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Functionally graded materials (FGMs) categorized as an advanced class of composite 

materials, consist of novel inhomogeneous mixture of materials like ceramic and metals with 

smooth changes of its constituents’ volume fraction along the thickness direction. These 

materials do not contain well distinguished boundaries or interfaces between their different 

regions as in the case of conventional composite materials but have numerous advantages that 

make them appropriate in potential applications due to reduction of in-plane and through-the 

thickness transverse stresses, improved thermal properties, high toughness, etc. FGMs 

possess good chances of reducing mechanical and thermal stress concentration in many 

structural elements because of smooth transition between the properties of the components 

and thereby cracking or delamination, which are often observed in conventional multi-layer 

systems are avoided. FGMs consisting of metallic and ceramic components are well-known 

to enhance the properties of high temperature thermal-barrier application where the ceramic 

part has good thermal resistance and metallic part has superior fracture toughness. Thus 

FGMs have great potential in applications where the operating conditions are severe, 

including spacecraft heat shields, nuclear reactors, biomedical implants, etc. A functionally 

graded shallow conical shell is a structural element of considerable technical significance and 

can be idealized as turbo machinery blades under rotation that can be extensively used in the 

aviation, energy, nuclear and mechanical industries. In a weight-sensitive and high thermal 

gradient application, FGM materials are advantageous because of their light weight, high 

strength, stiffness and thermal barrier ceramics components. In addition, FGM materials can 

be tailored to cater the design requirements of strength, stiffness thermal barrier application. 

The prior knowledge of free vibration characteristics of such turbomachinery blades is utmost 

important to avoid resonance effect ensuring longer life of such components, preventing 

unscheduled shutdown of the machineries. The composition of FGM constituents’ such as 

ceramics and metals can be used with help of prior knowledge of natural frequencies. 

Moreover, the initial stress system in a rotating shell due to centrifugal body forces has the 

cascading effect on the natural frequency appreciably. Thus, the free vibration characteristics 

have crucial influence on safe performance of such FGM shell structures.  

On the other hand outside/inside debris or small torn out objects from the turbo 

machines can have impact of such conical shell blade with low velocity. Therefore, the 
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susceptibility to damage due to low velocity impact caused by foreign objects can accelerate 

the degradation of strength and can promote the structural instability. Hence the low velocity 

impact performances are crucial for designing of an impact mitigating system  In realistic 

situations, pretwisted conical shell structures have geometrical complexities  arising  due  to  

their  specific  applications  in  various  service  environments.  A typical dynamic parameters 

need to be used considering the rotation effect of these structural elements. Therefore a good 

understanding of the dynamic behaviour of FGM pretwisted conical shells requires close 

attention in order to confirm the operational safety.  Accordingly, the present study is 

intended to investigate two key aspects of the dynamic behaviour of pretwisted FGM rotating 

conical shells, namely, free vibration characteristics and dynamic low velocity impact 

response. Being a proficient analysis tool to the design engineer the finite element method is 

employed to address the present problems.  

An eight-noded isoparametric shell element is used for the finite element formulation 

considering rotary inertia effect and transverse shear deformation based on Mindlin’s theory. 

The dynamic equilibrium equation is derived from Lagrange’s equation neglecting the 

Coriolis effect for moderate rotational speeds. A modified Hertzian contact law considering 

permanent indentation is used to calculate the contact force along with other impact response 

parameters. Using the Newmark’s time integration scheme the time dependent equations of 

the shell and the impactor are solved. The static equilibrium equations and the standard eigen 

value problem are solved by Gauss elimination technique and QR iteration algorithm, 

respectively. Finite element codes are developed and validated with those published results in 

the open literature after performing a suitable convergence study and verification of the 

results. 

The results are primarily obtained for FGM pretwisted and untwisted conical shells 

for the triggering parameters like different FGM power law index, rotational speeds, twist 

angles and porosity factors on the natural frequencies. The mode shapes for the FGM conical 

shells are also presented. Numerical solutions are also obtained for time dependent impact 

response of FGM conical shells subjected to low velocity impact. Parametric studies are 

conducted to investigate the effects of prime parameters like different FGM power law index, 

angle of twist, velocity of impactor, location of the impactor, shell thickness, mass of the 

impactor and porosity factors on impact performance. The results are discussed in detail with 

graphs and tables and the conclusions are laid down concentrating on the significant findings. 

The future scopes of the present work are also projected to carry out the further 

investigations.  
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E    Young's modulus 

G   Shear modulus 

N   Material property graded index (or Power law exponent) 

U   Potential strain energy = U1 + U2 

VOI   Initial velocity of impactor 

T, W   Kinetic energy and work done by conservative and nonconservative  

       forces, respectively 

xyN    In-plane shear force resultant 

xyM    Torsional moment resultant 

yx MM ,   Bending moment resultants 

yx NN ,   In-plane normal force resultants 

yx QQ ,   Transverse shear resultants 

ijijijij SDBA ,,,  Extension, bending-extension coupling, bending and transverse shear 

terms of laminate stiffness matrix respectively 

Co – C7  Constant terms of displacement polynomial 

Fc   Contact force at the impact point 

Lf   Lagrangian function 

Lo   Length 

Lo/s   Aspect ratio 

Pi   Material property  

Sj   Shape functions 

U1    Linear elastic strain energy 

U2   Strain energy by initial stresses generated due to rotation 

Vf   Volume fraction 

[ ], [ ]impK k    Effective stiffness matrix of shell and impactor, respectively 

[ ']D    Elasticity matrix 

[ ']B    Strain-displacement matrix 

[ ]Q    Transformed reduced stiffness matrix 

[Ce], [C]  Element Coriolis matrix and Global Coriolis matrix 

[J]    Jacobian Matrix.  
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[Ke], [K]  Element elastic stiffness matrix and Global elastic stiffness matrix 

[KRe], [KR] Element rotational stiffness matrix and Global rotational stiffness 

matrix 

[Kζe], [Kζ]  Element geometric stiffness matrix, Global geometric stiffness matrix 

[Me], [M]   Element mass matrix and Global mass matrix 

[S]   Shape function matrix 

{F(Ω
2
)}   Global vector of nodal equivalent centrifugal forces 

{Fce}, {Fe}, {F}  Element load vector due to centrifugal force, Element load vector due     

to externally applied load and Global vector of externally applied load 

{M}   Moment resultant 

{N}   In-plane stress resultant 

{Q}   Transverse shear resultant 

, ,u v w    Displacement components in x, y and z directions, respectively. 

r    Position vector 

ˆˆ ˆ, ,i j k    Unit vector along x-, y- and z-directions, respectively 

V    Velocity vector 

, ,o o ou v w   Displacement along mid-surface of x-,y- and z-directions, respectively. 

, ,x y zh h h   Fixed translational offset with reference to local coordinate system 

', ', 'x y z   Global coordinate axes 

bo   Reference width 

h   Thickness of conical shell 

rx    Radius of curvature in x-direction 

rxy   Radius of twist 

ry   Radius of curvature in y-direction 

x, y, z     Local coordinate axes  

,imp impm w    Mass and acceleration of the impactor 

c    A constant  

    Angular velocity vector 

o    Base subtended angle of cone 

{ *}    Generalized strain vectors 

{ }    In-plane strain vectors 
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{ }o    In-plane strain vectors at the mid-surface 

    Local indentation 

    Mass density 

m    Maximum indentation 

,,    Natural co-ordinates 

o    Reference minor radius 

o    Reference major radius 

,     Rotational degrees of freedom 

    Rotational speed about z'-axis of inertial coordinate system 

,x y     Rotations of cross-sections along the x- and y-axes, respectively 

    Shear strain 

0    Shear strain at the mid-surface 

{ }    Strain vector 

{ }    Stress vector 

t    Time step 

ˆ ˆ ˆ, ,u v w    Translational degrees of freedom 

{ }    Transverse shear strain vectors 

ve    Vertex angle 

, ,x y z     Angular velocity component along x-, y- and z-directions, respectively  

     Shear correction factor (=5/6) 

      Even porosity factor 

      Uneven porosity factor 

[ε']   Non-linear strain matrix 

{δ}   Global displacement vector={δs}+{δp} 

{δe}   Element displacement vector  

{δp}   Small linear time dependent perturbation about the static displaced    

                                    position {δs} 

{δs}   Static equilibrium solution as a result of centrifugal force 

{ζo}   Initial stress vector 

     Eigen vectors 
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Δt   Time step 

λ   Non-dimensional frequency 

ς, χ   Local natural coordinates of the element 

υ    Poisson's ratio  

Ψ   Twist angle 

ω   Non-dimensional frequency parameter 

Ω   Non-dimensional speed of rotation (Ω′/ωo) 

Ω′   Actual angular speed of rotation 

ωn   Natural frequency of rotating shell  

   
2 2

n 1L ( / E h )   
 

 

 

Numbering of Figures, Tables and Equations 

Figures, tables and equations have been numbered in accordance with the chapters in which they 

appear in the thesis. Each table, figure and equation has two distinct numbers. The first number 

specifies the number of the chapter and the second number denotes to the actual number of the figure, 

table and equation in that chapter. 
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1.1 GENERAL INTRODUCTION 

1.1.1 PREAMBLE 

Advanced materials are playing a pivotal role in the development of our modern 

society and culture. The scientific use of available base materials into various inorganic and 

organic compounds has made the path for developing the advanced polymers, engineering 

alloys, structural ceramics, etc. The structural development considering modern material is 

illustrated in Figure 1.1. Functionally graded materials (FGMs) are the advanced materials in 

the family of engineering composites made of two or more constituent phases with 

continuous and smoothly varying composition along the thickness. These advanced materials 

with engineered gradients of composition, structure and/or specific properties in the preferred 

direction/orientation are superior to homogeneous material composed of similar constituents. 

The mechanical properties such as Young’s modulus of elasticity, Poisson’s ratio, shear 

modulus of elasticity and material density, vary smoothly and continuously in preferred 

directions in FGMs. FGMs have been developed by combining the advanced engineering 

materials in the form of particulates, fibers, whiskers, or platelets. In the continuous drive to 

improve structural performance, FGMs are being developed to tailor the material architecture 

at microscopic scales to optimize certain functional properties of structures. These materials 

are gaining wide applications in various branches of engineering and technology with a view 

to make suitable use of potential properties of the available materials in the best possible way. 

This has been possible through research and development in the area of mechanics of FGMs 

for application in special nuclear components, spacecraft structural members, and high 

temperature thermal barrier coatings, etc. These materials possess numerous advantages that 

make them appropriate in potential applications. It includes a potential reduction of in-plane 

and through-the thickness transverse stresses, improved thermal properties, high toughness, 

etc. A typical FGMs consisting of metallic and ceramic components are well-known to 

enhance the properties of thermal-barrier systems, because cracking or delamination, which 

are often observed in conventional multi-layer systems are eliminated due to the smooth  

INTRODUCTION 



2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.1.1 Representation of modern material hierarchy showing FGM 

transition between the properties of the components. By varying percentage contents of 

volume fractions of two or more materials spatially, FGMs can be formed which will have 

desired property gradation in spatial directions. Delamination has been a problem of main 

concern in the reliable design of advanced fiber reinforced composite laminates. In laminated 

composites, the separation of layers caused by high local inter-laminar stresses result in 

destruction of load transfer mechanism, reduction of stiffness and loss of structural integrity, 

leading to final structural and functional failure (Reddy, 2004). FGM eliminates these 

problems of delamination or debonding and are gaining huge importance as an advanced 

materials used for innovative engineering applications. The constituents of FGMs can be 

metal-ceramic, ceramic-ceramic and metal-metal. Among those metal-ceramic is the most 

common FGM constituents, where the ceramic constituent acts as a good thermal resistance 

and metallic constituent bears the mechanical load. A continuously graded microstructure 

with metal-ceramic constituents is represented in Figure 1.2 schematically for illustration. 

FGMs have gained an important position as structural elements in comparison to traditional 
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metals and ceramics thereby opening a new horizon for the designers in the fields of 

aerospace, civil, marine and automobile industries since its introduction in the last two 

decades. A shell structure by virtue of its geometry in curved shape can carry functional loads 

mainly by its direct stresses lying in their plane considering bending action. This curve shape  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 1.2 Schematic of continuously graded microstructure with metal-ceramic constituents 

(a) Smoothly graded microstructure (b) Enlarged view and (c) Ceramic–Metal FGM where 

the zone 1 represnts ceramic phase, zone 2 represnts ceramic matrix with metal inclusions, 

zone 3 represnts the transition phase, zone 4 represnts metalic  matrix with with inclusions, 

zone 5 represnts metalic phase. 
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of shells results in a non-coplanar surface which introduces both axial and flexural (bending 

and shear) forces thereby resulting in higher structural stiffness of the shell structures. The 

high strength of the shell structures combined with their ability to resist deformation have 

made them suitable for many engineering applications such as roofs, bridges, water and oil 

tanks, aeroplane and spacecraft fuselages, ship hulls, automobile bodies, turbomachinery and 

fan blades, defense structures etc. The shell action is a combination of membrane action due 

to in-plane direct stresses and bending action due to flexural stresses, which attribute to high 

strength of shell structures. A pretwisted conical shell is a special case wherein the curvature 

of mid-surface in one orthogonal direction is absent (rx= ) and the curvature of the mid-

surface in other orthogonal direction and the curvature due to twist are of non-zero magnitude 

(ry 0 and rxy 0). Thus the resulting surface of such pretwisted shell is conical helicoids. The 

pretwisted FGMs shells are structural elements of potential engineering importance. Most of 

the turbomachinery blade configurations used in practice like blades of fan, compressor, gas 

turbine, steam turbine, water turbine, marine propeller, windmill, helicopter and flow guide 

vane are typically very complicated because of its geometry. Neither cross-sectional area nor 

the planforms of such structures are perfectly rectangular. Hence, the geometric parameters 

may vary along the length. The design requirement necessitates that a blade must possess 

certain amount of pretwist and the functional requirement demands the rotational speeds as 

well. Among all shell geometries, conical shell profile is the most pragmatic form which is 

popularly employed in turbomachinery blades. Hence, the pretwisted FGMs shallow conical 

shell with low aspect ratio could be idealized as a turbomachinery blade. 

In general, a turbomachinery blade is mounted on a rotating disc or hub wherein the 

rotation of blade root chord occurs about the blade axis. The pretwist angle of the blade 

causes coupling in bending planes. The disc and its attached blades rotate about an axis 

perpendicular to the plane of the disc. The failure of blade in turbomachines occurs 

frequently as a consequence of blade vibration problems. Therefore knowledge of these 

frequencies is of fundamental importance. The blades are also subjected to centrifugal body 

forces arising out of rotation. Due to centrifugal force, the initial stress system affects natural 

frequencies appreciably. Moreover, the effect of low velocity impact by a foreign object on 

the transient dynamic behaviour of the FGMs turbomachinery blade is of great concern due to 

relatively low through the thickness strength. Hence, all these complicated issues need to be 

analyzed for accurate prediction of dynamic characteristics of the turbomachinery blades. An 

effort is made in the present study to cover two broad areas namely, free vibration analysis 

and transient response due to low velocity normal impact.  



5 

 

 

1.1.2 INNOVATION AND HISTORY OF FGMs  

The concept of gradation in material composition was first proposed for composites 

and polymeric materials by Shen and Bever (1972). Most of these materials were used as 

coating materials, in order to improve the bonding strength and to reduce thermal stresses. 

The first practical application of FGMs was carried out at National Aerospace Laboratories of 

Japan in 1984 to create square shells for the base of fuselage and hemispherical bowls for 

nosecones of a space plane. Present available industrial materials are not capable to withstand 

at very high-temperature gradients without losing their structural integrity. Hence, the unique 

idea of gradation of material composition was conceived by using a heat-resistant ceramic 

material on high-temperature side and tough metals with high-thermal conductivity on the 

other side, and thereby gradually varying the composition from ceramic to metal. These 

functionally graded materials have the advantage of the physical and chemical properties of 

the materials, thereby increasing the bond strength and reducing the interfacial stress and 

thermal stress.  

The concept of FGMs to the modern materials science appears to be an advanced 

engineering invention and our capability to fabricate them for tailor made engineering 

application have built a new foundation in the high temperature structural application but the 

concept of FGM is not new. These classes of resources have been occurring in natures. Some 

examples of natural resources of FGMs are depicted in Fig. 1.3 showing the layer wise 

smooth transition of phases. Human and animal bones are having functionally grading in the 

depth direction. Even human and animal skin is also graded to provide certain toughness, 

tactile and elastic qualities as a function of skin depth and location on the body. The FGM 

constituents engineered by humans commonly involve two isotropic material phases although 

any number of chemically and spatially compatible configurations is possible. These 

components often include the engineering alloys of magnesium, aluminum, copper, titanium, 

steel, etc. and the advanced structural ceramics such as zirconia, alumina and silicon nitrite.  
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Figure 1.3 Some Example of naturally occurring FGM and Engineered FGM (a) 

human skin (b) human bone (c) tree stem (d) FGM coating 

1.1.3 APPLCATION OF FGMs TO MODERN ENGINEERING  

FGMs were essentially conceptualized for the need of high thermal gradient 

applications in aerospace and energy field. Due to its several advantages, recently FGMs are 

gaining potential applications in various sectors as shown in figure 1.4.   

In the first application of space-plane project, FGMs like SiC/C, Ni-based alloy/ZrO2, 

TiC/Ni were capable of withstanding high temperature fluctuations, thermal shocks and stress 

concentrations at the interfaces (Reddy, 2004). FGMs can also act as a thermal barrier system 

and are found in insulation of combustion chambers, rocket engine components and exhaust 

wash structures of space vehicles. FGMs with TiAl/SiC fibers are used in heat exchange 

panels, rocket nozzles, spacecraft truss structure, nose caps and leading edge of missiles and 

space shuttle. FGMs in space craft truss structure which can withstand huge mass of 200 

metric tons with high temperature resistant and high gravity gradient features. Carbon 

nanotube (CNT) FGMs are thermally stable and exhibit excellent mechanical properties with 

high toughness, hardness, abrasion resistance, flexural strength which can be used in both  

(c) Tree Stem 

Cross Section 

(b) Human Bone  

Cross Section 

(a) Human 

Skin  

   Cross Section 

(d) FGM 

Coating 

https://www.dreamstime.com/royalty-free-stock-photo-cross-section-tree-stump-vector-illustration-file-eps-format-image36059515
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Figure. 1.4 Application areas of the FGMs in various fields. 

high and low temperature zones. Most of the helicopters, fighter jets, defence tanks, weapons 

and armor suits are made of FGMs. These possess good damping properties with thermal and 

chemical inertness and hence used in Fuselage tanks, stabilizers, rotor blades, aircraft wings, 

cryogenic propellant tanks, gas turbine engines, nozzles and compressor components of 

fighter planes and helicopters. Ultra-light weights FGMs are used in defence sector to 

develop weapon platform, armor plates, barrier materials, bullet proof jackets, etc. Military 

submarine components like sonar domes composite piping systems are made with Glass/ 

Epoxy FGM, propulsion shafts with Carbon/Glass fiber FGM, Cylindrical pressure hulls with 

Graphite / Epoxy FGM and diving cylinders with Al/SiC FGM. Medical applications include 

the replacement of living tissues in human body with biopolymer FGMs. Orthopaedic and 

dental implants are usually composed of Collagen Hydroxyapatite (HAP) and titanium alloys. 

