
131 0.1491 0.0171 0.1321 181 -0.1360 -0.0274 -0.1086 
132 0.1964 0.0211 0.1753 182 -0.1519 -0.0259 -0.1260 
133 0.2344 0.0221 0.2124 183 -0.1609 -0.0236 -0.1373 
134 0.2642 0.0213 0.2429 184 -0.1609 -0.0187 -0.1423 
135 0.2850 0.0183 0.2667 185 -0.1548 -0.0136 -0.1411 
136 0.3019 0.0184 0.2835 186 -0.1415 -0.0070 -0.1345 
137 0.3115 0.0185 0.2930 187 -0.1268 -0.0034 -0.1234 
138 0.3150 0.0203 0.2947 188 -0.1105 -0.0015 -0.1090 
139 0.3080 0.0199 0.2881 189 -0.0947 -0.0020 -0.0926 
140 0.2902 0.0172 0.2730 190 -0.0774 -0.0020 -0.0754 
141 0.2626 0.0134 0.2492 191 -0.0597 -0.0015 -0.0582 
142 0.2255 0.0083 0.2172 192 -0.0424 -0.0006 -0.0418 
143 0.1817 0.0039 0.1777 193 -0.0276 -0.0011 -0.0265 
144 0.1333 0.0010 0.1323 194 -0.0131 -0.0008 -0.0123 
145 0.0817 -0.0010 0.0826 195 -0.0008 -0.0018 0.0010 
146 0.0320 0.0008 0.0312 196 0.0095 -0.0042 0.0137 
147 -0.0170 0.0024 -0.0194 197 0.0180 -0.0080 0.0261 
148 -0.0619 0.0046 -0.0665 198 0.0256 -0.0128 0.0384 
149 -0.1017 0.0060 -0.1077 199 0.0320 -0.0188 0.0508 
150 -0.1326 0.0083 -0.1409 200 0.0401 -0.0229 0.0630 
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Table D.11 (Contd.) Different ACF values  
 

Treatment - cur = 12 A, ton = 150 µs and toff = 150 µs  
(direction 1, refer figure 6.4) 