High density Polyethylene with a graded biopolymer coating is used in orthopaedic implants 

like total hip, shoulders and knee joint replacements (Watari et al., 1997 and Pompe et al., 

2003). Nanohydroxyapatite reinforced polyvinyl alcohol (nanoHA/PVA) gels are used as an 

artificial articular cartilage repair material (Bharti et al., 2013). Ti-29Nb-13Ta-4.6Zr (TNTZ) 
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with graded microstructure is used as dental implants to reconstruct the masticatory function 

when tooth root is completely lost or extracted (Li et al., 2014). In photo electronic devices 

the refractive index modulation, diffusion length, energetic band gap and other properties can 

be adjusted using material gradation technique thereby enhancing the absorption capabilities 

and generation efficiencies. Hence, these are widely used in antireflective layers, optical 

fibers, optical lenses, photo-detectors, solar cells, optical sensors, semiconductor devices, 

computer circuit boards, cellular phones. FGMs embedded with piezoelectric layers are used 

in shape memory alloys. Automotive parts require high strength with resistance to crack, 

fracture and thermal shocks. FGM with Al/SiC are used as engine cylinder liners, flywheels, 

drive shafts and racing car breaks. Diesel engine pistons are made of SiCw/Al-alloy and leaf 

springs with Al/C FGMs. Few others include motor cycle drive sprockets, pulleys, shock 

absorbers, radiator end caps, etc. Most of the forming tools, cutting tools, forging and 

machine tools are manufactured using FGM. Few examples include lathe, drill press, 

broaching machine, gear shaper, hone etc. FGM is also used as a coating material which in 

turn reduces heat loss from engine exhaust system components like turbocharger casings, 

exhaust headers, exhaust manifolds, tail pipes and down pipes, thereby reducing consumption 

of coolant (Bohidar et al., 2014 and Kohli and Singh , 2015). Turbine wheel blades of gas 

turbine engine operating at 40,000 rpm are coated with TiAl/SiC FGM to provide thermal 

barrier. Also, anti-abrasion sports equipment’s like tennis rackets, baseball cleats, sports 

shoes, racing bicycle frames, etc are developed based on the property of relaxation of 

stresses. Some of the comonly used FGMs include razor blades, cutting tools, eye glass 

frames, helmets, X-ray tables, automobile fuel tanks and pressure vessels, wind turbine 

blades, MRI scanner parts and cryogenic tubes, laptop cases, titanium watches, window 

glasses, camera tripods, etc.  

In recent years, FGMs are found to be most advantageous over conventional structural 

materials and layered composites due to its continuous change in characteristic property. 

Though they have widespread applications in various sectors, there are few difficulties which 

have to be resolved by further research in this area. Mathematical modeling of the graded 

materials plays a vital role in predicting the accurate behaviour of FGM structure. Though 

experimental investigation methods are available to predict the individual thermo-physical 

material properties, microscopic studies have to be performed and quantitative relations have 

to be established for accurate evaluation of physical and thermal properties of graded 

materials. These relations used with various theories for analytical or numerical evaluation of 

various FGM structure responses.  
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FGMs have great potential in applications where the operating conditions are severe, 

including spacecraft heat shields, heat exchanger tubes, biomedical implants, flywheels, and 

plasma facings for fusion reactors, etc. Various combinations of the ordinarily incompatible 

functions can be implemented to create new materials for aerospace, chemical plants, nuclear 

energy reactors, etc. For example, a discrete layer of ceramic material is bonded to a metallic 

structure in a conventional thermal barrier coating for high temperature applications. 

However, the abrupt transition in material properties across the interface between distinct 

materials can cause large inter-laminar stresses and lead to plastic deformation or cracking 

(Redyy, 2004). These harmful effects can be eased by smooth spatial grading of the material 

constituents. In such cases, large concentrations of ceramic material are placed at corrosive, 

high temperature locations, while large concentrations of metal are placed at regions where 

mechanical properties need to be high. Later on, its applications have been expanded to also 

the components of chemical plants, solar energy generators, heat exchangers, nuclear reactors 

and high efficiency combustion systems. The concept of FGMs has been successfully applied 

in thermal barrier coatings where requirements are aimed to improve thermal, oxidation and 

corrosion resistance.  

 

1.1.4 MANUFACTURING TECHNIQUES OF FGMs  

FGMs can be classified into two types based on the distribution of constituent phases, 

namely continuous or discontinuous (step-wise or layered) gradation of materials. Also, 

based on manufacturing techniques these can be further grouped as thin and bulk FGMs 

(Makwana and Panchal, 2014 and Bohidar et al, 2014). Thin FGMs are manufactured by 

Physical Vapor Deposition (PVD), Self propagating High temperature Synthesis (SHS) 

method, Chemical Vapor Deposition (CVD), etc., which are generally used as surface coating 

material. While bulk FGMs are consolidated to form a volumetric bulk material and are 

manufactured using Powder Metallurgical (PM) technique, Solid Free Foam (SFF) technique, 

Centrifugal Casting method, etc. A comprehensive review of various processing techniques 

adopted to fabricate an FGM and its successful applications to numerical simulations were 

discussed by Kieback et al. (2003) and Gasik (2010). Recent research on improvement in the 

production methods has reduced the manufacturing cost and hence these FGMs are finding 

widespread applications in various sectors. Among all the available manufacturing 

techniques, sintering process is the most efficient way of manufacturing FGMs. However, it 

is very difficult to prepare perfect (porosity free) FGM structures by any one of the available 

manufacturing method. The porosities or micro-voids cannot be avoided during production of 
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FGM structures due to difference in the velocity and solidification of the material 

constituents 

 

1.1.5 TURBOMACHINERY BLADES  

The quest for advanced materials that could resist the high temperature and the 

associated dynamic stress generated on the turbomachinery components have grown in recent 

past to prolong the life of such turbomachinery blades. The structural, fatigue and resonance 

failure of the turbine or turbomachinery blades is still a precarious issue for researchers. The 

failure of the turbine blades is primarily found due to resonance of the vibrating frequencies. 

On the other hand the low cycle and high cycle fatigue due to high thermal gradient for 

conventional composite blades is key concern area in terms of blade life. Low velocity 

impact by external or internal mass can degrade the structural instability causing a cascading 

effect of such failure. Therefore the accurate prediction of the natural frequencies of the 

turbomachinery blades and low velocity impact performance became a topic of considerable 

research interest during the design phase of such components. There are numerous rotor and 

stator blades of different lengths and geometry are present in turbomachinery application. 

Therefore accurate prediction of the point of failure of such a system becomes extremely 

complex. Hence a detailed and careful design methodology is very essential to nullify the 

catastrophic failure during operation of such turbomachinery blades. 

 

1.1.6 DYNAMIC BEHAVIOUR 

 Blades in the turbo machinery possess an essential role for the proper performance 

and maximizing efficiency. Apart from aerodynamically curvature of the turbo machinery 

blades the other geometrical dimensions are also important. During operation the dynamic 

behavior have considerable significance for safe operation and reliable component life. Turbo 

machinery blade commonly fails due to fatigue in the lower temperature stages of a turbine or 

axial flow compressor. This is due to the consequence of resonant vibrations resulting in 

large operating stresses, and can be costly both in terms of safety and maintenance of turbine 

engine. The dynamic loads on turbine blades can be generated from many sources, 

predominant one being the source of operation on which the turbine is designed. When the 

rotor blade passes past the nozzle of the stator, it experiences fluctuating lift and moments 

repeatedly at the nozzle passing frequency. The blades are very flexible members in the sense 

that a significant number of their natural frequencies may be in the region of the nozzle 

excitation frequencies. 
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Although a turbine is designed to avoid resonance at its steady operating speed, it 

experiences resonance several times during the starting up and shutting down of the turbine. 

This may give rise to shut down because of blade damage. Therefore, an in-depth knowledge 

of these frequencies is of prime importance to the designer of turbomachineries in order to 

prevent vibration and to ensure robust operation of the blades. However, an accurate 

prediction of these resonance conditions is usually very difficult because of their uncertainty 

of the excitation. Moreover, under resonance conditions what limits the blade vibration 

amplitude is the amount of damping available. In most cases, the damping is almost entirely 

aerodynamic and its assessment is just as uncertain as the excitation. Therefore the classic 

design practice for such blades has been mainly to rely on the knowledge of the blades’ 

natural frequencies in order to escape from harmful resonance. The natural frequencies are 

found by modelling the blade as a pretwisted shallow conical shell with low aspect ratio 

including the geometric complexities. The natural frequencies are required to address at 

stationary as well as rotating condition. In addition, the transient response of FGM conical 

shells subjected to localized contact loading is of great concern in many advanced 

engineering structures and components, such as, the leading edge of an aircraft wing, fan 

blades in jet engine and turbine blades, because of the fact that impact situations with 

energies far below the penetration levels can cause severe damage to blades due to low 

transverse shear modulus and low inter-laminar shear properties. The deflection of to shell 

displacement due to impact can have adverse cascading effect on the turbomachinery blade 

clearance from casing. Hence, proper attention is needed for deep understanding of dynamic 

response of FGM pretwisted conical shells impacted at low velocity by an internal or external 

mass. 

 

1.1.7 SHELL MODEL 

The beam model was earlier applied to study the vibrations of turbomachinery blades 

based on the Euler-bernoulli‘s beam equation. However this approach yielded accurate results 

only when the width of the blades was negligible in comparison to its length (slender) and the 

blades are reasonably thick and only the first few vibration frequencies and mode shapes are 

required accurately. A beam model representing a turbine engine blade is highly inaccurate if 

the blade has a low aspect ratio, it is thin and where higher frequencies and mode shapes are 

needed. Chordwise bending and edgewise bending modes are completely lost by the beam 

representation. The beam theory is unable to predict chordwise bending modes and 

inaccurately estimates the torsional and spanwise bending frequencies of low aspect ratio 
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blades which are more likely to behave as plates or shells rather than as beams. Therefore, an 

accurate representation of such modes requires a two-dimensional analysis and a more correct 

model for turbomachinery blades may be made with pretwisted plates or shells. The plate and 

shells are thin structures wherein the thickness can be assumed to be negligible compared to 

the planar dimensions and have very small aspect ratios. This allows reducing a three-

dimensional problem into an equivalent two dimensional-problem by applying the plane 

strain condition. The Kirchhoff–Love theory (classical plate theory) or the Mindlin–Reissner 

theory (first-order shear deformation theory) can be conveniently applied to model the 

displacement and strain fields in plate or shell structures. In general the shell theory is able to 

accommodate the curvature in the shell geometry and can be used to accurately model a 

pretwisted rotating shallow shell.  

 

1.1.8 FINITE ELEMENT MODELLING 

The solution to the engineering problems in the static and dynamic response of 

structures became much simplified with the introduction of computers in middle of the last 

century. Finite element method (FEM) is a numerical technique to evaluate approximate 

solutions of boundary value problems involving partial differential equations. This involves 

discretization of the domain into various smaller sub-domains, known as finite elements, 

generating element equations for each of the finite elements, assembling the element 

equations of all the elements at specified nodes to generate the global equations which are 

then solved using appropriate solution techniques. The vibration of the FGM shells involves 

many complex interactions between the shell structures, layer properties in thickness 

direction, internal strains, initial stresses and impact of foreign bodies. The solution of such 

problems is highly complex, computationally intensive and involves very large matrices. The 

availability of the modern high speed computers and finite element software code 

NASTRAN/PATRAN along with the commercial software packages like ANSYS, LS-

DYNA, ICEM-CFD, COSMOS/M and ABACUS have been helpful in obtaining solution of 

problems in static and dynamic structural analysis, fluid flow, thermal analysis, 

electromagnetic study, seismic response along with different optimization process. The 

choice of a proper mathematical model, optimal and localized mesh size with proper use of 

solution technique and choice of solver is the prime requisite of any finite element simulation 

since it determines the closeness, reliability and its usability for modeling complex 

engineering applications. The turbomachinery blades are subjected to considerable 

centrifugal loading resulting in steady state deflections.  
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In the FGMs turbomachinery blades, the combined effects of twist angles, rotational 

speeds, arbitrary variation of cross-sectional areas along the length of the blade and varied 

material properties along the thickness are predominant which are needed to be addressed for 

accurate prediction of the blade dynamic characteristics by finite element method (FEM). 

Due to complicated nature, the blade dynamic problems can be solved exactly in some 

limited cases only. Under these circumstances, the finite element methods are appropriate for 

the dynamic analysis of stationary and rotating turbomachinery blades due to the fact that 

these numerical techniques are well suited to cope with the blades of general configurations. 

The analytical approaches are useful in obtaining physical understanding of the problem and 

in preliminary design, whereas finite element methods allow for refinement in the detailed 

design stage.  

 

1.1.9 PRETWISTED SHALLOW CONICAL SHELL WITH FGM 

In a weight sensitive and high thermal gradient application such as aircraft and turbine 

engine turbomachinery that demands very high fuel efficiency and longer life of the 

components minimizing the maintenance period, FGM materials are advantageous because of 

their light weight, high stiffness, strength and ability to withstand high thermal gradient. The 

layer wise isotropic FGM with continuous variation of ceramic to metal can be easily tailored 

to realize desired overall properties. In general the blades are fixed on the hub region. The 

blades are generally wide near the root section and there is a gradual chordwise reduction as 

it approaches the free end of a blade. An actual turbomachinery blade is thus in the form a 

cantilevered open conical shell with a trapezoidal planform and a variable curvature along the 

chordwise direction. There may also be a thickness variation along the length of the conical 

shell. In general, an initial twist is provided on the blades to vary the angle of attack for 

optimum blade performance, though the pretwist angle is limited by the reduction in the 

structural stiffness of the laminates (pretwist angle is maintained from 0
0
 to 45

0
). Earlier, the 

blades were modeled as cantilevered beams and plates which however yielded very 

inaccurate results in case of low aspect ratio and thin blades since they excluded the effects of 

the curvature effect along the chordwise camber. Later researchers have modeled them as 

cantilevered conical shells to account for the chordwise camber but the studies were limited 

owing to the difficulties in designing the complex geometry of FGM conical shells. However 

with the introduction of high speed computers the modeling became easier and the results 

generated were in better conformity with the experimental ones. The shell modeling using 

Kirchoff‘s theory is justified only if the two dimensions (chord and shell thickness) are 
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negligible compared to the third dimension (length of the shell) and the change along the 

length direction can be neglected. The modeling of turbomachinery blades using shallow 

conical shell model yields accurate results only in the cases of low aspect ratios and low 

length to thickness ratio of the conical shells. Thus the FGM turbomachinery blades can be 

designed to have a predetermined static and dynamic behaviour. The FGM blades of 

pretwisted shallow conical shell can be manufactured in a powder manufacturing technique. 

Therefore, it is possible to produce complex geometries that results in efficient aircraft 

turbopropellers. Hence, as a pioneer to the application of FGMs in the critical parts of aero-

engines or turbomachineries in general, extensive design study is required apart from the 

deformation and vibration characteristics. The investigation should necessarily be extended to 

include transient dynamic analysis due to low velocity impact. For the finite element based 

analysis of FGM blade structures, twisted conical shell element is capable of reproducing the 

blade behaviour more accurately and can also be applied to more realistic situations. The 

aerodynamic efficiency of engines can be maximized by introducing variable radius of 

curvature in the blades which is possible in case of conical shell form while the limitation of 

the same exists in cylindrical shell geometry. 

 

1.1.10 TRANSIENT DYNAMIC RESPONSE 

Transient dynamic response (sometimes called time-history response) is a technique 

used to determine the dynamic response of a structure under the action of any general time-

dependent loads. The structural integrity and life of the turbomachinery blade depends on the 

ability of the blade to withstand the maximum stress levels at resonant and transient 

conditions as well as the ability to mitigate the external impact on the blade. The 

performances of such FGM conical shell blade in the turbomachinery are dependent on the 

ability to withstand in the high temperature zone as well as external/internal impact on the 

blade.  A deep understanding of the transient dynamic performances is required for potential 

use of such materials in jet engine fan and compressor blades. However, an accurate 

estimation of the deformations is usually very difficult because of many complexities 

involved in such structural elements under preload being subjected to centrifugal forces 

which develop steady state stresses once the operating conditions are attained and may 

aggravate the damage due to low velocity impact leading to degradation in the stiffness and 

strength of the structure. The transient dynamic data provides a foundation for prediction of 

failure due to impact damage. 
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1.1.11 LIMITATIONS/DISADVANTAGES OF FEM 

 The finite element method is an approximate solution method and the correctness of 

the simulation results are primarily depends on the choice of the finite element used in the 

discretization process and the use of proper boundary conditions and type of solver. The 

solution to the differential equations may obtained at the nodal or elemental points and 

sometimes may not be representative of the response of an entire domain in case of complex 

geometries, irregularities in shape, curvature, unsymmetrical stress distribution or non-linear 

behavior. Thus it becomes extremely essential to ascertain that the finite element modeling 

conforms to each and every aspect of a complex problem. The accuracy of the FEM 

technique needs to be thoroughly validated against experimental results incorporating 

numerous cycles of mesh enhancement/refinement and error analysis until a required degree 

of precision is arrived at in what is known as an adaptive finite element analysis. In addition 

most of the finite element simulations are computationally intensive and may require large 

computation time and resources which must also be optimized for improved design cycle 

time while considering total cost incurred.  

  

1.2 LITERATURE REVIEW 

FGM structures have been recently used in turbomachinery blades for their associated 

behavior during service especially in the aerospace, aviation, marine and automotive 

industries. A good amount of research knowledge has been made available in numerous 

monogram, review and different scientific journals. The literature related to the analysis, 

design and modeling of FGM plate and shells covers a wide area of research. The shallow 

shell has a lesser thickness compared to its other dimensions and in which deformations are 

not large compared to thickness. Shell structures of twisted geometry have immense 

applications in the area of mechanical structural components. The literatures related to 

design, modeling, analyses and construction of shell structures cover a broad area of research, 

especially in the context of the present work. Significant development has taken place in 

usage of these specialized structures with the introduction of functionally graded materials. 

Accordingly, the main emphasis is given with reference to the dynamics of FGM structures in 

respect of finite element modelling, dynamic response of pretwisted rotating FGM plates and 

shells under low velocity impact. 