τ ACF ACFinsign ACFsign τ ACF ACFinsign ACFsign 

201 0.0492 -0.0255 0.0747 251 0.0086 0.0103 -0.0017 
202 0.0591 -0.0261 0.0852 252 -0.0128 0.0098 -0.0226 
203 0.0674 -0.0265 0.0939 253 -0.0311 0.0119 -0.0430 
204 0.0739 -0.0260 0.0999 254 -0.0479 0.0148 -0.0626 
205 0.0769 -0.0257 0.1025 255 -0.0631 0.0180 -0.0811 
206 0.0787 -0.0227 0.1014 256 -0.0763 0.0216 -0.0979 
207 0.0778 -0.0183 0.0962 257 -0.0901 0.0224 -0.1125 
208 0.0750 -0.0119 0.0869 258 -0.1037 0.0205 -0.1242 
209 0.0685 -0.0056 0.0740 259 -0.1151 0.0172 -0.1322 
210 0.0574 -0.0007 0.0582 260 -0.1247 0.0114 -0.1362 
211 0.0437 0.0035 0.0402 261 -0.1288 0.0068 -0.1355 
212 0.0275 0.0064 0.0211 262 -0.1273 0.0029 -0.1302 
213 0.0089 0.0071 0.0018 263 -0.1187 0.0016 -0.1204 
214 -0.0103 0.0065 -0.0167 264 -0.1049 0.0017 -0.1066 
215 -0.0289 0.0050 -0.0338 265 -0.0852 0.0044 -0.0896 
216 -0.0481 0.0008 -0.0490 266 -0.0641 0.0065 -0.0706 
217 -0.0650 -0.0030 -0.0619 267 -0.0397 0.0111 -0.0508 
218 -0.0810 -0.0083 -0.0727 268 -0.0177 0.0136 -0.0313 
219 -0.0932 -0.0119 -0.0813 269 0.0038 0.0173 -0.0135 
220 -0.1027 -0.0146 -0.0881 270 0.0199 0.0180 0.0018 
221 -0.1114 -0.0182 -0.0932 271 0.0323 0.0183 0.0140 
222 -0.1178 -0.0209 -0.0968 272 0.0383 0.0156 0.0226 
223 -0.1210 -0.0220 -0.0989 273 0.0412 0.0134 0.0279 
224 -0.1202 -0.0207 -0.0995 274 0.0417 0.0116 0.0300 
225 -0.1148 -0.0168 -0.0980 275 0.0417 0.0120 0.0297 
226 -0.1068 -0.0125 -0.0943 276 0.0411 0.0134 0.0277 
227 -0.0957 -0.0080 -0.0877 277 0.0392 0.0144 0.0248 
228 -0.0817 -0.0037 -0.0779 278 0.0347 0.0132 0.0216 
229 -0.0650 -0.0003 -0.0647 279 0.0284 0.0098 0.0186 
230 -0.0445 0.0034 -0.0479 280 0.0234 0.0070 0.0163 
231 -0.0224 0.0052 -0.0277 281 0.0203 0.0055 0.0148 
232 0.0018 0.0064 -0.0046 282 0.0192 0.0052 0.0140 
233 0.0283 0.0078 0.0205 283 0.0199 0.0063 0.0137 
234 0.0558 0.0092 0.0466 284 0.0210 0.0074 0.0136 
235 0.0830 0.0105 0.0724 285 0.0233 0.0097 0.0136 
236 0.1074 0.0107 0.0967 286 0.0264 0.0129 0.0134 
237 0.1287 0.0105 0.1182 287 0.0292 0.0162 0.0131 
238 0.1448 0.0090 0.1358 288 0.0300 0.0174 0.0126 
239 0.1528 0.0042 0.1487 289 0.0284 0.0161 0.0123 
240 0.1552 -0.0010 0.1563 290 0.0237 0.0112 0.0125 
241 0.1519 -0.0065 0.1584 291 0.0202 0.0067 0.0135 
242 0.1449 -0.0104 0.1553 292 0.0182 0.0026 0.0156 
243 0.1364 -0.0109 0.1474 293 0.0189 -0.0002 0.0191 
244 0.1262 -0.0092 0.1353 294 0.0214 -0.0025 0.0238 
245 0.1134 -0.0066 0.1200 295 0.0237 -0.0059 0.0297 
246 0.0998 -0.0023 0.1021 296 0.0281 -0.0081 0.0362 
247 0.0850 0.0025 0.0826 297 0.0336 -0.0091 0.0428 
248 0.0690 0.0071 0.0619 298 0.0400 -0.0087 0.0487 

249 0.0505 0.0097 0.0408 299 0.0450 -0.0083 0.0533 

250 0.0298 0.0104 0.0195 300 0.0472 -0.0086 0.0558 
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Table D.11 (Contd.) Different ACF values  
 

Treatment - cur = 12 A, ton = 150 µs and toff = 150 µs  
(direction 1, refer figure 6.4) 

τ ACF ACFinsign ACFsign τ ACF ACFinsign ACFsign 

301 0.0450 -0.0108 0.0558 327 -0.0228 -0.0157 -0.0070 
302 0.0425 -0.0105 0.0530 328 -0.0187 -0.0169 -0.0018 
303 0.0372 -0.0103 0.0475 329 -0.0162 -0.0194 0.0031 
304 0.0308 -0.0085 0.0394 330 -0.0143 -0.0219 0.0076 
305 0.0213 -0.0079 0.0293 331 -0.0142 -0.0252 0.0110 
306 0.0114 -0.0064 0.0179 332 -0.0143 -0.0275 0.0132 
307 0.0012 -0.0048 0.0059 333 -0.0151 -0.0291 0.0140 
308 -0.0087 -0.0031 -0.0057 334 -0.0144 -0.0277 0.0134 
309 -0.0198 -0.0036 -0.0163 335 -0.0129 -0.0244 0.0115 
310 -0.0318 -0.0065 -0.0253 336 -0.0099 -0.0185 0.0086 
311 -0.0445 -0.0121 -0.0324 337 -0.0070 -0.0123 0.0052 
312 -0.0557 -0.0183 -0.0374 338 -0.0048 -0.0067 0.0019 
313 -0.0651 -0.0248 -0.0404 339 -0.0031 -0.0022 -0.0009 
314 -0.0713 -0.0298 -0.0415 340 -0.0015 0.0012 -0.0027 
315 -0.0747 -0.0334 -0.0413 341 -0.0003 0.0028 -0.0031 
316 -0.0759 -0.0358 -0.0401 342 0.0015 0.0035 -0.0020 
317 -0.0743 -0.0361 -0.0382 343 0.0028 0.0021 0.0007 
318 -0.0697 -0.0336 -0.0361 344 0.0039 -0.0008 0.0047 
319 -0.0626 -0.0288 -0.0338 345 0.0062 -0.0037 0.0098 
320 -0.0549 -0.0233 -0.0316 346 0.0102 -0.0053 0.0155 
321 -0.0481 -0.0189 -0.0293 347 0.0147 -0.0065 0.0212 
322 -0.0427 -0.0160 -0.0268 348 0.0193 -0.0071 0.0263 
323 -0.0380 -0.0141 -0.0239 349 0.0225 -0.0078 0.0303 
324 -0.0343 -0.0138 -0.0205 350 0.0249 -0.0079 0.0328 
325 -0.0307 -0.0142 -0.0166 351 0.0254 -0.0080 0.0333 
326 -0.0266 -0.0145 -0.0120 352 0.0245 -0.0074 0.0319 
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Table D.12 Singular values of Hankel matrix generated from a typical truncated ACF curve 
(Singular values are arranged in columnwise descending order, * corresponding to significant part) 

 

Smax = 12.4976 

12.4976 * 0.6430 0.0692 0.0157 0.0084 0.0050 0.0032 0.0013 
12.1977 * 0.6061 0.0576 0.0149 0.0084 0.0050 0.0032 0.0013 
7.2594 * 0.4984 0.0465 0.0149 0.0083 0.0048 0.0030 0.0012 
7.1939 * 0.4866 0.0449 0.0143 0.0083 0.0048 0.0029 0.0012 
3.1231 * 0.3298 0.0442 0.0142 0.0082 0.0048 0.0029 0.0012 
2.8744 * 0.2960 0.0439 0.0138 0.0079 0.0047 0.0028 0.0011 
2.8732 * 0.2946 0.0430 0.0137 0.0079 0.0046 0.0028 0.0011 
2.8529 * 0.2538 0.0424 0.0135 0.0078 0.0045 0.0027 0.0011 
2.7275 * 0.2441 0.0400 0.0133 0.0077 0.0045 0.0027 0.0010 
2.7107 * 0.1761 0.0393 0.0128 0.0076 0.0042 0.0026 0.0009 
2.4445 * 0.1756 0.0358 0.0127 0.0073 0.0042 0.0025 0.0009 
2.4285 * 0.1569 0.0356 0.0123 0.0071 0.0041 0.0024 0.0009 
2.3093 * 0.1450 0.0330 0.0122 0.0067 0.0040 0.0024 0.0007 
2.2574 * 0.1231 0.0301 0.0118 0.0064 0.0039 0.0023 0.0006 
1.8080 * 0.1227 0.0264 0.0116 0.0064 0.0039 0.0022 0.0005 
1.7811 * 0.1127 0.0258 0.0112 0.0061 0.0038 0.0021 0.0005 
1.3705 * 0.0926 0.0199 0.0111 0.0060 0.0038 0.0021 0.0004 
1.3477 * 0.0851 0.0198 0.0103 0.0058 0.0037 0.0020 0.0004 
1.1784 * 0.0847 0.0179 0.0103 0.0058 0.0036 0.0020 0.0004 
1.1555 * 0.0832 0.0174 0.0094 0.0057 0.0036 0.0019 0.0003 
1.0485 0.0776 0.0172 0.0093 0.0056 0.0035 0.0018 