Extensive applications of shell forms as turbo-machinery blade structures have a long 

history although plethora of investigations made on the properties of shell structures initiated 
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about hundred years ago. The historical review on the course of shell research and design was 

presented by Rotter (1998) while the principle and techniques of vibration portrayed by 

Meirovitch (1997). Vibration characteristics of turbomachinery blade profiles are presented 

by Rao (1991). Isotropic shells was  initially used for research later on the focus was given to 

the composite laminated shell, but at high thermal gradient the delamination is major concern 

for the composite shell. Therefore since the introduction of FGMs from last two decades lot 

of attention is given on FGMs shells and structures. FGM materials are gaining wide 

applications in various branches of engineering and technology with a view to make suitable 

use of potential properties of the available materials in the best possible way. This has been 

possible through research and development in the area of mechanics of FGMs for the present 

day modern technologies of special nuclear components, spacecraft structural members, and 

high temperature thermal barrier coatings, etc. De-bonding or delamination are the main 

problem of advanced fiber reinforced composite laminates where the separation of layers 

caused by high local inter-laminar stresses reduces the stiffness and structural integrity no 

longer maintained. FGMs have the potential to eliminate these problems and due to these 

advantages FGMs have gained huge importance as an advanced material. The most common 

FGMs are metal-ceramic constituents, where the ceramic part has good thermal resistance 

and metallic part has superior structural support. The turbo-machinery blade materials with 

FGM have all these advantages compare to the composite and conventional material 

considering both thermal and structural aspect. 

Review articles like those by Birman and Byrd (2007), Liew et al. (2011), Alijani and 

Amabili (2014), Jha et al. (2013), Thai and Kim (2015), Swaminathan and Naveenkumar 

(2015), Gupta and Talha (2015), Liew et al. (2015), Swaminathan and Sangeetha (2017) 

covered much of the research done within last two decades while very little attention was 

given to FGM conical shells prior to that except reported by Zhao and Liew (2011a) and 

Tornabene et al. (2014). In concurrence to above, the different shell theories, shell 

geometries, etiquette of dynamic analysis and the different analyses technique are discussed 

from Section 1.2.1 to Section 1.2.4. After that the literature review is focused on latest shell 

research followed by FGM porous structures which are discussed subsequently in Section 

1.2.5 and Section 1.2.6, respectively. Finally in Section 1.2.7, the critical discussion of 

existing literatures is discussed. Each section is ramified into different sub-sections for 

intense presentation and ease of reading. 
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1.2.1 PLATE AND SHELL THEORIES 

Shell structures are represented by three-dimensional structures bounded by two, 

relatively close curved surfaces. Most of the shell theories (thin and thick, deep and shallow) 

reduce the three-dimensional elasticity equations to the two-dimensional representation. This 

is generally done by eliminating the coordinate normal to the shell surface in the development 

of the shell equations. The accuracy of thin and thick shell theories can be established if these 

theories are compared to the three dimensional theory of elasticity. In general, the behavior of 

functionally graded (FG) plates/shells under mechanical and thermal loadings can be 

predicted using either three-dimensional (3D) elasticity theory or equivalent single-layer 

(ESL) theories. The ESL models are derived from the 3D elasticity theory by making suitable 

assumptions on the kinematics of deformation or a state of stress through the thickness of 

plates/shells (Reddy, 2004). These ESL theories may account for both shear and normal 

deformation effects depending on the level of assumptions. The simplest ESL model is the 

classical plate theory (CPT), also known as Kirchoff theory (1850), which ignores both shear 

and normal deformation effects. Thus it is only suitable for thin FG plates/shells. The next 

theory in the hierarchy of ESL models is the first-order shear deformation theory (FSDT) 

developed by Mindlin (1951). The FSDT accounts for the shear deformation effect by the 

way of a linear variation of in-plane displacements through the thickness. A shear correction 

factor is therefore required. The shear correction factor is difficult to determine since it 

depends not only on geometric parameters but also on the loading and boundary conditions. 

To avoid the use of the shear correction factor, higher-order shear deformation theories 

(HSDTs) were introduced. The HSDT can be developed by expanding the displacement 

components in power series of the thickness coordinate. In principle, the theories developed 

by this mean can be made as accurate as desired by including a sufficient number of terms in 

the series. Among the HSDTs, the third-order shear deformation theory (TSDT) of Reddy 

(1984) is the most widely used one due to its simplicity and accuracy. In this segment the 

gradual sequence related to shell research is described. This section is further ramified into 

distinct segments for clear understanding of the systematic and chronological progress of the 

different aspects of shell research.  

 

1.2.1.1 Classical Plate Theory (CPT) 

The classical plate theory (CPT) Model is primarily based on the Kirchhoff–Love 

hypothesis which tells the straight lines remain straight and perpendicular to the mid-plane 

after deformation. These forms suggest the disappearance of the shear and normal strains, and 
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thus the shear and normal deformation effects are not considered. The CPT is the simplest 

ESL model and it is only suitable for thin FG plates/shells where the shear and normal 

deformation effects are not required to consider. The CPT is preferably used 

for FG shell model due to its simplicity. Loy et al. (1999) studied the vibration of FG 

cylindrical shells with simply supported boundary conditions using the CPT and Rayleigh–

Ritz method. A similar approach was adopted by Arshad et al. (2007) to investigate the 

vibration characteristics of FG cylindrical shells under three different types of volume 

fraction laws. The vibration characteristics of FG cylindrical shells under various boundary 

conditions were examined by Pradhan et al. (2000) using the CPT and Rayleigh method. This 

problem was re-examined by Naeem et al. (2010) using Ritz method. Nonlinear forced 

vibrations of FG doubly curved shallow shells were investigated by Alijani et al. (2011) using 

the CPT with von Karman assumptions and the multi-modal Galerkin discretization. Du et al. 

(2014) studied the nonlinear vibration of FG cylindrical shells under excitation based on the 

CPT with von Karman assumptions in combination with a multiple scale method. Du and Li 

(2013) studied the nonlinear vibration response of FG cylindrical shells in thermal 

environments following a similar approach. Ebrahimi and Najafizadeh (2014) studied the free 

vibration of FG cylindrical shells using the CPT in conjunction with the generalized 

differential quadrature and generalized integral quadrature methods. The nonlinear behavior 

of imperfect eccentrically stiffened FG panels resting on an elastic foundation was studied by 

Nguyen and Tran (2013) using the CPT and Lekhnitsky smeared stiffener technique. Duc and 

Quan (2012, 2015) performed the nonlinear dynamic analysis of imperfect FG doubly curved 

shallow shells resting on an elastic foundation subjected to mechanical and thermal loadings 

using the CPT with von Karman assumptions. It is worth noting that the stretching–bending 

coupling exists in FG plates due to the variation of material properties through the thickness. 

Therefore, the neutral surface of the FG plate does not coincide with its middle one. This 

coupling could be eliminated if the governing equations were derived based on the neutral 

surface. The validity of the report was established by Zhang and Zhou (2008) where the CPT 

for FG plates were formulated based on the neutral surface, and the governing equations of 

motion in the form of isotropic plates were derived. Kar et al. (2017) evaluated the effect of 

different temperature load on thermal post buckling behaviour of functionally graded shallow 

curved shell panels using CPT model. 
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1.2.1.2 First-Order Shear Deformation Theory (FSDT) 

The FSDT established by Mindlin (1951) incorporating for the shear deformation 

effect in the linear variation of the in-plane displacements through the thickness. It is well-

known that the theory proposed by Reissner (1945, 1947) also explanations for the shear 

deformation effect. However, the Reissner theory is not similar with the Mindlin theory like 

erroneous perception of many researchers through the use of misleading descriptions such as 

‘‘Reissner– Mindlin plates’’ and ‘‘FSDT of Reissner’’. The major difference between two 

theories was established by Wang et al. (2001) by deriving the bending relationships between 

Mindlin and Reissner quantities for a general plate problem. Since the Reissner theory was 

based on the assumption of a linear bending stress distribution and a parabolic shear stress 

distribution, its formulation will inevitably lead to the displacement variation being not 

necessarily linear across the plate thickness (Wang et al., 2001). Thus, it is incorrect to refer 

to the Reissner theory as the FSDT which implies a linear variation of the displacements 

through the thickness. Another difference between two theories is that the normal stress 

which was included in the Reissner theory was omitted in the Mindlin one (Panc, 1975). The 

FSDT model for FG shells first used by Reddy and Chin (1998) to determine the dynamic 

response of FG cylinders and plates exposed to thermal loadings. Shahsiah and Eslami (2003, 

2003a) proposed analytical solutions for the buckling temperature of FG cylindrical shells 

with simply supported boundary conditions considering to two types of thermal loadings 

using the FSDT and Navier solution. The geometrically nonlinear analyses of FG shells were 

reported by Arciniega and Reddy (2007) using the finite element method wherein the 

kinematic of shell was based on FSDT. More studies on geometrically nonlinear bending 

behavior of FSDT shells were reported by Barbosa and Ferreira (2009) using Marguerre shell 

element while Sheng and Wang (2011) used four-order Runge–Kutta numerical method. 

Behjat et al. (2009) calculated the static bending, free vibration and transient responses of FG 

piezoelectric cylindrical panels subjected to mechanical, thermal and electrical loadings using 

the FSDT and the finite element method. The static and dynamic bending behavior and free 

vibration characteristics of FG doubly curved panels for combined mechanical and thermal 

loadings were studied by Kiani et al. (2012) using the FSDT and analytical hybrid Laplace–

Fourier transformation. Isvandzibaei et al. (2016) presented a study on the vibration of a 

supported thick-walled cylindrical FG shell subjected to pressure loading where the 

governing equations derived from the FSDT were analytically solved for the natural 

frequency of FG cylindrical shells under various boundary conditions using Ritz method. 

Xiang et al. (2015) implemented the meshless local collocation method and FSDT to 
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calculate the natural frequency of FG cylindrical shells. Pradyumna and Nanda (2013) 

investigated the transient response of FG plate, where the nonlinear governing equations were 

derived from the FSDT with von Karman assumptions and solved by using an eight-noded C
0
 

continuous element. The time dependent dynamic response was solved by Newmark 

integration scheme combined with the modified Newton–Raphson iteration method. 

Talebitooti (2018) presented the thermal effect on free vibration of ring-stiffened rotating 

functionally graded conical shell with clamped ends using FSDT. 

 

1.2.1.3 Third-Order Shear Deformation Theory (TSDT) 

The TSDT developed by Reddy (1984) for laminated composite plates incorporating 

the transverse shear deformation effect satisfying the zero-traction boundary conditions on 

the top and bottom surfaces of a plate where the shear correction factor can be ignored. 

Levinson (1980) presented an accurate and simple theory for statics and dynamics analysis of 

elastic plates based on Kirchhoff-Love hypothesis, i.e. that straight lines normal to the 

undeformed mid-surface of the plate remain straight and normal to the deformed mid-surface, 

was completely abandoned. The displacement field of Reddy (1984) theory is similar with 

that of Levinson (1980) theory. The equations of motion of two theories are different from 

each other because Levinson (1980) used the equilibrium equations of the FSDT which are 

variationally inconsistent while Reddy (1984) derived those equations by the variational 

approach. The TSDT are also commonly used for FG shells. Shen (2002) studied the 

postbuckling behavior of FG cylindrical panels in thermal environments subjected to axial 

compression while the similar work by lateral pressure was reported by Shen and Leung 

(2003). Shen (2003) extended his own work for the FG cylindrical shells.  Oktem et al. 

(2012) numerally analyzed the bending pattern of simply supported FG plates and doubly-

curved shells using the TSDT and boundary-discontinuous generalized double Fourier series 

approach. Van and Duc (2014) examined the nonlinear response of FG curved panels resting 

on an elastic foundation. Analytical solutions for the load–deflection curve of simply 

supported panels under mechanical and thermal loadings were provided using the TSDT and 

Galerkin method. Duc et al. (2015) extended the previous work Van and Duc (2014) to FG 

cylindrical shells surrounded by an elastic medium under mechanical and thermal loadings. 

Kapuria et al. (2015) developed a quadrilateral shallow shell element for the dynamic 

analysis of FG plates and shells using the TSDT. Hong et al. (2017) presented the nonlinear 

dynamic response of eccentrically stiffened FGM plate using Reddy’s TSDT in thermal 
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environment. Recently Cong et al. (2018) developed a new approach to investigate nonlinear 

dynamic response of sandwich auxetic double curves shallow shells using TSDT. 

 

1.2.1.4 Higher- Order Shear Deformation Theory (HSDT) 

The HSDTs account for higher-order variations of the in-plane displacements or both 

in-plane and transverse displacements (i.e.quasi-3D theory) through the thickness, and 

consequently, capturing the effects of shear deformation or both shear and normal 

deformations. The HSDTs can be developed using polynomial shape functions or non-

polynomial shape functions. Patel et al. (2005) studied the free vibration characteristics of FG 

elliptical cylindrical shells using a quasi-3D theory and the finite element method. Matsunaga 

(2008) developed a quasi-3D theory for the buckling and free vibration analyses of FG 

shallow shells. Pradyumna and Bandyopadhyay (2008) developed a four noded C
0
 continuous 

shell element with nine DOFs per node for free vibration analysis of functionally graded 

curved panels using a higher-order finite element formulation. They extended the previous 

work for dynamic instability (2009) of FG curved panels. The non-polynomial function was 

first used by Levy (1877) with a sinusoidal function to develop a refined theory for thick 

isotropic plates. The sinusoidal function was later adopted by Stein (1986) to develop a five-

unknown sinusoidal shear deformation theory (SSDT) for isotropic plates while Touratier 

(1991) presented for the laminated composite plates. The HSDT was widely used to study the 

dynamic behavior of FG structures. Some of the work can be found for the vibration of FG 

plates (Zenkour, 2005), bending of FG plates (Zenkour, 2006), thermal bending of FG plates 

resting on an elastic foundation (Zenkour and Sobhy, 2011).The bending relationships 

between the HSDT and CPT quantities were derived by Zenkour (2012) for FG Levy-type 

plates. Mantari et al. (2012, 2012a) combined exponential and trigonometric functions to 

develop a HSDT for FG plate (2012a) and FG doubly curved shells (2012). Recently Zghal et 

el. (2018) presented free vibration analysis of carbon nanotube-reinforced functionally graded 

composite shell structures using HSDT. 

 

1.2.1.5 Simplified Theories 

It is well known that the HSDTs and quasi-3D theories developed by expanding the 

displacements in power series of the thickness coordinate are more computationally 

expensive since each additional power of the thickness coordinate will induce an additional 

unknown to the theory. Therefore, there is a need to simplify the existing HSDTs and quasi-

3D theories or to develop simple theories with fewer unknowns. Senthilnathan et al. (1987) 
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implimented the simplified TSDT to laminated composite plates and reported that the 

simplified theory accurately predicted the buckling load of laminated composite plates. Thai 

and Kim (2013) worked on FG plate using the simplified TSDT. Shimpi (2002) developed a 

refined plate theory (RPT) for isotropic plates by dividing the displacements into the bending 

and shear components. The RPT contains only two unknowns compared to three unknowns in 

the case of the FSDT and TSDT, but it has sufficient accuracy to predict the global responses 

of isotropic plates (Shimpi-2002, Shimpi and Patel-2006a, Thai and Kim-2013, Thai et al.-

2013) and orthotropic plates (Thai and Kim-2012, 2012a, Shimpi and Patel-2006, Kim et al.-

2009, Thai et al. -2013a). The RPT was also widely applied to FG plates (Mechab et al.-2010, 

Ahmed et al.-2011, Benachour et al.-2011, Thai and Kim-2011, Thai and Choi-2012, 2012a, 

Thai et al.-2013, Bouiadjra et al.-2012, Thai and Choi-2011,2014) and FG sandwich plates 

(Abdelaziz et al.-2011, Hadji et al.-2011, Bourada et al.-2012). Using similar assumptions of 

Shimpi (Shimpi-2002), several four-unknown shear deformation theories were developed 

using different shape functions. For example, Mechab et al. (2013) proposed a four-unknown 

HSDT for FG plates while and El et al. (2011) established for FG sandwich plates 

incorporating hyperbolic functions. By dividing the transverse displacement into the bending, 

shear and stretching parts, Thai and Kim (2013a) proposed a five-unknown quasi-3D theory 

for FG plates using the sinusoidal function. Several similar five-unknown quasi-3D theories 

were also proposed using different shape functions such as hyperbolic functions (Thai et al.,-

2014, Hebali et al.,-2014, Bessaim et al.,-2013, Bennoun et al.,-2016), sinusoidal functions 

(Mantari and Soares, 2014), combined hyperbolic and exponential functions (Belabed et al.-

2014, Mantari and Granados -2015) and combined hyperbolic and sinusoidal functions 

(Mantari et al., -2014). 

 

1.2.1.6 3D Elasticity Theory 

The development of exact solutions of 3D elasticity theory is very useful in assessing 

the accuracy and validity of ESL models. Mian and Spencer (1998) established exact 

solutions for FG and laminated composite plates. Tanigawa (1999) developed exact 3D 

solutions for thermal stress of FG simply supported plates under partial heating. Cheng and 

Batra (2000) derived exact solutions for 3D bending analysis of FG clamped elliptic plates 

under thermal loadings using an asymptotic expansion method. Reddy and Cheng (2001) also 

implemented the asymptotic expansion method to derive exact solutions for 3D bending 

analysis of FG simply supported plates under thermal loadings. On the other hand Vel and 

Batra (2002) used a power series method to derived exact solutions for the 3D bending 
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analysis of FG simply supported plates subjected to thermal and mechanical loadings. 

Alibeigloo (2010) analyzed the 3D bending behavior of FG plates under thermal and 

mechanical loadings where the exact solutions for the temperature, stress and displacement 

were derived for simply supported plates using the state-space method. Vel and Batra (2004) 

reported 3D exact solutions technique for free and forced vibrations of FG simply supported 

plates using the power series method. Natural frequencies, displacements and stresses were 

determined by exact solutions method and comparative studies for with ESL models were 

also portrayed. Vel (2010) extended the previous work Vel and Batra (2004) to FG 

anisotropic cylindrical shells. 3D elasticity theory and the generalized DQM method were 

also used for determining the free vibration characteristic of FG cylindrical shells surrounded 

by an elastic medium (Kamarian et al., 2014). Recently Hajlaoui et al. (2017) used the 3D 

elasticity theory for nonlinear dynamics analysis of FGM shell structures and Brischetto 

(2018) worked for the correct imposition of transverse shear/normal load conditions in FGM 

shells by 3D layer-wise model.    

 

1.2.1.7 Unified Formulation 

The unified formulation proposed by Carrera (1995) for multilayered composite 

structures was a hierarchical formulation which offers a procedure to describe and implement 

numerous plate/shell theories as well as finite elements in a unified manner by referring to a 

few fundamental nuclei. Several other theories developed in the framework of the Carrera 

unified formulation (CUF) by expanding the displacement variables in the thickness 

coordinate using Taylor’s expansions of N-order with N being a free parameter. Cinefra et al. 