 
1.0425 0.0766 0.0170 0.0092 0.0054 0.0035 0.0017 
1.0191 0.0752 0.0168 0.0091 0.0054 0.0035 0.0017 
0.8454 0.0743 0.0167 0.0088 0.0054 0.0033 0.0016 
0.6484 0.0709 0.0158 0.0085 0.0052 0.0033 0.0015 
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Table D.13 Roots of equation (6.12) consisting of dis obtained from a typical ACFsign curve 
(Complex conjugate roots are not given, * corresponding to the most contributive signal poles)  

 

Roots Roots Roots 

Real Imaginary Modulus Real Imaginary Modulus Real Imaginary Modulus 

0.9328 * 0.3893 *  1.0108 * 0.4193 0.8860 0.9802 -0.5735 0.7915 0.9774 
0.9907 * 0.1861 *  1.0080 * 0.3874 0.9003 0.9801 -0.6012 0.7705 0.9773 
1.0039 * 0.0847 * 1.0075 * 0.3550 0.9134 0.9800 -0.6283 0.7486 0.9773 
0.9766 * 0.2281 * 1.0029 * 0.3221 0.9254 0.9798 -0.6545 0.7257 0.9773 
0.9944 * 0.1299 * 1.0029 * 0.2889 0.9361 0.9797 -0.6799 0.7019 0.9772 
0.9858 0.1624 0.9991 0.2554 0.9457 0.9795 -0.7044 0.6772 0.9772 
0.9460 0.3032 0.9934 0.2215 0.9541 0.9794 -0.7281 0.6517 0.9771 
0.9564 0.2678 0.9932 0.1873 0.9612 0.9793 -0.7508 0.6253 0.9771 
0.9304 0.3423 0.9914 0.1529 0.9672 0.9792 -0.7725 0.5982 0.9770 
0.8963 0.4210 0.9902 0.1183 0.9719 0.9791 -0.7933 0.5703 0.9770 
0.9854 0.0441 0.9864 0.0836 0.9754 0.9789 -0.8131 0.5417 0.9770 
0.8554 0.4882 0.9849 0.0488 0.9776 0.9788 -0.8318 0.5123 0.9770 
0.8362 0.5191 0.9842 0.0139 0.9786 0.9787 -0.8495 0.4824 0.9769 
0.8713 0.4575 0.9841 -0.0209 0.9784 0.9786 -0.8662 0.4518 0.9769 
0.7958 0.5785 0.9838 -0.0558 0.9769 0.9785 -0.8817 0.4207 0.9769 
0.8161 0.5493 0.9837 -0.0905 0.9742 0.9784 -0.8961 0.3890 0.9769 
0.7517 0.6332 0.9828 -0.1251 0.9703 0.9783 -0.9093 0.3568 0.9769 
0.7738 0.6059 0.9828 -0.1596 0.9652 0.9783 -0.9215 0.3242 0.9768 
0.7282 0.6597 0.9826 -0.1939 0.9588 0.9782 -0.9324 0.2912 0.9768 
0.7040 0.6851 0.9823 -0.2279 0.9512 0.9781 -0.9422 0.2578 0.9768 
0.6787 0.7097 0.9820 -0.2616 0.9424 0.9780 -0.9508 0.2241 0.9768 
0.6528 0.7332 0.9817 -0.2950 0.9324 0.9780 -0.9581 0.1901 0.9768 
0.6261 0.7559 0.9815 -0.3280 0.9213 0.9779 -0.9643 0.1559 0.9768 
0.5987 0.7776 0.9813 -0.3606 0.9089 0.9778 -0.9692 0.1214 0.9768 
0.5703 0.7985 0.9812 -0.3927 0.8954 0.9778 -0.9766 0.0174 0.9768 
0.5413 0.8179 0.9808 -0.4243 0.8808 0.9777 -0.9754 0.0522 0.9768 
0.5118 0.8366 0.9807 -0.4554 0.8651 0.9776 -0.9729 0.0868 0.9768 
0.9807 0.0000 0.9807 -0.4859 0.8483 0.9776 0.9600 0.0000 0.9600 
0.4815 0.8542 0.9806 -0.5157 0.8304 0.9775 0.8583 0.3823 0.9396 
0.4507 0.8706 0.9803 -0.5449 0.8115 0.9775  
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Table D.14 Calculation of PR ratio of each of the FIDs, class average of PR ratios for each of the 10 classes and mean rank for each of the 3 directions 
 