(2010) used the CUF to the thermal-mechanical analysis of FG shells. Complete details about 

the development and applications of the CUF reported in the books authored by Carrera et al. 

(2011, 2011a, 2014). Neves et al. (2013) extended the application of the CUF and the 

collocation method for free vibration analysis of functionally graded shells accounting for 

through-the-thickness deformations. Cinefra et al. (2012) combined the CUF and the mixed 

interpolation of tensorial components (MITC) technique to develop a nine-node shell element 

for the bending analysis of FG plates/ shells under transverse loadings. The MITC overcomes 

the locking phenomenon and all refined models contained in the CUF can be 

implemented in their proposed shell element. Ayoubi and Alibeigloo (2017) used the CUF 

technique for three-dimensional transient analysis of FGM cylindrical shell subjected to 

thermal and mechanical loading. Recently Beni and Dehkordi (2018) extended the Carrera 
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unified formulation in polar coordinate for analysis of circular sandwich plate with FGM core 

using GDQ method. 

From literature review, it is observed that for ESL models, the CPT is extensively 

used to predict the nonlinear and postbuckling responses of FG thin plates/shells. All the 

effects of temperature, initial geometric imperfections and geometric nonlinearity can be 

easily included in the CPT model since it is the simplest one among the ESL models. 

Although the CPT ignores the shear and normal deformation effects, it can provide 

acceptable predictions for the thin plates/shells where the effects of the shear and normal 

deformations are insignificant. 

Among the shear deformation theories, the FSDT and TSDT were widely used for the 

modeling and analysis of FG plates/shells. This might be due to the fact that both FSDT and 

TSDT was developed long time ago compared with other HSDTs having the same number of 

unknowns. 

 

1.2.2 REVIEW OF SHELL GEOMETRY 

Shells may have different geometries based mainly on their curvature characteristics. 

In most shell geometries, the fundamental equations have to be treated at a very basic level 

and are dependent upon the choice of the coordinate system (Cartesian, Polar, curvilinear or 

spherical), characteristics of the Lame parameters (constant or a function of the coordinates) 

and curvature (constant or varying curvature). A plenty of research has been carried out by 

researchers utilizing different shell geometries. 

 

1.2.2.1 Shells of Revolution 

The basic form for shell of revolution can be found in the book by Soedel and Qatu 

(2005). Free vibration analysis of functionally graded panels and shells of revolution 

performed by Tornabene and Viola (2009). Tornabene and Viola (2009a) extend the work by 

performing the free vibrations of four-parameter functionally graded parabolic panels and 

shells of revolution. Later Tornabene (2009) performed free vibration analysis of functionally 

graded conical, cylindrical shell and annular plate structures with a four-parameter power-law 

distribution.  Qu et al. (2013) established a unified formulation for vibration analysis of 

functionally graded shells of revolution with arbitrary boundary conditions. Recently Li et al. 

(2017) used a modified Fourier-Ritz approach for the free vibration of functionally graded 

cylindrical, conical, spherical panels and shells of revolution with general boundary condition 
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while Wang et al. (2017) used a semi-analytical method to analyze the vibration of 

functionally graded (FG) sandwich doubly-curved panels and shells of revolution.  

 

1.2.2.2 Cylindrical and Doubly Curved Shells 

The shell geometry being addressed by most researchers is the closed cylindrical shell 

wherein the axis of revolution is parallel to the centre line. The widespread usage and ease of 

manufacturing of cylindrical shell are the main reason for such attention. For doubly curved 

shells, the curvatures of mid-surface in two orthogonal directions (rx and ry ) and the 

curvature of twist (rxy) are non-zero with a Lame’s constant parameters. Pioneer work on 

vibration of functionally graded cylindrical shells was reported by Loy et al (1999). Pradhan 

et al. (2000) performed the vibration characteristics of functionally graded cylindrical shells 

under various boundary conditions. Dynamic stability analysis of functionally graded 

cylindrical shells under periodic axial loading was investigated by Ng et al. (2001) while for 

embedded in elastic medium was performed by Sheng and Wang (2008). Sofiyev and 

Schnack (2004) worked on the stability of functionally graded cylindrical shells under 

linearly increasing dynamic torsional loading. Haddadpour et al. (2007) examined the free 

vibration analysis of functionally graded cylindrical shells including thermal effects. Non-

linear analysis of dynamic stability for functionally graded cylindrical shells under periodic 

axial loading performed by Darabi et al. (2008).  Chorfi and Houmat (2010) worked on non-

linear free vibration of a functionally graded doubly-curved shallow shell of elliptical plan-

form. Nonlinear vibrations of functionally graded doubly curved shallow shells with a 

rectangular base are investigated by Alijani et al. (2011) using Donnell's nonlinear shallow-

shell theory. Oktem et al. (2012) performed the static response of functionally graded plates 

and doubly-curved shells based on a higher order shear deformation theory.  Tornabene and 

Viola (2013) examined the static analysis of functionally graded doubly-curved shells and 

panels of revolution. Bich et al. (2013) performed the nonlinear dynamic analysis of 

eccentrically stiffened imperfect functionally graded doubly curved thin shallow shells. 

Tornabene and Ceruti (2013) used GDQ method to study the mixed static and dynamic 

optimization of four-parameter functionally graded completely doubly curved and degenerate 

shells and panels. Later on Tornabene et al. (2014) worked on free vibrations of free-form 

doubly-curved shells made of functionally graded materials using higher-order equivalent 

single layer theories. Gong et al. (1999) studied the elastic response of functionally graded 

cylindrical shells subjected to low-velocity impact. Zare et al. (2017) performed the free 

vibration analysis of functionally graded porous doubly-curved shells based on the first-order 
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shear deformation theory while Punera and Kant (2017) investigated the free vibration 

characteristics of functionally graded open cylindrical shells based on several refined higher 

order displacement models. Recently Ansari et al. (2018) worked on the static analysis of 

doubly curved singly ruled truncated FGM cone. 

 

1.2.2.3 Conical Shells 

Conical shell is considered as a special type of shell of revolution. It is formed by 

revolving a straight line around an axis that is not parallel to the centre line. Parametric 

instability of conical shells by the generalized differential quadrature method was determined 

by Ng et al. (1999). Naj et al. (2008) studied the thermal and mechanical instability of 

functionally graded truncated conical shells. Sofiyev and Schnack (2004) studied the stability 

of functionally graded truncated conical shells subjected to aperiodic impulsive loading later 

Sofiyev (2009) worked on vibration and stability behavior of freely supported FGM conical 

shells subjected to external pressure.  Zhao and Liew (2011a) performed the free vibration 

analysis of functionally graded conical shell panels by a meshless method. Viola et al. (2014) 

studied static analysis of functionally graded conical shells and panels using the generalized 

unconstrained third order theory coupled with the stress recovery. Sofiyev and Kuruoglu 

(2016) worked on the domains of dynamic instability of FGM conical shells subjected to time 

dependent periodic loads. 

Recently Sofiyev and Osmancelebioglu (2017) studied the free vibration of sandwich 

truncated conical shells containing functionally graded layers within the shear deformation 

theory while the thermal effect on free vibration of ring-stiffened rotating functionally graded 

conical shell with clamped ends was performed by Talebitooti (2018). 

 

1.2.2.4 Spherical Shells 

Spherical shells are another special case of shells of revolution. For these shells, a 

circular arc, rather than a straight line, revolves about an axis to generate the surface. If the 

circular arc is half a circle and the axis of rotation is the circle’s own diameter, a closed 

sphere will form. If a segment of this shell is taken, an open spherical shell will be produced. 

If the dimensions of the segment are small when compared with the radius then it will 

regarded as shallow spherical shell. Shallow spherical shells can have rectangular, circular 

(spherical caps) or other planforms. These shallow shells can have both rectangular 

orthotropy as well as spherical orthotropy. Nath and Alwar (1978) first performed the non-

linear static and dynamic response of spherical shells. Woo and Meguid (2001) worked on 
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the nonlinear analysis of functionally graded plates and shallow shells. Shahsiah et al. (2006) 

studied the thermal instability of functionally graded shallow spherical shell. Ganapathi 

(2007) determined the dynamic stability characteristics of functionally graded materials 

shallow spherical shell. Nonlinear static and dynamic buckling analysis of the functionally 

graded shallow spherical shells including temperature effects was studied by Bich and Van 

(2012). Recently, Brischetto (2018) applied a 3D layer-wise model for the correct imposition 

of transverse shear/normal load conditions that can be used for FGM spherical shells. 

 

1.2.2.5 Shallow Shells 

It should be noted that only shells on a circular planform produce a shell of 

revolution. The shallow shells are the open shell wherein both in-plane displacement and 

transverse shear forces are very small compared to the radius of curvature. In this arena, Woo 

and Meguid (2001) investigated nonlinear analysis of functionally graded plates and shallow 

shells while in another work Woo and Meguid (2005) again studied the thermo mechanical 

post buckling analysis of moderately thick functionally graded plates and shallow shells. 

Matsunaga (2008) used 2D higher-order deformation theory to study the free vibration and 

stability of functionally graded shallow shells while Alijani et al. (2011) used Donnell's 

nonlinear shallow-shell theory to study the nonlinear forced vibrations of FGM doubly 

curved shallow shells with a rectangular base. Bich et al. (2011) presents a semi-analytical 

approach to investigate the nonlinear dynamic of imperfect eccentrically 

stiffened functionally graded shallow shells taking into account the damping subjected to 

mechanical loads. In extension of their work, Bich and Van (2011) presented an analytical 

approach to investigate the non-linear axisymmetric response of functionally graded 

shallow spherical shells subjected to uniform external pressure incorporating the effects of 

temperature. 

 

1.2.2.6 Parabolic and Hyperbolic Shells 

Shell structures have been widespread in many fields of engineering because they 

give rise to optimum conditions for dynamical behaviour, strength and stability. Parabolic 

and hyperbolic Shell structures support applied external forces efficiently by virtue of their 

geometrical shape. These types of shell structures are much stronger and stiffer than other 

structural shapes. 

The pioneer work on free vibrations of hyperboloidal shells of revolution was 

reported by Carter et al. (1969). Buckling stresses of stiffened hyperboloidal shells were 
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evaluated by Mungan (1979). Byun and Kapania (1992) performed nonlinear transient 

response of imperfect hyperbolic shells using a reduction method. Hyperbolic paraboloid 

shell model analysis using mixed finite element formulation was developed by Omurtag and 

Aköz (1994). Fundamental considerations for the finite element analysis of shell structures 

considering the parabolic and hyperbolic shell was reported by Chapelle and Bathe (1998). 

Pitkäranta et al. (2001) used fourier mode analysis for determining the deformations of 

shallow shell layers. Nasir et al. (2002) worked on dynamics of axisymmetric hyperbolic 

shell structures. Krivoshapko (2002) described the applications to one-sheet hyperboloidal 

shells of revolution and determined the static characteristics while the vibration and buckling 

analyses were also reported. Tornabene and Viola (2009) performed the free vibrations of 

four-parameter functionally graded parabolic panels and shells of revolution.  

Tornabene (2011) determined the free vibrations of anisotropic doubly-curved shells 

and panels of revolution using 2-D GDQ solution technique. Xie et al. (2015) reported the 

free vibration of four-parameter functionally graded spherical and parabolic shells of 

revolution with arbitrary boundary conditions.  

Recently, Garhwal et al. (2018) determined the static response of hyperbolic 

paraboloid composite shells under uniform pressure using finite element technique. Pang et 

al. (2018) developed a semi analytical method for the free vibration analysis of doubly-

curved shells of revolution.  

 

1.2.2.7 Conoidal Shells 

Conoidal shells are distinctly used in modern shell roof structures because of their 

architectural aesthetics and functional advantages. They are doubly curved ruled surfaces has 

manufacturing advantageous during casting. Many industrial structures such as food 

processing and medical plants, exhibition and assembly halls, aircraft hangers and so on can 

be covered satisfying most of the functional requirements adopting this simple and elegant 

structural form. Hadid (1964) first analytically and experimentally investigated the bending 

characteristics of elastic conoidal shells. Choi (1984) performed a conoidal shell analysis by 

modified isoparametric element. Ghosh and Bandyopadhyay (1989, 1990) worked on 

bending analysis of conoidal shells using curved quadratic isoparametric element and 

Galerkin method. Finite element analysis of laminated composite conoidal shell structures 

was reported by Dey et al. (1992) while Das and Bandyopadhyay (1993) performed 

theoretical and experimental studies on conoidal shells. Chakravorty et al. (1995, 1996) used 

finite element approach to determine the free vibration analysis of point-supported laminated 
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composite doubly curved shells. Nayak and Bandyopadhyay (2002) performed free vibration 

analysis and design aids of stiffened conoidal shells. Pradyumna and Bandyopadhyay (2009) 

showed the dynamic instability of functionally graded shells using higher-order theory. Later 

the same authors, Pradyumna and Bandyopadhyay (2010) evaluated the free vibration and 

buckling of functionally graded shell panels in thermal environments. In recent past Ansari et 

al. (2018) worked on static analysis of doubly curved singly ruled truncated FGM cone.  

 

1.2.3 REVIEW OF DYNAMIC ANALYSIS OF SHELLS  

Both the theory and the analysis of shell structures can become more complex if one 

or more transverse shear deformation and rotary inertia, environmental effects are included. 

When the shear deformation effects are included in the FGM shell structures the order of the 

differential equations used for shell analysis increases from 8 to 10 or higher. In this section, 

complexities arising from the type of dynamic analysis, such as free vibration, impact 

loading, dynamic stability, rotating shells, etc. are explored. 

 

1.2.3.1 Free Vibration 

A pioneer survey on the free vibration of shells was provided by Leissa (1973) where 

the effects of different boundary conditions and semi-vertex angles on the frequency 

characteristics of conical shells were investigated. Several investigators worked on the 

vibration of homogeneous conical shells with different boundary conditions for the past thirty 

years. Lam and Hua (1999) investigated the influence of boundary conditions on the 

frequency characteristics of a rotating truncated circular conical shell. As far as the 

functionally graded shell structures are concerned, the vibration effects caused by different 

phenomena can be of serious consequence for their strength and safety. Loy et al. (1999) is 

one of the pioneers in this field, they examined the linear vibration frequency spectra of a 

functionally graded cylindrical shell. Later the several investigators worked on the free 

vibration of FGM cylindrical shells using different methods. Some notable work in this 

segment carried out by Pradhan et al. (2000), Ng  et al. (2001), Liew et al. (2005), Batra and 

Jin (2005), Najafizadeh  and Isvandzibaei (2007) and Matsunaga (2009). The vibration of 

FGM conical shells are not widely reported in literature as in the case of FGM cylindrical 

shells. Recently, some studies on the linear vibration and stability of FGM conical shells with 

different boundary conditions are published in the open literature. Naj et al. (2008) performed 

the thermal and mechanical instability of functionally graded truncated conical shells. 

Sofiyev (2009) exercised the vibration and stability behavior of freely supported FGM 
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conical shells subjected to external pressure. Tornabene (2009) analyzed the free vibration 

parameters of functionally graded conical, cylindrical shell and annular plate structures with a 

four-parameter power-law distribution. Zhao and Liew (2011a) used the meshless method to 

determine the free vibration characteristics of functionally graded conical shell panels. 

Apart from the linear vibration analysis of the FGM plate and shell non-linear 

vibration analysis also important for different application of such structures. A profound 

survey on nonlinear analysis of FGM plates and shells can be found in a book by Shen 

(2016).  

 

1.2.3.2 Rotational Effects 

In dynamic analysis of shell structures, the rotational speed is a triggering parameter 

which was addressed by many researchers. Free vibration analyses of rotating FG shell of 

revolutions are limited to those of FG cylindrical shells. Ahmad and Naeem (2009) 

investigated the vibration characteristics of rotating FG cylindrical shells with different 

boundary conditions. The shell dynamical equations were obtained using Budiansky and 

Sanders thin shell theory, which were solved using wave propagation approach. Malekzadeh 

and Heydarpour (2012) examined the free vibration characteristics of rotating functionally 

graded cylindrical shells in thermal environment. Heydarpour et al. (2012) performed the 

thermoelastic analysis of rotating laminated functionally graded cylindrical shells using 

layerwise differential quadrature method. Malekzadeh and Heydarpour (2013) extended their 

previous work (2012) for rotating conical shells where the free vibration analysis of rotating 

FG conical shells were performed subjected to different boundary condition based on the 

FSDT of shells. The formulation included the centrifugal and Coriolis forces due to rotation 

of the FG shell. The differential quadrature method (DQM) was employed to solve the 

thermoelastic equilibrium equations and the free vibration equations of motion. Heydarpour 

et al. (2014) analyzed the free vibration behavior of rotating functionally graded carbon 

nanotube-reinforced composite truncated conical shells. Recently, Nguyen and Nguyen 

(2017) evaluates the dynamic response and vibration of functionally graded carbon nanotube-

reinforced composite (FG-CNTRC) truncated conical shells resting on elastic foundations 

while Sheng and Wang (2017) determined the non-linear vibrations of rotating functionally 

graded cylindrical shells. 
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1.2.3.3 Impact Loading 

The primary concept of impact problems originates from the dynamic behaviour of 

colliding bodies considering as rigid objects. The development of theory of elasticity enabled 

the multi-dimensional aspect of wave propagation in the impact problems and the stress 

distribution at the contact point. Impact dynamics includes the motion of both the impactor 

and the target and the force developed at the interface can be predicted accurately using a 

number of models established over the years. The characteristics of the FGM shell structures 

is concerned with the criticality of impacts which may induce significant internal damage 

undetectable by visual inspection causing degradation of the strength and stiffness of the shell 

structure. The first attempt to incorporate a theory of local indentation for static loading was 

based on a scheme suggested by Hertz. Hertz contact law between an elastic sphere and 

elastic half-space provides an expression for the local indentation in respect of contact force 

and a constant parameter depending on the radii of curvature at contact and on the elastic 

properties of the impactor and the target. The low velocity impact refers to a situation in 

which the entire structure deforms during contact duration as waves propagate to the 

boundary and reflect back several times. The damage modes of FGM structures under low 

velocity impact are significantly different from the metallic structures where-in the damage 

starts from the surface which can be detected by routine visual inspection. The low velocity 

impact may have cascading effect on the structural integrity and it can reduce the desired life 

of the structural component. Hence, it required a powerful analysis tool to accurately predict 

the internal damage of the FGM shell structures. 

To overcome this limitation, finite element method was extensively employed to 

analyze the response of damaged FGM shell structures subjected to low velocity impact. The 

finite element method requires that either the force function be known or the dynamic 

response of both the structure and the impactor be studied simultaneously. In the latter case, it 

is necessary to have prior experimental knowledge of the contact behaviour between the 

impactor and the target. The founding investigation on low velocity impact performance of 

beam was performed by Goldsmith (1960). Low velocity impact performance of solid 

structures is a well-known area of research in structural mechanics. Various approaches can 

be adopted to analyze the contact phenomenon between the impactor and target surface such 

as spring mass models, energy balance technique and direct approach techniques. A complete 

work of such techniques with their relative advantages and disadvantages can be found in a 

book by Abrate (2005). Literature reviews of low velocity impact performance on FGM shell 

structures are not plentiful in the open literature. The review article on low-velocity impact 
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properties of composite materials (Richardson and Wisheart, 1996) and the review article on 

low-velocity impact on sandwich structures (chai and Zhu, 2011) gives some insight about 

the low velocity impact problems for composite and sandwich structures.  Gong et al. (1999) 

first determined the elastic response of functionally graded cylindrical shells to low-velocity 

impact. There is a course of study available on simulation of low velocity impact 

performance of FGMs by the commercial available software package. Gunes and Aydin 

(2010) modeled the 3D response of FGM circular plate with the help of commercial finite 

element software package. Gunes et al. (2011) extended the earlier work and studied the 

elasto-plastic impact performance of circular FGM plates using Mori-Tanaka scheme. 

Etemadi et al. (2009) established a 3D simulation for sandwich panels with a functionally 

graded core subjected to low velocity impact. Later on, Larson and Palazotto (2006) 

established a Hertzian type of the contact force where the modified contact stiffness was used 

incorporate the grading profile along the thickness direction. Influences of various indicative 

parameters such as impactor velocity, power law index, mass of the impactor with respect to 

time histories of the contact force and shell deflection of the target were studied. To further 

extend the work on low velocity impact characteristics of FGM plates, Larson and Palazotto 

(2009) and Larson et al. (2009) developed a combined computational, analytical and 

experimental method. There are few number of studies available related to low velocity 

impact in FGMs structures where mathematical technique is used to solve the FGM 

formulation. Mao et al. (2011) studied the response of a spherical shallow shell impacted with 

low velocity in thermal environment also circular FGM plate was considered in their work. 

Yalamanchili and Sankar (2012) worked on indentation of functionally graded beams and 

also demonstrated its application with low-velocity impact case. Low velocity impact 

performance of a circular plate considering both radial and transverse graded profiles 

developed by Shariyat and Jafari (2013) where symmetrical motion equations were derived 

from the first order shear deformation theory and the results were obtained via Galerkin 

method. In another work, Shariyat and Farzan (2013) again explored the impact performance 

of a rectangular FGM plate under the eccentric impact loading where the beam model was 

derived based on first order shear deformation theory and the effect of in-plane loads of the 

beam was also taken into account. Khalili et al. (2013) investigated the low velocity impact 

response of a thin rectangular FGM plate neglecting the in-plane inertia effects of the plate. 

Dai et al. (2013) analyzed the low velocity impact performance of shear deformable FGM 

circular shaped plates using the contact formulation derived by Giannakopoulos and Suresh 

(1999). Newmark’s time integration scheme was used for solving the time dependent 
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equations and the space domains equations were solved by orthogonal collocation point 

method. Due to difficulty in obtaining solutions for low velocity impact problem of FGM 

plate structures based on 3D elasticity theory, the alternative solution techniques are available 

with use of plate theories. Numerical technique based on graded finite element method 

(GFEM) is also used for structural analysis problem. Kim and Paulino (2002), and Zhang and 

Paulino (2007), established a GFEM technique for modeling nonhomogeneous structures. 

Dynamic characteristics of FGM cylinder considering internal impact load studied by Asemi 

et al. (2012) by the graded finite element method. Kubair and Lakshmana (2008) established 

cohesive damage model considering low-velocity impact in layered functionally graded 

beams. Kiani et al. (2013) reported the low velocity impact performance of thick FGM beams 

in thermal field considering general boundary conditions. Choi (2018) presented low-velocity 

impact response of convex and concave composite laminated shells using Finite element 

method. 

 

1.2.3.4 Buckling Analysis 

There has been extensive investigations carried out for the buckling analysis of FGM 

plates and shells to predict the critical buckling loads under various boundary and loading 

conditions. Birman (1995) was the first person who attempted to solve the buckling problem 

of FGM hybrid composite plates. Later on, Javaheri and Eslami (2002) first developed the 

buckling model of functionally graded plates under in-plane compressive loading. 

Najafizadeh and Eslami (2002) presented the buckling analysis of FGM circular 

plates based on the Love–Kirchhoff hypothesis. Galerkin procedure was employed by Yang 

and Shen (2003) to investigate the postbuckling behavior of fully clamped FGM rectangular 

plates based on the CPT under transverse and in-plane loads. The authors have concluded that 

though the mechanical performance of FGM plates is quite similar to homogeneous isotropic 

ones, they do exhibit some unique and interesting characteristics due to the grading of 

material composition. Shariat et al. (2005) studied the buckling behavior of geometrically 

imperfect FGM plates based on the CPT. A closed form solution was presented by 

Najafizadeh and Heydari (2008) for the buckling of FGM circular plates based on the 

Reddy’s TSDT subjected to uniform radial compression.  

For the conical shell the vibration and stability behavior of freely supported FGM 

conical shells subjected to external pressure was presented by Sofiyev (2009) while in 

another work Sofiyev (2010) presented the buckling of FGM truncated conical shells 

subjected to axial compressive load and resting on Winkler–Pasternak foundations . Torabi et 
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al. (2013) worked on linear thermal buckling analysis of truncated hybrid FGM conical 

shells. Bhangale et al. (2006) performed linear thermoelastic buckling and free vibration 

behavior of functionally graded truncated conical shells. Several other work on buckling 

behavior of FGM cylindrical shell reported by Shen (2002, 2003, 2005, 2009) and Shen and 

Wang (2009). Zhao and Liew (2011) presented an element-free analysis method for 

mechanical and thermal buckling of functionally graded conical shell panels. 

 

1.2.3.5 Dynamic Stability 

The dynamic stability is an essential design criteria for the shell structures. Ng et al. 

(2001) applied the Bolotin's method to perform a dynamic stability analysis of functionally 

graded cylindrical shells under periodic axial loading.  Ganapathi (2007) analyzed the 

dynamic stability characteristics of functionally graded materials shallow spherical shells. 

Sheng and Wang (2008) performed the thermal vibration, buckling and dynamic stability of 

functionally graded cylindrical shells embedded in an elastic medium while Darabi et al. 

(2008) worked on non-linear analysis of dynamic stability for functionally graded cylindrical 

shells under periodic axial loading. Sahmani et al. (2013) used higher-order shear deformable 

microshells based on the modified couple stress elasticity theory to perform the dynamic 

stability analysis of functionally graded microshells structure. Lei et al. (2014) used the 

element-free kp-Ritz method to perform the dynamic stability analysis of carbon nanotube-

reinforced functionally graded cylindrical panels. Asnafi and Abedi (2017) made a 

comparison between the dynamic stability of three types of nonlinear orthotropic functionally 

graded plates under random lateral loads. Inala and Mohanty (2017) determined the flap wise 

bending vibration and dynamic stability of rotating functionally graded material plates in 

thermal environments. Torki et al. (2017) presented the dynamic stability of cantilevered 

functionally graded cylindrical shells under axial follower forces. 

 

1.2.3.6 Thermal and Hygrothermal Effect 

The presence of heat and moisture has significant influence on dynamic parameters of 

shell elements. The shell structure behaves in different pattern with high thermal gradient and 

in moist environment. Yang et al. (2006) studied thermo-mechanical post-buckling of FGM 

cylindrical panels with temperature-dependent properties. Shariyat (2009) worked on 

vibration and dynamic buckling control of imperfect hybrid FGM plates with temperature-

dependent material properties subjected to thermo-electro-mechanical loading conditions. 

Zenkour (2010) reported the hygro-thermo-mechanical effects on FGM plates resting on 
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elastic foundations. Bouderba et al. (2013) determined the thermomechanical bending 

response of FGM thick plates resting on Winkler-Pasternak elastic foundations. Lee and Kim 

(2013) worked on hygrothermal postbuckling behavior of functionally graded plates. Lee and 

Kim (2014) extended the previous work by analyzing the degradation of thermal 

postbuckling behaviors of functionally graded material in aero-hygrothermal environments. 

Sobhy (2016) presented an accurate shear deformation theory for vibration and buckling of 

FGM sandwich plates in hygrothermal environment. Beldjelili et al. (2016) analyzed hygro-

thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a 

four-variable trigonometric plate theory. Barati and Shahverdi (2017) considered aero-hygro-

thermal stability analysis of higher-order refined supersonic FGM panels with even and 

uneven porosity distributions. 

 

1.2.3.7 General Dynamic Behaviour 

There are several other studies available which addressed the general dynamic 

behaviour of FGM shells. Wu and Lo (2006) discussed an asymptotic theory for dynamic 

response of laminated piezoelectric shells. Park et al. (2005) conducted a linear static and 

dynamic analysis of laminated composite plates and shells using finite elements. Ansari and 

Darvizeh (2008) worked on the prediction of dynamic behaviour of FGM shells under 

arbitrary boundary conditions. Ng et al. (2001) presented the dynamic stability analysis of 

functionally graded cylindrical shells under periodic axial loading. Dynamics of advanced 

rotating blades made of functionally graded materials, operating in a high-temperature field 

studied by Librescu, et al. (2008). Duc et al. (2015) performed nonlinear dynamic analysis 

and vibration of shear deformable piezoelectric FGM double curved shallow shells under 

damping-thermo-electro-mechanical loads. Moradi-Dastjerdi et al. (2013) investigated the 

dynamic behavior of functionally graded nanocomposite cylinders reinforced by carbon 

nanotube by a mesh-free method. Sheng and Wang (2018) performed the dynamic stability 

and nonlinear vibration analysis of stiffened functionally graded cylindrical shells.  Tan et al. 

(2018) worked on static, dynamic and buckling analyses of 3D FGM plates and shells via an 

isogeometric-meshfree coupling approach. Frikha et al. (2018) performed the dynamic 

analysis of functionally graded carbon nanotubes-reinforced plate and shell structures using a 

double directors finite shell element. 
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1.2.4 REVIEW OF SOLUTION METHODS 

Different analytical methods are employed to solve FGM shell problems including 

exact methods, different variational methods including Rayleigh and Ritz method, meshless 

method, Galarkin method, finite element methods and other methods. Numerous methods are 

available for researchers to study shell dynamics and obtain natural frequencies and mode 

shapes. 

1.2.4.1 Exact solutions  

The exact solutions are implied to obtain a solution that satisfies both the differential 

equations and boundary conditions exactly. For a generalized layered FGM shell and 

boundary conditions, the exact solution is difficult to find from the sets of shell equations and 

boundary conditions. The limited numbers of boundary conditions and FGM configuration 

with exact solutions are very limited. The pioneer work for untwisted single layered - or 

doubly-curved layered composite shells with two opposite edges having shear diaphragm 

using exact solutions method performed by Librescu et al. (1989). The complexity of the 

analysis and solution available for such shells with two opposite edges simply supported, 

while the others are arbitrary, prevented most researchers from getting results. The exact 

solution method is widely used for FG plate and for the FG shell very little work is found in 

the open literature. 

The exact solutions for the 3D static bending analysis of FG plates were derived by 

Kashtalyan (2004), Woodward and Kashtalyan (2011a). Exact solutions for the stresses and 

displacements of simply supported plates under transverse pressure were obtained using 

Plevako displacement functions. Zenkour (2007) adopted the state-space method to derive the 

exact solutions for the 3D bending analysis of FG simply supported plates under transverse 

pressure. Zhong and Shang (2008) presented exact solutions for the 3D bending analysis of 

FG simply supported plates with specific variations of material properties such as exponential 

model, linear model and reciprocal model. Xu and Zhou (2009) developed the exact 

solutions for the 3D bending analysis of FG plates with continuously varying thickness. 

Semi-analytical solutions for the 3D bending analysis FG plate with different boundary 

conditions were provided by Zhang et al. (2014) using the DQM and the state-space 

approach. Kashtalyan and Menshykova (2009) performed 3D static bending analysis of 

simply supported sandwich panels with a FG core under transverse loadings. Woodward and 

Kashtalyan (2011) extended that to simply supported sandwich panels subjected to 

distributed and concentrated loadings. The 3D bending behavior of FG plates under point 

loading was investigated by Abali et al. (2014) using a combination of analytical and 
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numerical approaches. The analytical approach was based on the displacement function 

method, while the numerical modeling was based on Galerkin type finite element method. 

Yun et al. (2010) investigated the 3D axisymmetric bending of FG circular plates subjected to 

arbitrarily transverse loadings. Analytical solutions for the displacements, stresses, axial 

forces and bending moments of FG simply supported or clamped plates were obtained using 

the direct displacement method. Wen et al. (2011) presented exact solutions for the 3D static 

and dynamic bending analysis of FG plates using the RBFs. Exact solutions for the 3D free 

and forced vibrations of FG simply supported plates were reported by Vel and Batra (2004) 

using the power series method. Exact solutions for natural frequencies, displacements and 

stresses were compared with those predicted by ESL models. Chen et al. (2004) presented the 

three-dimensional vibration analysis of fluid-filled orthotropic FGM cylindrical shells. 

Pelletier and Vel (2006) developed an exact solution method for the steady-state 

thermoelastic response of functionally graded orthotropic cylindrical shells.  Later on, Vel 

(2010) used exact elasticity solution to determine the vibration response of functionally 

graded anisotropic cylindrical shells.  

 

1.2.4.2 Rayleigh and Ritz method 

The Rayleigh and Ritz methods are among the most common approximate methods 

used in the vibration analysis of continuous systems. A displacement field is assumed in both 

methods. The coefficients of the displacement field are completely determined beforehand in 

the method of Rayleigh. In the Ritz method, undetermined coefficients are used in the 

displacement field. An energy functional is then obtained and minimized with respect to these 

coefficients, yielding equations that give the natural frequencies. The method of Rayleigh, 

which assumes a completely determined mode shape, generally yields a less accurate 

approximate frequency corresponding to it when compared with the Ritz method. The Ritz 

method permits to obtain as many natural frequencies as needed. If a complete set of 

functions is used, the Ritz method has excellent convergence characteristics and is relatively 

easy to formulate. This claim can be found in the Qatu (1995) and Ip et al. (1996) work. The 

Rayleigh-Ritz method was successfully used by Loy et al. (1999) to study the vibration of 

functionally graded cylindrical shells with simply supported boundary conditions. On the 

other hand the vibration characteristics of FG cylindrical shells under various boundary 

conditions were examined by Pradhan et al. (2000) using the CPT and Rayleigh method. A 

similar approach was adopted by Arshad et al. (2007) to investigate the vibration 

characteristics of FG cylindrical shells under three different types of volume fraction laws. 
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Shah et al. (2009) analyzed the vibrations of FGM thin cylindrical shells with exponential 

volume fraction law. 

 

1.2.4.3 Meshless method 

Even though FEM is being extensively used in most of the engineering problems, 

there are some drawbacks because of it is mesh based interpolation method. Distortion of the 

mesh during the large deformation of the structure and requirement of intensive remeshing in 

case of structures with complex geometries and discontinuities are the major drawbacks of 

FEM. Therefore, a new type of method called meshless method based on a set of scattered 

nodes rather than meshes has been developed and successfully applied in various engineering 

problems. Some of the drawbacks of FEM such as mesh distortion and remeshing can be 

circumvented by using meshless methods because of their flexibility in mesh requirements. 

Zhao et al. (2009, 2009a), Zhao and Liew (2009, 2011a), and Lee et al. (2009, 20010) 

developed the meshless model based on the FSDT and the element-free kp-Ritz method. This 

model is applied to FG plates for different problems e.g. geometrically nonlinear bending 

(Zhao and Liew, 2009), vibration (Zhao et al., 2009), thermal buckling (Zhao et al.,2009a). 

The meshless method was successfully applied for the mechanical and thermal buckling 

analysis of functionally graded conical shell panels by Zhao and Liew (2011). Mollarazi et al. 

(2012) worked on free vibration analysis of functionally graded cylinders by a meshless 

method. Recently, Xiang et al. (2015) adopted the meshless local collocation method to 

predict the natural frequency of FG cylindrical shells based on FSDT. 

 

1.2.4.4 Galarkin method 

The Galerkin method was employed to investigate nonlinear vibration problems. It 

was used to analyze doubly curved shallow shells in many research articles. Nonlinear forced 

vibrations of FG doubly curved shallow shells were investigated by Alijani et al. (2011) using 

the CPT with von Karman assumptions and the multi-modal Galerkin discretization. The 

buckling and postbuckling of FG sandwich plates resting on an elastic foundation 

under mechanical loadings was studied by Kiani and Eslami (2012) using the FSDT with von 

Karman assumptions. The single mode approach combined with Galerkin technique was used 

to calculate the critical buckling temperature and postbuckling equilibrium 

path of FG simply supported plates. Dai et al. (2005) extended the element-free Galerkin 

method to FG plates with piezoelectric layers under mechanical and thermal loadings based 

on the FSDT. Results show that the element free Galerkin method has many attractive 
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features compared to the finite element method. Zhang and Hao (2009) studied 

the nonlinear vibration of FG cylindrical shells under a combination of thermal loadings and 

external excitations using the FSDT and Galerkin method. An element-free Galerkin 

method were developed by Wu et al. (2011) using the differential reproducing kernel 

interpolation and the Reissner mixed variational theorem (RMVT). These models were 

applied to the 3D bending (Wu et al., 2011) and 3D free vibration (Wu and Chiu, 2011) 

analyses of multilayered composite and FG plates. It is found that the meshless collocation 

method gives slightly better performance than the element-free Galerkin method for the 

bending problem. However, for the free vibration problems, the element-free Galerkin 

method gives better performance than the meshless collocation method. Wu and Yang (2011) 

worked used RMVT-based meshless collocation and element-free Galerkin methods for the 

approximate 3D analysis of multilayered composite and FGM circular hollow cylinders. Wu 

and Yang (2011a) also developed a semi-analytical element-free Galerkin method for the 3D 

free vibration analysis of multilayered FGM circular hollow cylinders  

 

1.2.4.5 Finite Element Method (FEM) 

The finite element methods (FEM) have been rapidly augmented since last four 

decades, primarily based on Ritz method with minimization of the energy functional or other 

energy methods on an element level to obtain an element stiffness matrix. The FEM crosses 

the difficulties which the Ritz method has in dealing with various boundary conditions and 

relatively complex shapes. For simple shell structures, the Ritz method shows better 

convergence and less computational needs. For complex shell structures and boundary 

conditions, the FEM has proven to be an excellent tool. Finite element method (FEM) is the 

most extensively used computational techniques for solving variety of engineering problems. 

In FEM, the continuum is divided into a finite number of non-overlapping regions called 

elements. The equilibrium requirements of each element are specified in terms of a finite 

number of state variables. The final solution of the entire system is obtained by assembling 

the results of the individual elements. A considerable number of FEM commercial codes and 

packages exist to obtain vibration results.  