Treatment - cur = 12 A, ton = 150 µs and toff = 150 µs 

Class 
Direction 1 Direction 2 Direction 3 Class 

average of 
PR ratios 

λ  
(mm) 

β  
(mm) 

PR 
ratio 

Rank 
λ  

(mm) 
β  

(mm) 
PR 
ratio 

Rank 
λ  

(mm) 
β  

(mm) 
PR 

ratio 
Rank 

0.0 mm < λ < 0.1 mm 
(λclass = 0.05 mm) 

             

0.1 mm ≤ λ < 0.2 mm 
(λclass = 0.15 mm) 

0.1271 1.7184 0.0740 224 

0.1194 2.4446 0.0488 437 
0.1644 1.5813 0.1040 185 

0.0504 

0.1885 2.5750 0.0732 478 

0.1072 2.6690 0.0402 495 0.1019 3.0043 0.0339 571 

0.1963 2.9416 0.0667 550 0.1375 3.5434 0.0388 701 

0.1779 4.4032 0.0404 866 
0.1098 4.0390 0.0272 804 

0.1179 16.5477 0.0071 1308 

0.2 mm ≤ λ < 0.3 mm 
(λclass = 0.25 mm) 

0.2707 2.3161 0.1169 388 
0.2422 1.1747 0.2062 96     0.1192 

0.2190 6.3335 0.0346 1079 

0.3 mm ≤ λ < 0.4 mm 
(λclass = 0.35 mm) 

0.3870 6.4457 0.0600 1088 0.3622 2.4174 0.1498 426 0.3675 1.0437 0.3521 77 0.1873 

0.4 mm ≤ λ < 0.5 mm 
(λclass = 0.45 mm) 

    0.4606 4.2083 0.1095 831     0.1095 

0.5 mm ≤ λ < 0.6 mm 
(λclass = 0.55 mm) 

0.5970 2.4655 0.2421 443         0.2421 

0.6 mm ≤ λ < 0.7 mm 
(λclass = 0.65 mm) 

             

0.7 mm ≤ λ < 0.8 mm 
(λclass = 0.75 mm) 

        0.7339 6.1597 0.1191 1066 0.1191 

0.8 mm ≤ λ < 0.9 mm 
(λclass = 0.85 mm) 

             

0.9 mm ≤ λ < 1.0 mm 
(λclass = 0.95 mm) 

             

Mean rank  644.40  528.71  648.75  
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Table D.15 Values of PR ratioavg 
 

Sl. 
no. 

Machining condition 
PR 

ratioavg 
Sl. 
no. 

Machining condition 
PR 

ratioavg 
Current 

(A) 
Pulse on 
time (µs) 

Pulse off 
time (µs) 

Current 
(A) 

Pulse on 
time (µs) 

Pulse off 
time (µs) 