Sundararajan et al. (2005) used an eight-nodded shear flexible quadrilateral plate 

element based on consistency approach to analyze the large amplitude free flexural vibration 

behavior of FGM plates based on the FSDT. It was found that the effect of skew angle is to 

increase the ratio of nonlinear frequency to linear frequency compared to rectangular case. 

Pradyumna and Bandopadhyay (2008) used an eight-nodded C
0
 continuity element for the 
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free vibration analysis of simply-supported FGM rectangular curved panels based on the 

higher-order formulation proposed by Kant and Khare (1997). The authors observed that 

though the higherorder shear deformation theory is computationally expensive, it shows good 

performance for both thin as well as thick panels and hence recommended for the free 

vibration analysis of both thin and thick FGM plates and shell panels. A p-version of FEM in 

conjunction with a blending function method was adopted by Alijani et al. (2011) for the non-

linear free vibration analysis of FGM doubly-curved shallow shell with an elliptical plan 

based on the FSDT. It was shown that FGM plates exhibit hardening behavior which depends 

on the volume fraction exponent and thickness ratio. Talha and Singh (2010) used a C
0
 

continuous element with 13 DOF at each node to present a higher-order shear deformation 

theory with a special modification in the transverse displacement which contributes 

additional freedom to the displacements through the thickness and fundamentally eradicates 

the over-correction for the static and free vibration analyses of FGM plates using the higher-

order shear deformation theory. Talha and Singh (2011) studied the large amplitude free 

flexural vibration analysis of shear deformable FGM plates based on the higher-order shear 

deformation theory using a C
0
 continuous element with 13 dof at each node. Malekzadeh and 

Shojaee (2013) used an eight-nodded solid element along with the Newmark’s time 

integration scheme to investigate the response of FGM plates based on the FSDT under 

arbitrary boundary conditions and subjected to moving heat source. 

Reddy and Chin (1998) studied the dynamic response of FG cylinders and plates 

subjected to two different types of thermal loadings using the FSDT and the finite element 

method. A geometrically nonlinear analysis of FG shells was performed by Arciniega and 

Reddy (2007) using the FSDT and the finite element method. Naghdabadi and Kordkheili 

(2005) presented a finite element formulation for analysis of functionally graded plates and 

shells. Hosseini and Naghdabadi (2007) worked on geometrically non‐linear thermoelastic 

analysis of functionally graded shells using finite element method. Santos et al. (2009) 

reported a semi-analytical finite element model for the analysis of cylindrical shells made of 

functionally graded materials. Recently, Ansari et al. (2018) worked on Static analysis of 

doubly curved singly ruled truncated FGM cone by using finite element method. 

 

1.2.4.6 Experimental Investigation 

Experimental investigations for FGM structures were found to be carried out by a 

limited number of researchers in the recent past. Watanabe et al. (1998) worked on control of 

composition gradient in a metal-ceramic functionally graded material manufactured by the 
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centrifugal method. Li et al. (2000) experimentally investigated of the quasi-static fracture of 

functionally graded materials. Bogdanski et al. (2002) showed the assessment of the 

biocompatibility of Ni–Ti alloys by in vitro cell culture experiments on a functionally graded 

Ni–NiTi–Ti material. On the other hand, Sadowski  et al. (2007) theoretically predicted the 

temperature distribution in FGM cylindrical plates subjected to thermal shock and results 

were validated experimentally. Kapuria et al. (2008) experimentally validated the bending 

and free vibration response of layered functionally graded beams. Recently, Gunes et al. 

(2014) investigated the low velocity impact on functionally graded circular plates.  

 

1.2.4.7 Other Different Methods 

Other techniques exist for solving the vibration problem of FGM shells viz. finite 

differences, boundary element methods (BEM), point matching, Trefftz, differential 

quadrature etc. The relative ease, accuracy, and dependability of the Ritz method for linear 

analysis and the Galerkin method for nonlinear analysis have proved to be valuable. 

Differential quadrature was used to analyze thermo-mechanical vibration of FGM sandwich 

beam by Pradhan and Murmu (2009). Lanhe et al. (2007) used the same technique for 

dynamic stability analysis of FGM plates. Tornabene et al. (2009) used 2-D differential 

quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and 

annular plate structures. Three-dimensional temperature dependent free vibration analysis of 

functionally graded material curved panels resting on two-parameter elastic foundation using 

a hybrid semi-analytic and differential quadrature method was perfomed by Farid et al. 

(2010). The weighted residuals method was applied by Sharafkhani et al. (2012) and 

Abbasnejad et al. (2013). Boundary domain elements were employed to analyze for transient 

heat conduction in functionally graded materials by Sutradhar and Paulino (2004). A spline 

strip method was used to analyze thick cylindrical shells by Foroughi and Azhari (2014), 

Mirsalehi et al. (2015) and Cheung et al. (1989). Norouzi and Alibeigloo (2017) used a state 

space differential quadrature method for three dimensional static analysis of viscoelastic 

FGM cylindrical panel. Fu et al. (2011) used hybrid-Trefftz finite element method for heat 

conduction in nonlinear functionally graded materials 

 

1.2.5 REVIEW OF RECENT SHELL RESEARCH 

For the last few years’, versatile studies were carried out on shell research which 

includes the essential scope of shell research ranging from the applications of different shell 

theories, tools of analyses, mode of methods to several types of shell structures. It also 
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includes the study with different types of loading including effect of impact and different 

boundary conditions. In recent past, Bich et al. (2011) studied on shallow spherical shells 

made of functionally graded material (FGM) under uniform external pressure incorporating 

thermal effect. Su et al. (2014) presented a unified solution for vibration analysis of 

functionally graded cylindrical, conical shells and annular plates with general boundary 

conditions while Kaparia et al. (2015) developed a quadrilateral shallow shell element based 

on the third-order theory for functionally graded plates and shells and the inaccuracy of rule 

of mixtures. Beni et al. (2015) performed the free vibration analysis of size-dependent shear 

deformable functionally graded cylindrical shell on the basis of modified couple stress 

theory. Sofiyev (2015) studied the vibration and stability of shear deformable FGM truncated 

conical shells subjected to an axial load. Akbari et al. (2015) investigated on the thermal 

buckling of temperature-dependent FGM conical shells with arbitrary edge supports. Sofiyev 

and Kuruoglu (2016) showed the domains of dynamic instability of FGM conical shells under 

time dependent periodic loads while Sofiyev (2016) incorporated parametric vibration of 

FGM conical shells under periodic lateral pressure within the shear deformation theory. Van 

(2016) performed the nonlinear axisymmetric response of FGM shallow spherical shells with 

tangential edge constraints and resting on elastic foundations while Ayoubi and Alibeigloo 

(2017) solved a three-dimensional transient analysis problem of FGM cylindrical shell 

subjected to thermal and mechanical loading. Frikha et al. (2017) demonstrated a four-node 

shell element for geometrically nonlinear analysis of thin FGM plates and shells. Trabelsi et 

al. (2017) determined the post-buckling behavior of functionally graded material shell 

structures using FSDT. Sofiyev et al. (2017) analyzed thermoelastic buckling of FGM conical 

shells under non-linear temperature rise in the framework of the shear deformation theory. An 

analytical investigation on mechanical buckling of FGM truncated conical shells reinforced 

by orthogonal stiffeners carried out by Van and Chan (2017) based on FSDT. Duc et al. 

(2017) determined the thermal and mechanical stability of functionally graded carbon 

nanotubes (FG CNT)-reinforced composite truncated conical shells surrounded by the elastic 

foundations. Thermal buckling of thin conical shell subjected to uniform pressure and 

temperature reported by Liao et al. (2017). Chen et al. (2017) analyzed the free vibration 

characteristics of FGM sandwich doubly-curved shallow shell based on a new shear 

deformation theory with stretching effects. Han et al (2017) performed the vibration analysis 

of submerged orthogonally stiffened FGM cylindrical shells. Wang et al. (2018) investigated 

the effect of imperfection on thermal buckling of cylindrical shell with FGM coating. 

Mohammadimehr and Rostami (2018) worked on bending and vibration analyses of a 
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rotating sandwich cylindrical shell considering nanocomposite core and piezoelectric layers 

subjected to thermal and magnetic fields. 

In the light of impact analysis, Ayoubi and Alibeigloo (2017) studied three-

dimensional transient analysis of FGM cylindrical shell subjected to thermal and mechanical 

loading. Aizi et al. (2017) determined the low velocity impact response of laminated 

composite truncated sandwich conical shells with various boundary conditions using 

complete model and GDQ method while Khalili and Saeedi (2018) evaluated the dynamic 

response of laminated composite beam reinforced with shape memory alloy wires subjected 

to low velocity impact of multiple masses. Bandyopadhyay and Karmakar (2017) worked on 

low-velocity impact response of delaminated composite conical shells in hygrothermal 

environment due to time-delay. Gao et al. (2018) investigated the nonlinear dynamic stability 

of the orthotropic functionally graded cylindrical shell surrounded by Winkler-Pasternak 

elastic foundation subjected to a linearly increasing load. Najafi et al. (2017) determined 

nonlinear dynamic response of FGM beams with Winkler–Pasternak foundation subject to 

noncentral low velocity impact in thermal field 

 

1.2.6 REVIEW OF POROUS FGM STRUCTUTRES 

Production of porosity free FGM using available manufacturing technique is 

extremely difficult. Therefore, the effect of porosity factor on structural behavior of FGM 

components is essential to consider porosities in FGM. Porosities are of two kinds viz. even 

and uneven. The detailed theoretical formulation of even and uneven porosities was 

explained by Wang and Zu (2017). With the rapid progression of materials technology, 

structures with graded porosity can be considered as one of the latest developments in FGMs. 

The presence of porosity within the microstructures of such materials is taken into account by 

means of the local density of the material. The porous materials are composed of two 

elements, one of which is solid (body) and the other element is either liquid or gas that is 

frequently found in nature, such as wood, stone, and layers of dust. Presently researchers 

concentrates on the method of preparation of FGMs, which includes powder metallurgy 

(Khor and Gu, 2000), vapor deposition (Seifried et al., 2001), self-propagation (Liu et al., 

2006), centrifugal casting (Watanabe et al., 1998, 2001) and magnetic separation (Song et al., 

2007). However, these methods are costly and have their own technical complexities.  
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1.2.6.1 Causes and Types of Porosity in FGM 

Earlier studies reveal that quite a few porosities can occur inside the materials during the 

FGM preparation process by the non-pressure sintering technique (Zhu et al. 2001), these 

porosities can weaken the strength of FGMs dramatically. Also, in the multi-step sequential 

infiltration technique, porosities are existing in the intermediate area of the FGMs. This 

phenomenon is due to the fact that it is hard to infiltrate the secondary material into the 

middle area perfectly, whereas it is easier to infiltrate the material into the top and bottom 

area, remaining less porosity in these two zones (Wattanasakulpong et al., 2012). In the light 

of existence of porosities in FGMs, it is essential to study the influence of porosity on the 

vibration characteristics of FGM structures. According to this work, it is important to take 

into consideration the porosity effect when designing and analyzing FGM structures. Studies 

on the vibration and impact responses of porous FGM structures, especially for shells, are 

still unexplored area.  

 

1.2.6.2 Dynamic Analysis of Porous FGM 

Wattanasakulpong and Ungbhakorn (2014) investigated the linear and nonlinear vibration of 

porous FGM beams with elastically restrained ends. Ebrahimi and Mokhtari (2015) studied 

vibration of rotating Timoshenko FG beams with porosities employing DT method. They 

reported that porosity volume fraction and type of porosity distribution have a significant 

impact on the vibrational response of the FGM beams. Also, Wattanasakulpong and 

Chaikittiratana (2015) predicted flexural vibration of porous FGM beams using Timoshenko 

beam theory. Moreover, the wave propagation of FG porous plates based on higher-order 

shear deformation theory was studied by Yahia et al. (2015). Ebrahimi and Zia (2015) 

investigated the large amplitude nonlinear vibration of porous FGM beams by utilizing 

Galerkin and multiple scales methods. Atmane et al. (2017) applied an efficient beam theory 

to study the effects of thickness stretching and porosity on mechanical responses of FGM 

beams resting on elastic foundation. They stated that the presence of porosities brings about 

two important consequences: reduction of both mass and strength of FG beams. Ebrahimi et 

al. (2016) investigated thermo-mechanical vibration response of temperature-dependent FGM 

beams having porosities. Recently, Mechab et al. (2016) developed a nonlocal elasticity 

model for free vibration of FG porous nanoplates resting on elastic foundations. Zare et al 

(2017) presented the free vibration analysis of functionally graded porous doubly-curved 

shells based on the first-order shear deformation theory. 
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1.2.7 CRITICAL DISCUSSION 

There is a general trend among researchers observed in the research of FGM conical 

shell structures to include shear deformation and rotary inertia wherein the finite element 

methods are being employed in shell engineering. The pioneering work on FGM conical shell 

was carried out by Zhao and Liew (2011a) to find out the free vibration characteristics by a 

meshless method. Lee et al. (2009) exhibited the thermoelastic analysis of functionally 

graded plates using the element-free kp-Ritz method. While, Karmakar et al. (2005) analyzed 

the free vibration characteristics of delaminated composite rotating cantilever shallow shells. 

Sreenivasamurthy and Ramamurti (1981) investigated on the effect of Coriolis force on the 

vibration of flat rotating low aspect ratio cantilever plates. The basic finite element 

formulation was interpreted by Bathe (1990), Zienkiewicz (1979) and Cook et al. (1989) 

while the dynamic analysis of structures was explored by Meirovitch (1992). The mechanics 

of layered composite structures was provided by Jones (1975). On the other hand, the free 

vibration characteristics of delaminated composite pretwisted rotating shells were studied by 

Karmakar and Kishimoto (2006). Miyamoto et al. (2013) explained in detailed about the 

functionally graded materials: design, processing and applications. The pioneer work for 

theory and physical behaviour of colliding solids was reported by Goldsmith (1960). Gong et 

al. (1999) first determined the elastic response of functionally graded cylindrical shells 

subjected to low-velocity impact. 

  A new modified contact law for FGM was introduced by Larson and Palazotto 

(2006). Kiani et al. (2013) used that modified contact law for FGM structure to determine the 

low velocity impact response of the FGM structure for single impact problem. For the 

multiple impact problems no literature was reported till date considering the FGM shell or 

plate. The only work for the low velocity multiple-impact problem by Lam and 

Sathiyamoorthy (1999) is available, where the low-velocity multi-impact dynamics of a 

system of a laminated beam are considered. It is found that although FGM plates and shells 

have received some attention from researchers, studies on FGM pretwisted conical shells are 

absent in the literature in both areas of free vibration and transient response subjected to low 

velocity impact. To fulfill this apparent void, the object and scope of the present study is 

systematically presented in the successive topic. 
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1.3 OBJECTIVE AND SCOPE 

It is observed from the exhaustive literature review that the studies carried out so far 

on FGM conical shells are very limited and scanty. Engineering analyses related to this 

specific structural element are reviewed based on available literature. Accordingly, the 

objective of the present research is aimed at investigating several aspects of the dynamic 

behaviour in terms of free vibration and low velocity impact performance of FGM pretwisted 

conical shells. A thorough literature review on shell elements with emphasis on the 

development work that took place in the field of FGM shell structures are provided in the 

previous Section 1.2. It is observed that dynamic behavior of FGM conical shell structures 

are promising area of research with application of mechanical structures of such shells. The 

next sub-section represents the appraisal of past work, gap analysis, the scope of the present 

work while the next section (1.4) provides the organization of this thesis.  

 

1.3.1 APPRAISAL OF PAST WORK 

The in-depth review of the open literature on pretwisted shells, in the context of the 

present work brings out the following facts: 

 

(a) The pioneering investigation was carried out on FGM stationary and rotary plate 

and shell structures especially with reference to the vibration characteristics. Different 

methods were resorted to the vibration analyses of FGM plates and shells, which included 

broadly analytical, experimental and numerical methods. The finite element approach was 

adopted as numerical techniques in most of the analyses, because of its versatility, flexibility 

and capability to solve complicated problems by satisfying the compatibility requirements 

and boundary conditions. A shallow FGM shell element was proved to be highly useful in 

dealing with the vibration problems of turbomachinery blades. 

 

(b) In comparison, studies dealing with FGM pretwisted shells subjected to dynamic 

behavior received appreciably less attention. The three dimensional shell elements for the 

analysis of FGM shallow conical shells was developed assuming that the Jacobian was 

independent of the linear coordinate in the thickness direction and accordingly explicit 

integration through the thickness was performed. 
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(c) The finite element technique employed for free vibration analyses of FGM 

structures considered only three-noded and six-noded triangular plate finite elements, and the 

Ritz method, Galarkin’s method as well as exact solution techniques were adopted for 

determining natural frequencies of stationary FGM shells. The studies on rotating pretwisted 

FGM shells are rare in open literature. The effect of rotational speeds on natural frequencies 

was studied for composite cylindrical shells only in moderate rotational speed range. No 

investigations on pretwisted FGM conical shells under rotation have been considered for 

analysis. 

 

(d) Investigation on the FGM structures subjected to low velocity impact was dealt 

with flat plates having simply supported and clamped free boundary conditions. Low velocity 

impact induced through-the-thickness stresses and strains were calculated for clamped plates 

using eight nodded brick finite elements. Low velocity impact response of FGM shallow 

conical shell is unexplored. The effect of rotational speeds, target displacement, impactor’s 

displacement, impactor’s initial velocity, mass of the impactor, shell thickness and location of 

the impact of the pretwisted FGM conical shells subjected to low velocity impact are yet to 

be explored. 

 

(e) A wide range of work on shells was carried out both for steady state as well as 

transient response but limited to composite and FGM plates other than conical shells. There 

has been no study are taken into account for addressing the dynamic analysis of pretwisted 

FGM conical shells which could be idealized as turbomachinery blades.       

 

1.3.2 GAP ANALYSIS 

The fundamental approach for analyzing FGM structure should be macro-mechanical 

wherein each layer is to be considered as homogeneous. Subsequently, after reaching to 

essence of behaviour of FGM structure, micro-mechanical study should be conducted so that 

proper FGM laws with correct graded material property index can be chosen for its intended 

application. Macro-mechanical study should be given first priority to access the dynamic 

behaviour of FGM pretwisted cantilevered shallow conical shells. For dynamic behaviour of 

the same, it demands to bridge the gap of research identified from review of open literature. 
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Figure. 1.5 Identified research Gap Captured 

The entity of research gap is captured in Figure 1.5 wherein the outer circle indicates the 

universal set of FGM structure while the integral effect of seven distinct subset arenas 

namely, free vibration, low velocity impact, FGM, conical shell , FEM, rotational effect and 

porosity effect. These key areas are focused as the research gap which in turn portrayed as the 

manifestation of present scope. To the best of the authors’ knowledge, there is no literature 

available which deals with free vibration and impact performance of pretwisted FGM shallow 

conical shells. To fill up this apparent void, the present analysis is considered to study the free 

vibration characteristics and low velocity impact performance of pretwisted FGM shallow 

conical shells employing finite element method. 
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1.3.3 SCOPE OF THE PRESENT WORK 

The critical review of existing open literature explicitly indicates the research in the 

area of FGM pretwisted shells is far from completeness and there lies a wider scope of further 

research particularly in the field of dynamic analyses of FGM conical shells. In this respect a 

systematic study is needed to be carried out from the engineering point of view. The present 

study is aimed at investigating a few such problem areas so as to improve the understanding 

of the dynamic behaviour of pretwisted FGM conical shells. To fill the apparent void of the 

research as identified from the review of open literature, the present scope of work for this 

study is defined. Both perfect (porosity free) and porous (even and uneven) FGM conical 

shell structures are considered in the present analysis.  

 

(a) A shallow conical shell element is established in a trapezoidal plan form. The 

turbomachinery blades can be suitably and accurately modelled as pretwisted shallow conical 

shell for compatibility with its geometrical complexity. The generalized dynamic equilibrium 

equation is derived from Lagrange’s equation of motion neglecting the Coriolis effect for 

moderate rotational speeds. The analyses are carried out using an eight noded isoparametric 

shell bending element considering the effects of transverse shear deformation and rotary 

inertia based on Mindlin’s theory. The FGMs layer along the thickness direction is modelled 

by varying the composition of the FGM constituent (ceramic and metal) based on different 

FGMs constituent laws. The numerical studies are carried out considering simple power law, 

sigmoidal law and exponential law of FGM constituents. 

  

(b) Rotating pretwisted conical shells with low aspect ratio can be idealized as turbo-

machinery blades. To ensure the compatibility of deformation and equilibrium of resultant 

forces and moments a layer wise isotropic material property is considered for calculating the 

element stiffness matrices. The QR iteration algorithm is utilized to solve the standard 

eigenvalue problem. A finite element based numerical technique is used to investigate 

dynamic analyses of pretwisted and untwisted FGM conical shells neglecting Coriolis effect 

for moderate rotational speed. Parametric studies are performed to obtain non-dimensional 

natural frequencies of FGM conical shells considering the prime parameters like twist angles, 

rotational speeds, material property graded index of different FGM constituent laws.  
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(c) An in-house computer code has been developed based on the present finite 

element formulation which is validated with the published results from the open literature. 

Numerical solutions are obtained in relation to dynamic analysis of pretwisted FGM shallow 

conical shells both free vibration characteristics as well as transient low velocity normal 

impact performance. Comparative studies are conducted for free vibration analysis with 

respect to stationary and rotating conditions both for twisted and untwisted FGM conical 

shells considering different FGM constituent laws. The deformed modes shapes for each 

vibrational case are furnished and proper justifications are made accordingly. 

 

(d) Numerical investigation is carried out to study the low velocity normal impact 

performance of pretwisted and untwisted FGM shallow conical shells incorporating the effect 

of initial stress resulting from the centrifugal forces. In the context of the present work, 

dynamic response includes the computation of contact force, impactor displacement, 

impactor velocity and shell displacement with respect to time. The modified Hertzian contact 

law which accounts for permanent indentation is utilized to compute the contact force 

between the impactor and the shell for impact at different location of the FGM conical shells 

having moderate speeds of rotation. The time dependent equations are solved by Newmark’s 

time integration algorithm (constant-average-acceleration method). Parametric studies are 

conducted in respect of velocity of impactor, mass of the impactor, location of the impactor, 

thickness of conical shell, angle of twist and various material property graded index of 

constituent laws for FGM conical shells subjected to low velocity normal impact. Possible 

reasons for variation in trends of dynamic parameters obtained from the present analysis are 

provided with suitable justification. 

  

(e) The results are discussed in detail considering the effects of prime design 

parameters on the dynamic behaviour of pretwisted and untwisted FGM rotating conical 

shells. Based on the key identification and critical discussion, a set of significant conclusions 

are summarized. The scope for future research in the area is also addressed.  

 

1.4 ORGANISATION OF THE THESIS 

The present thesis comprises of five chapters. The first chapter contains the general 

introduction of the composite pretwisted shells along with its importance in relation to free 

vibration and transient dynamic analyses and finite element technique. A detailed review of 
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the existing literature is presented in this chapter with an emphasis on the aspects namely, 

shell theories, shell geometries, dynamic analyses of shells, method of analyses, recent 

research work on FGM shells structures and porous FGM structures. Based on literature 

review and addressing to appraisal of past work and gap analysis, the scope of the present 

work is also defined in Chapter 1. 

 

Chapter 2 contains the theoretical formulation employed for the present analyses. The 

basic elastic equations of FGM conical shell model are discussed, followed by the derivation 

of governing equations for FGM shell material for perfect and porous FGM structures. The 

finite element model is based on Lagrange’s equation of motion neglecting the Coriolis effect 

for moderate rotational speeds. An eight noded isoparametric quadratic shell element is 

employed in the finite element formulation. The standard eigenvalue problem is solved by 

applying the QR iteration algorithm. The modified Hertzian contact law is utilized to 

calculate the dynamic parameters like contact force between the impactor and the target shell, 

displacement of the target as well as imapctor and velocity of the impactor. The time-

dependent equations of the target and impactor are solved by Newmark’s time integration 

scheme.  

 

The numerical results of free vibration analyses of FGM conical shell with and 

without pretwist are presented in Chapter 3. The computer codes are validated by comparing 

the results available in the open literature. A concise study of the influence of several 

triggering parameters like twist angle, rotational speeds, and material property graded index 

of different FGM constituent laws on natural frequencies is also reported in this chapter. The 

mode shapes of FGM conical pretwisted and untwisted shells of typical configuration are also 

depicted. The effects of porosity on the free vibration characteristics of FGM conical shell are 

also evaluated.  In this chapter numerical results are generated considering different porosity 

factors both for even and uneven porous FGM shell structures. Comparative studies of free 

vibration characteristics between perfect FGM shell (without porosity) structures with two 

types of porous FGM shell structures are also portrayed in this chapter. 

 

Chapter 4 deals with the transient low velocity impact performance of FGM shallow 

conical shells for both pretwisted and untwisted cases. To establish the validity of the present 

finite element formulation in respect of low velocity impact, some specific problems are also 

compared with those of earlier investigators. In this chapter numerical results are generated 
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for several cases and salient points are discussed to investigate the effects of different impact 

parameters like contact force, target displacement, impactor’s displacement, impactor 

velocity, rotational speeds and material property graded index of different FGM constituent 

laws. The effects of porosity on the low velocity impact performances of FGM conical shell 

considering different even and uneven porosity factors are determined. In this chapter 

numerical results are generated and the effect of triggering parameters on the low velocity 

impact performances are analyzed and discussed. Comparative studies on low velocity impact 

performances for perfect (without porosity) and porous FGM shell structures are also 

portrayed in this chapter. 

  The important conclusions drawn based on the present investigation are 

systematically enumerated in Chapter 5. The major contribution of the present thesis is listed. 

The scope for future research in the context of present and the related problem areas is also 

summarized. The list of references that are cited in the present thesis is furnished at the end.  
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__________________________________________________________________________________________ 

 
2.1 INTRODUCTION 

In this chapter a detailed theoretical formulation and solution techniques based on 

finite element method for the present analysis are provided. The basic elastic equations, 

relevant equations of conical shell model and the derivation of governing equations for the 

free vibration and low velocity impact problems are outlined. An eight nodded isoparametric 

quadratic shell bending element is considered for modeling the FGM shallow conical shell. 

The standard eigen value problem is solved by QR iteration algorithm for determining the 

natural frequencies while for determining the low velocity impact characteristics the 

Newmark„s time integration scheme of constant-average-acceleration method is used. The 

details of finite element formulation based on it are presented. A modified Hertzian contact 

law considering permanent indentation is used to calculate the contact force along with other 

impact response parameters. The governing equations for different FGM constituent laws 

along with different porosity factors are portrayed. 

 

Figure 2.1 Co-ordinate system of conical shell blade and 16 layer gradation along thickness  

 

2.2 GOVERNING EQUATION FOR CONICAL SHELL  

A FGM shallow conical shell of uniform thickness is shown in figure 2.1. The principal 

material axes of each layer with respect to mid-plane of the shell are considered. If the mid-

plane forms the x-y plane of the reference plane, then the displacements can be assumed as  

THEORETICAL FORMULATION 
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 0( , , ) ( , ) ( , )xu x y z u x y z x y    

(2.1) 

 
 

 0( , , ) ( , ) ( , )yv x y z v x y z x y   

 ),,(),(),,( 0 yxwyxwzyxw   

Assuming u, v and w are the displacement components in x, y-and z directions, respectively 

and u
0
, v

0
 and w

0
 are the mid-plane displacements, and θx and θy are rotations of cross-

sections along the x and y axes. The strain-displacement relationships for small deformations 

can be expressed as  

 

 xxxx z  0   

(2.2) 

 
 

 
yyyy z  0
 

 
xyxyxy z  0

 

 0

,xz x xw    

 0

, ,yz y yw    

where mid-plane components are given by 
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and plate curvatures are expressed as 
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Therefore the strains in the k-th layer of the FGM shell can be expressed in the form 
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Combining all the stress terms it can be written as 
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In matrix form it can be written as 
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In compact form the above equation can be expressed as 

 { }  [ ]{  } (2.8) 

 

Where, [T] is the thickness co-ordinate matrix and {  } is the mid-plane stress and curvature 

vectors. 

FGM consists of a number of isotropic layers.  Therefore the in-plane stress resultant {N}, the 

moment resultant {M}, and the transverse shear resultants {Q} can be expressed as 
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In a combined form the equation 2.9 one can expressed as, 
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Where    is the shear correction factor, which is taken as 5/6 for the present analysis. 

 

 Thus,                                      * .F D   (2.13) 
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                 where, 
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2.3   FINITE ELEMENT FORMULATION 

An eight noded isoparametric shell element has been considered for finite element 

formulation, where each node is having five degrees of freedom (three translations and two 

rotations). In order to represent the displacement fields properly, shape functions or the 

interpolation functions are derived from an interpolation polynomial in terms of natural co-

ordinates. In the case of a thin shell element, the interpolation polynomial is a function of    

and η, expressed in the following form. 

                       
           

     
       

  (2.18) 

 

Where,                             are the generalized degrees of freedom. 

 

2.3.1 QUADRETIC ISOPARAMETRIC SHELEL EMENET 

An isoparametric shell element with eight nodes has been considered, where each node is 

having five degrees of freedom as shown in Figure 2.2  and Figure 2.3. The displacements 

and rotations at each node are denoted as        and        respectively. The element 

geometry and displacement fields are expressed by quadratic shape function    .  

   ∑    

 

   

 

 

   ∑    

 

   

 

 

(2.19) 

Where,    and    are the coordinates at node “i”. 

The element displacements are expressed in terms of their nodal values using eight noded 

element shape function as given below, 

   ∑    

 

   

    ∑    

 

   

    ∑    

 

   

 (2.20) 
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Here,    „s are the shape functions which interpolate the generalized displacements          

   along x, y and z axis, respectively at i
th

 node with in an element. 

    ∑     

 

   

     ∑     

 

   

 (2.21) 

Here,    „s are the shape functions which interpolate the generalized rotations     and             

about x, and y axis, respectively at i
th

 node with in an element. 

 

 

 
Figure 2.2 (a) Finite element discretization of (8 x 8) mesh on plan area with elements (b) 
node numbers and the natural coordinates considering isoparametric shell element. (c) Node 
numbers and natural coordinates in planner view. 
 

 

Figure 2.3 Element in the      space coordinates 
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The shape function can be expressed as follows as given by (Bathe, 1990) 

                                    ⁄                

                             ⁄  (2.22) 

                             ⁄   

Where, the natural coordinate systems are denoted by    and    and     ,    are the values at 

the i
th

 node , the value of i ranging from 1 to 8. 

[
    

    
]   [ ]  [

    

    
] (2.23) 

[ ]   *
    

    
+ 

(2.24) 

Here, [ ] is the Jacobian Matrix. 

 

2.3.2 ELEMENT STIFFNESS MATRIX 

The potential energy of the element due to deformation is expressed as 

   
 

 
∫{ } 

 

{ }   
 

 
∫[ ] {  } 

 

[   ][ ]{ 
 }   (2.25) 

   
 

 
∬ {  } [ ]

 

{  }   (2.26) 

 

Where, 

[ ]  ∫[ ] [   ][ ]

 
 

 
 
 

   

(2.27) 

 

The strain displacement relation is given as follows, 

{  }  [ ]{  } (2.28) 

 

Where, [B] is the strain displacement matrix. 

 

{  }   {  
   

   
    

    
      

   
   

    
    

 }
 
 (2.29) 

 

Then, 
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Here, 

[  ]   ∫ ∫ [ ] [ ]
  ⁄

   ⁄

[ ]      
  ⁄

   ⁄

 
(2.31) 

The strain displacement matrix [  ] in the above equation is given by 

[  ]  

[
 
 
 
 
 
 
 
 
 
 
 
        

     

  

  
  

        

   

   
  

        

         

             

          

           ]
 
 
 
 
 
 
 
 
 
 
 

 (2.32) 

 

The element stiffness matrix [  ] can be expressed in local natural coordinates of the element 

as 

[  ]   ∫ ∫ [ ] [ ]
 

  

[ ][ ]      
 

  

 
(2.33) 

 

Here, [ ]  [ ]  [ ] are the strain – displacement matrix, elasticity matrix and determinant of 

the Jacobian matrix respectively. 2 x 2 integration has been used in order to avoid shear 

locking. 

 

2.3.3 ELEMENT MASS MATRIX 

The element mass matrix is obtained from the following integral 

 

[  ]   ∫ ∫ [ ] [ ]
 

  

[ ][ ]      
 

  

 
(2.34) 

 

Where,  

[ ]   [  ] [ ][  ] (2.35) 

 



61 

 

The transformation matrix     is given by 

[  ]   

[
 
 
 
 
        
        
        
       
       ]

 
 
 
 

 (2.36) 

Here, l, m and n denote the direction cosines of the local frame of reference with respect to 

the global coordinate system. The inertia matrices [  ] and the shape function [  ] are given 

as follows, 

[  ]   

[
 
 
 
 
      
      
      
      
      ]

 
 
 
 

  

[  ]   ∑

[
 
 
 
 
      
      
      
      
      ]

 
 
 
 

 

   
 

(2.37) 

 

Where,    and    represents the rotary and translator inertia terms respectively as given below. 

    
 

 
∑∫    

   
    

  

 

   

 (2.38) 

    
 

 
∑∫     

    

  

 

   

 

 

(2.39) 

Where,    and      are the distances of the top and bottom layer from the mid-plane of the 

FGM shell respectively and    denotes the mass density of the k
th

 layer. 

 

2.3.4 ELEMENT GEOMETRIC STIFFNESS MATRIX 

Due to presence of in-plane stresses in mid-surface caused by rotation, the additional 

strain energy is stored in the element. This additional strain energy results in an increase in 

the stiffness of the element.  

The geometric stiffness matrix due to rotation is given by (Sreenivasamurthy and 

Ramamurti, 1981) 
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[   ]   ∫[ ] 

 

[  ][ ]   (2.40) 

where [G] consists of the derivatives of shape functions and [Mσ] is the matrix of initial in-

plane stress resultant caused by rotation.  

 

2.4   BASIC GOVERNING EQUATIONS 

Under dynamic load the response pattern of structures are varies with time. The 

Lagrangian energy function is familiarized in deriving the equations of motion of the shell 

structure. The formulation considers both inertial frame of reference and the local coordinate 

axes. Newmark„s constant-acceleration time integration technique is used for solving the time 

dependent equations of the shell and the impactor.  

 

2.4.1 GENERAL DYNAMIC EQUILIBRIUM 

Hamilton‟s principle (Meirovitch, 1992) applied to the dynamic analysis of elastic 

bodies states that among all admissible displacements which satisfy the specific boundary 

conditions, the actual solution makes the functional ( )T W dt  stationary, where T and W 

are the kinetic energy and the work done by conservative and non-conservative forces, 

respectively. The stationary value is actually a minimum. In case of a dynamic problem 

without damping the conservative forces are the elastic forces developed within a deformed 

body and the non-conservative forces are the external force functions. The energy functional 

for Hamilton‟s principle is the Lagrangian (  ) which includes kinetic energy (T) in addition 

to potential strain energy (U) of an elastic body. 

Two coordinate system (x′, y′, z′) and (x, y, z) are used for modelling the rotating plate 

(Figure 2.4) where (x′, y′, z′) is the inertial reference frame (absolute fixed system) and (x, y, 

z) is the plate coordinate system (local coordinate axes). Hamilton‟s principle is used to 

derive Lagrange‟s equation of motion which is employed for establishing the dynamic 

equilibrium equation for a finite element. The local kinetic energy of the rotating shell can be 

expressed as  

  
 

 
∫    ⃗⃗  ⃗
   

 ⃗              (2.41) 
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where    is the mass density of the shell and   ⃗  is the absolute velocity of an arbitrary point 

on the shell with respect to reference frames. It is assumed that  

 ⃗     ̂ , about the z axis. 

The components of angular velocity with respect to the local co-ordinate system are given as 

{         }  {      }             (2.42) 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Rotational and translational offsets of rotating plate local axes from inertial axes. 

 

According to Chasle‟s theorem 

      ⃗  
   

  
 (   ̂)           (2.43) 

Where    is the position vector from the local inertial reference frame to a vector of a point on 

the deformed shell. The position vector     and the angular velocity vector  ⃗  can be written as  

                                (2.44) 

and      ⃗     ̂                               (2.45) 

h 
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Where (x, y, z) are the co-ordinates of the point with respect to local coordinate axes. (u,v,w) 

are the elastic deflections of a point on the shell and            are the  components of the 

angular velocity with respect to the local coordinate system. The velocity vector  ⃗  is given by 

 ⃗  [( ̇                    ])  [  ̇                    ]   

[( ̇                    ])              (2.46) 

In which the dot (.) represents derivative with respect to time and   ⃗⃗  ⃗   ⃗   =| ⃗⃗  |
 

 

Computing| ⃗⃗  |
 

       ⃗⃗ 
 

 ⃗⃗ ) and cancelling the terms which give no contribution when 

Lagrange‟s equation of motion is applied and substituting the results in kinetic energy 

expression 
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3             (2.47) 

Where [  ]  [

        

        

        
]                            

and  [  ]  [

  
     

           

       
     

      

            
    

 

]                        (2.48) 

The displacement vector {d} at any point in the element can be written as 

{ }  [     ]  [ ]{  }       (2.49) 

Where [S] is the shape function matrix and {  }  is the element nodal displacement vector. 