1 6 50 50 0.0880 33 12 50 50 0.1188 
2 6 50 100 0.0927 34 12 50 100 0.0781 
3 6 50 150 0.0653 35 12 50 150 0.0938 
4 6 50 200 0.0986 36 12 50 200 0.1090 
5 6 100 50 0.0534 37 12 100 50 0.0910 
6 6 100 100 0.1203 38 12 100 100 0.0934 
7 6 100 150 0.1151 39 12 100 150 0.1105 
8 6 100 200 0.1094 40 12 100 200 0.1547 
9 6 150 50 0.1093 41 12 150 50 0.0893 
10 6 150 100 0.0966 42 12 150 100 0.0966 
11 6 150 150 0.0763 43 12 150 150 0.0972 
12 6 150 200 0.1133 44 12 150 200 0.0993 
13 6 200 50 0.1068 45 12 200 50 0.1105 
14 6 200 100 0.1280 46 12 200 100 0.1403 
15 6 200 150 0.0834 47 12 200 150 0.1215 
16 6 200 200 0.0890 48 12 200 200 0.1118 
17 9 50 50 0.0921 49 15 50 50 0.1324 
18 9 50 100 0.1501 50 15 50 100 0.1090 
19 9 50 150 0.1648 51 15 50 150 0.1499 
20 9 50 200 0.0977 52 15 50 200 0.1008 
21 9 100 50 0.1126 53 15 100 50 0.1496 
22 9 100 100 0.0953 54 15 100 100 0.1093 
23 9 100 150 0.1386 55 15 100 150 0.1095 
24 9 100 200 0.0851 56 15 100 200 0.1539 
25 9 150 50 0.1034 57 15 150 50 0.1797 
26 9 150 100 0.1039 58 15 150 100 0.1077 
27 9 150 150 0.0908 59 15 150 150 0.1066 
28 9 150 200 0.1161 60 15 150 200 0.1141 
29 9 200 50 0.1003 61 15 200 50 0.1056 
30 9 200 100 0.1039 62 15 200 100 0.1317 
31 9 200 150 0.0969 63 15 200 150 0.1677 
32 9 200 200 0.1161 64 15 200 200 0.1182 
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Table D.16 Coefficient ai,j,k of Bezier function 
 

Sl. 
no. 

i = 0 Sl. 
no. 

i = 1 Sl. 
no. 

i = 2 Sl. 
no. 

i = 3 

j k ai,j,k j k ai,j,k j k ai,j,k j k ai,j,k 

1 0 0 0.0880 17 0 0 0.0121 33 0 0 0.0681 49 0 0 -0.0359 
2 0 1 0.0141 18 0 1 0.4798 34 0 1 -1.3682 50 0 1 0.8042 
3 0 2 -0.0963 19 0 2 -0.1004 35 0 2 0.9974 51 0 2 -0.6078 
4 0 3 0.0928 20 0 3 -0.3942 36 0 3 0.3394 52 0 3 -0.1924 
5 1 0 -0.1039 21 1 0 0.4969 37 1 0 -0.9326 53 1 0 0.5912 
6 1 1 0.5597 22 1 1 -3.7138 38 1 1 6.9139 54 1 1 -3.9121 
7 1 2 -0.3596 23 1 2 3.8839 39 1 2 -7.8166 55 1 2 4.0780 
8 1 3 -0.0639 24 1 3 -0.8771 40 1 3 2.5697 56 1 3 -1.1544 
9 2 0 0.2716 25 2 0 -1.0830 41 2 0 1.5864 57 2 0 -0.7362 

10 2 1 -1.2760 26 2 1 6.3440 42 2 1 -9.8948 58 2 1 4.6935 
11 2 2 0.9403 27 2 2 -7.6283 43 2 2 12.9894 59 2 2 -5.8124 
12 2 3 0.0435 28 2 3 2.8212 44 2 3 -6.4372 60 2 3 2.8994 
13 3 0 -0.1489 29 3 0 0.5542 45 3 0 -0.6713 61 3 0 0.1489 
14 3 1 0.7657 30 3 1 -3.2680 46 3 1 4.7419 62 3 1 -1.8060 
15 3 2 -0.6816 31 3 2 4.3408 47 3 2 -7.0070 63 3 2 2.9104 
16 3 3 0.0434 32 3 3 -1.7868 48 3 3 3.8269 64 3 3 -1.8262 

 



 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 