Substituting the above relation the expression for kinetic energy of an element neglecting the 

coriolis matrix and the rotational stiffness matrix (for moderate rotational speed) 

  
 

 
∫  
   

{  ̇}
 
[ ] [ ]{  ̇}       ∫  

   
2
 
 
 
3

 

[  ][ ]{  }           (2.50) 
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i.e        
 

 
{  ̇}

 
[  ]{  ̇}  {  ̇}

 
[   ]       (2.51) 

Where [Me] is the element mass matrix 

[  ]   ∫ [ ] [ ]
 

                    (2.52)  

And the element centrifugal force vector is 

                  {   }   ∫ [ ] [  ] 
2
 
 
 
3               (2.53) 

The linear elastic strain energy of an element is given by 

   
 

 
∫ { } 
   

{ }              (2.54) 

The strain vector { } and the stress vector { } are expressed as  

{ }  [ ]{  } and { }  [ ]{ }       (2.55) 

Where [B] is the strain displacement matrix and [D] is elasticity matrix. 

Substituting the above equation U1 becomes 

   
 

 
∫ {  }

 { } 
   

[ ][ ]{  }         (2.56) 

  i.e          
 

 
{  }

 [  ]{  }         (2.57) 

Where the elastic stiffness matrix is 

   
 

 
∫ { } 
   

[ ][ ]         (2.58) 

The non-linear strain components can be written as  

{ ́}  
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[ ]{ }           (2.59) 

Where, 
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  *
  

  
 
  

  
 
  

  
 +            (2.60) 

Now,        [ ]  [ ]{  }                (2.61) 

where [G] represents the matrix of derivatives of the shape functions. The strain energy 

contribution from the initial stresses generated due to rotation is given by 

   
 

 
∫ { ́} 
   

{  }                    (2.62)  
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Where    is the initial stress vector.  From the above relation     

   
 

 
∫ { } 
   

[ ] {  }            (2.63) 

i.e        
 

 
∫ {  }

 [ ] 
   

[ ] {  }        (2.64) 

Now,      [ ] {  }  [  ]{ }  [  ][ ]{  }        (2.65) 

Where [  ] is a matrix of initial stresses. So the additional strain energy stored in an element 

is given by,  

   
 

 
∫ {  }

 [ ] 
   

[  ][ ]{  }                       (2.66) 

i.e        
 

 
{  }

 [   ]{  }                  (2.67) 

Where [   ] is element geometric stiffness matrix and is given by  

[   ]  ∫ [ ] 
   

[  ][ ]                       (2.68) 

Now, the potential strain energy (U) for an element of a rotating shell can be expressed as 

                           

i.e       
 

 
{  }

 [  ]{  }  
 

 
{  }

 [   ]{  }               (2.69) 

Lagrange‟s equation of motion and is given by 

 

  
(
   

  ̇ 
)  (

   

   
)  {  }                  (2.70) 

Where {Fe} is the applied external force vector of an element and Lf is the Lagrangian 

function. 

Replacing         in Lagrange‟s equation incorporating the corresponding expressions 

for T and U, the dynamic equilibrium equation for each element can be expressed in 

following form (Karmakar and Sinha, 2001) 

[  ]{  ̈}   [  ]  [   ] {  }  {   }  {  }              (2.71) 

Where [Me], [Ke] and [Kσe] represents element mass matrix, elastic stiffness matrix and 

geometric stiffness matrix, respectively. {Fce}, {Fe} and {δe} represents the element load 
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vector due to centrifugal force , element load vector due to externally applied load and 

element displacement vector respectively. After assembling all the element matrices and the 

force vectors with respect to the common global coordinates, the resulting equilibrium 

equation of the structure becomes 

   [ ]{ ̈}   [ ]  [  ] { }  {     }  { }     (2.72) 

Where [M], [K] and [Kσ] are the respective global matrices, {F(Ω
2
)} is the vector of nodal 

equivalent centrifugal forces, {F} is the global vector of externally applied load and {δ} is the 

global displacement vector. Where [Kσ] depends on initial stress distribution and is obtained 

by the iterative procedure upon solving  

 
 [ ]  [  ] { }  {     } (2.73) 

 

The stress values are found to converge with three iterations. The equation (2.73) solved by 

Gauss elimination technique (Bathe, 1990).  

 

From equation (2.72), for the single impact problem, {F} is given as 

 
{ }    {                     }  (2.74) 

 

Also From equation (2.72), for the multiple impact problem, {F} is given as 

 

{  }    {                        }     (2.75) 

Where, FcA and FcB are the contact forces at the nodes A and B where the impacts occur. 

 
The equation of motion of the rigid impactor is obtained as 
 
    ̈             (2.76) 

     

Where mi and  ̈  are the mass and acceleration of the impactor, respectively. Newmark‟s 

time integration scheme (constant-average-acceleration method) is employed for solving the 

time dependent equations of the shell and the impactor. 
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2.5   FORMULATION OF CONICAL SHELL 

A shallow shell is characterized by its middle surface, and it is defined by the equation 2.77 

(Leissa et al., 1984)  

    
 

 
0
  

  
  

  

   
 

  

  
1 (2.77) 

Where, rx ,  ry  and rxy  denote the radii of curvature in the x and y directions and the radius 

of twist, respectively. The radius of twist (rxy), length (L0) of the shell and twist angle (ψ) 

are related by the equation 2.78. 

       
  

   
 (2.78) 

A thin shallow conical shell with length L0 ,  reference width b0 ,  thickness h ,  vertex angle 

φve  and base subtended angle of cone φ0  is shown in Figure 2.5. 

 

Figure 2.5  Geometry of cantilever shallow conical shell model 

 

Since the conical shell is shallow, it may be assumed that the cross section in Figure 2.6 is 

elliptical. The component of radius of curvature in the chord wise direction        is a 

parameter varying both in the x- and y-directions. The variation in the x-direction is linear. 

There is no curvature along the span wise direction       . The cantilever shell, clamped 

along x = 0, is pretwisted with radius of twist     as shown in Figure 2.6.  

Introducing the non-dimensional coordinate system, 

   
 

  
         

 

  
 (2.79) 
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Figure 2.6  Geometry of pretwisted Conical Shell Model 

 

Where, L0 and    are the length and reference width of the shell plan form as shown in Figure 

2.6. 

The varying radius of curvature can be expressed as per (Liew et al., 1994) 

          
  

       
 (2.80) 

Where,    is the reference major radius as shown in Figure 2.5. Let β and    are the major 

and minor radius at any cross-section parallel to the reference ellipse and S the slant-length of 

the cone of the conical shell;  

The function can be derived from the geometry of conical shell and is expressed as follows: 

               ⁄  
 

        
 (2.81) 
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         ⁄  [      ⁄   ] (2.84) 

  

 
        ⁄  √

        ⁄  

       ⁄           ⁄  
 (2.85) 

 

 
 

  

 
[         ] (2.86) 

 

2.5.1 FORMULATION OF FREE VIBRATION PROBLEM 

The natural frequencies and eigenvectors are found about the deformed configuration. 

For the static analysis, the time-dependent terms are neglected and the form is obtained 

  [ ]  [  ] {  }  {     }  (2.87) 

 

where {δs} is the static equilibrium  solution as a result of centrifugal force. For the dynamic 

analysis, both the static and the time-dependent components are considered where the 

displacement vector {δ} can be expressed as the sum of static and a dynamic terms [{δ}={δs} 

+ {δp}, where {δp} is a small linear time dependent perturbation about the static displaced 

position {δs}]. The equation of motion can be written as 

 

[ ]{ ̈}   [ ]  [  ]  {  }  {  }  {     } (2.88) 

 

Finally the equation of motion for free vibration is obtained in global form considering the 

null force vectors (for free vibration case) 

[ ]{ ̈}   [ ]  [  ] { }  {     } (2.89) 

In this Equation the displacement {δ} is a function of space and time. To solve the free 

vibration problem, the separation of space and time co-ordinates is done by the following 

substitution 

{ }        { } (2.90) 

Therefore, 

{ ̈}           { } (2.91) 

 

Substituting Equations (2.90) and (2.91) into Equation (2.89) one can get 

          [ ]{ }   [ ]  [  ] { }    (2.92) 

As  
      cannot be zero, therefore  
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    [ ]{ }   [ ]  [  ] { }    (2.93) 

Or, 

 [ ]  [  ] { }    [ ]{ } (2.94) 

 

Hence, the natural frequencies (ω) are determined from the standard eigen value problem 

(Bathe, 1990) which is represented below and is solved by the QR iteration algorithm. By 

multiplying both sides of Equation (2.94) by  [ ]  [  ] 
   the equation reduces to 

 { }     [ ]  [  ] 
  [ ]{ } (2.95) 

Or, 

 { }   { } (2.96) 

Where,          

 [ ]  [  ] 
  [ ]    (2.97) 

and  

             (2.98) 

      

2.5.2 IMPACT MODELLING (SINGLE AND MULTIPLE) 

A rigid spherical impactor with low velocity travels towards a functionally graded conical 

target and impacts on the top surface of the conical shell, where the top surface is ceramic-

rich. The shell is initially at stationary and undeformed with one end clamped boundary 

condition that could be idealized as a turbo machinery blades (as shown in figure 2.7). The 

impactor is presumed to contribute no mass to the system that would affect the shell modes 

and combined response. Additionally, the impact is idealized by neglecting gravitational 

effects and assuming the impactor bounces off the shell instantaneously after impacting on 

the surface. The governing equations of low-velocity, low-energy impact phenomenon 

between a sphere and a plate have been defined by Goldsmith (1960). The formulation 

initiates by considering the pressure distribution from an impact incident can be resolved into 

a concentrated force of magnitude F. At impact, the projectile will deform the shell globally 

as well as a small localized area where the elastic sphere indents the shell. The impact force 

causing the localized deformation refers as indentation. Fc, is a contact force that may be 

expressed by the Hertzian contact formulation which is effective for a relatively low-velocity, 

low-energy impact where deformation between the impactor and target are elastic in nature. 

The validity of this assumption weakens for high velocity impact. Conway (1956) established 

a Hertzian-type contact force model which is appropriate for transversely isotropic materials. 
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This model has been used to state the contact between the impactor and FGM materials 

(Larson and Palazotto, 2006; Shariyat and Jafari, 2013). The apparent elasticity module of the 

shallow conical shell may be governed by 

                           (2.99) 

  

    [
                   

    
]
  

 (2.100) 

 Where        and        are the sum of the volume fraction of ceramic and metal 

constituents along the thickness domain of the shell. The constituent material property 

distributed based on simple power law distribution and can be written as  

       
 

 
∫   

 
 
 

 
 
 

   
 

 
∫ [
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 (2.101) 

                  
 

   
 

 

   
 (2.102) 

                                  

Following the equation (2.99) the apparent density ρx, Poisson‟s ratio υx and shear modulus 

Gx are defined using the rule of mixture approach as follows 

                     (2.103) 

  

                      (2.104) 

  

    [
                   

    
]
  

 (2.105) 

 
 
For the modified Hertzian contact law, contact force (FC) can be calculated during loading 
unloading cycle as (Larson and Palazotto, 2006) 
 

         
    ,          (2.106) 

 
Where, FC is the contact forces at the nodes where the impacts occur. α =local indentation 

which is the change in distance between centre of the impactor and the mid-surface of target 

shell and     =maximum local indentation.  



73 

 

 

Z 

Y 

Normal Impact 

at Loc A 

Normal Impact 

at Loc B 

b0 

X 

L0 

  

 

Figure. 2.7 (a) Single impact at centre on turbo-machinery pretwisted conical shells blade (b) 

Multiple impact on turbo-machinery pretwisted conical shells blade at location A and 

location B. 
 

While {FC} is the global contact force vector resulting from single impacts and is given by  
 

{  }    {                      }    (2.107) 

 
While {FC} is the global contact force vector resulting from multiple impacts and is given by  
 

{  }    {                        }    (2.108) 

 
Where, FcA and FcB are the contact forces at the nodes A and B where the impacts occur. The 

modified contact stiffness (      of the Hertzian contact law can be written as (Larson and 

Palazotto, 2006), 

     
  √  

  (           )   
 
 

  (2.109) 

Where   is a constant based on shape of the impactor and target surface. For the low velocity 

impact case, the value of this constant considered as 2 and this depends on contact behavior 

between a conical shell target and a spherical impactor. On the other hand    is a constant 

depending on the curvatures of both impactor and projectile and is expressed as  

 

  
 

 

  
     

 

  
     

 

  
     

 

  
      (2.110) 

For spherical impactor, the principal radii   
           

     are equal.  

The Stiffness       of equation (2.109) is defined by following expression, 

      
√   [                      ]

√                  
  

      (2.111) 

 

Where Gx is defined in equation (2.105) and other parameters of the above expression are 

defined as follows 
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      (        
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       (2.112) 

  

    
     

(        
    

   
)
 

 

 

Similar to the equation (2.111) the       which is defined in equation (2.109) can also be 

determined. It can be noted that for the rigid impactor as in the present case,         . 

The dynamic equilibrium equation with moderate rotational speeds is derived using 

Lagrange‟s equation of motion in global form neglecting Coriolis effect (Karmakar and 

Kishimoto, 2006). 

[ ]{ ̈}   [  ] { }  { } (2.113) 

 
Where {F} is the global vector of externally applied load and {δ} is the global displacement 

vector. For low velocity impact problem {F} can be expressed as  

 

   ̈           (2.114) 

 
Where mi and  ̈  are the mass and acceleration of the impactor, respectively. Neglecting the 

contribution of plate displacements along global x and y directions, the indentation α can be 

written is (Karmakar and Kishimoto, 2006). 

 

                                   (2.115) 

 

Where wi and wp are displacement of impactor mass and target shell displacement along 

global z direction at the impact point (xc, yc), respectively and Ψ is the twist angle of the 

conical shell blade. The components of force at the impact point in global directions are given 

by  

                                             (2.116) 

 

2.5.3 TIME DELAYED MULTIPLE IMPACT 

The contact force vector {F} is given by 

{  }    {                      }        For single-site impact (2.117) 
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{  }    {                        }      For multi-site impact (2.118) 

  

{  }    {                           } for multi-site delayed impact (2.119) 

 

Where    is the contact force in case of single impact; FcA…FcB are the contact forces due to 

the simultaneous impact at location A and B while      is the contact forces due to the 

delayed impacts at specified nodes on the conical shell. The equation of motion for each rigid 

impactor is given by  

   ̈           (2.120) 

Where mi and  ̈  are the mass and acceleration of the impactor, respectively. The Newmark„s 

time integration scheme (Bathe, 1990) of constant-average-acceleration method is used in 

solving the equations of motion of the shell and impactors. 

 

2.5.4 NEWMARK’S TIME INTEGRATION SCHEME 

The equilibrium equations (2.88) and (2.120) governing the linear dynamic response 

of the conical shell and the impactor involve the contact force 
cF which is transient in 

character. These equations are regarded as a system of ordinary differential equations (ODE) 

with constant coefficients and are made to be satisfied at discrete time intervals t apart. 

Newmark‟s direct time integration scheme (constant-average-acceleration method) is 

considered to approximate the time derivatives and thereby to solve the forced vibration 

equations. Use of this unconditionally stable scheme to the equations (2.88) and (2.120) with 

time step t  derive the following relations at time      

[ ̅]{ }      { ̅}       (2.121) 

 

[ ̅    ]{     }
    

  { ̅ }
       (2.122) 

Where [ ̅] and [ ̅    ] are the effective stiffness matrix of the target conical shell and the 

effective stiffness of the striker, respectively which are expressed as 

 

[ ̅]  [ ]  [  ]    [ ] (2.123) 

 

[ ̅    ]          (2.124) 

Effective forces at time      can be considered as 
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)  (2.125) 

 

{ ̅ }
     {  }

          (       
     ̇    

      ̈    
 )  (2.126) 

 

Velocity can be derived from displacement at time      as 

{ ̇}
    

 { ̇}
 
   { ̈}

 
   { ̈}

    
  (2.127) 

  

     
       [     

          
 ]     ̇    

     ̈    
   (2.128) 

 

And the Acceleration can be derived from velocity at time      as 

{ ̈}
    

   [{ }
     { } ]    { ̇}

 
   { ̈}

 
  (2.129) 

  

 ̇    
      ̇    

     ̈    
     ̈    

     (2.130) 

 

The initial boundary conditions as 

{ }  { ̇}  { ̈}    

(2.131)  

       ̈      
          and      

 ̇         

Where, VOI is the initial velocity of the impactor or striker. 

The integration constants can be calculated as 

   
 

     
       

 

    
     

 

   
                             (2.132) 

 

The values of    and   are taken as 0.25 and 0.5, respectively as per Newmark‟s 

constant-average-acceleration method. Equation (2.122) is analogous to equation (2.88) and 

is solved by the Gauss elimination technique to obtain the dynamic impact parameters at each 

time step. 

 

2.5.5 GOVERNING EQUATIONS OF FUNCTIONALLY GRADED MATERIALS 

FGMs are defined as a combination of two constituent materials, of which one side ceramic 

rich and another side metal rich. Most of the FGMs are in use at high-temperature 
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environments and many of the constituent materials may possess temperature-dependent 

properties.  

     
   

 
          

     
  (2.133) 

 

Where P is the effective material properties of the FGM material and P0, P-1, P1, P2, P3 are 

the temperature coefficients and T is the temperature in Kelvin scale. 

 

2.5.5.1 SIMPLE POWER LAW 

For the simple power law the ceramic volume fraction along the thickness direction is 

governed by the power law index. 

                       [
    

  
]
 

 

 

(2.134) 

Where N is the material property graded index which is a positive real number (0N1) 

which determine the material distribution through the thickness of the beam. According to 

this distribution we have a fully metal beam for large value of N and when N equals to zero a 

fully ceramic beam remains and z is the distance (Figure 2.8) from the mid-plane of the 

graded beam. Figure 2.9 depicts the variation of ceramic volume fraction (Vc) and metallic 

volume fraction (Vm) along the non-dimensional thickness (z/h) direction for simple power 

law exponent (N). The material properties P of FGMs are a function of the material properties 

and volume fractions of the constituent materials, and are expressed as per equation 2.135. 

                       ∑      

 

   

 (2.135) 

Where Pi and Vfi are the material property and volume fraction of the constituent material i, 

satisfying the volume fraction of all the constituent materials k is unity, i.e 

∑    

 

   

 ∑[
    

  
]
 

  

 

   

 (2.136) 
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Where N is the material property graded index which is a positive real number (0N1). For 

FG conical shells the material properties vary continuously and smoothly along the thickness 

of the shell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 Graphical representation of z values for  16 Layer FGM material along the 

thickness direction 

 

  

Figure 2.9 Ceramic (a) and metallic (b) volume fraction along the thickness of the shell for 
various power law index for P- FGM 
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The effective material properties are obtained using the power law distribution (Zhao and 

Liew, 2011a) and are expressed in the following 

                  [
    

  
]
 

 (2.137) 

               [
    

  
]
 

 
 

(2.138) 
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 (2.139) 
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               [
    

  
]
 

 (2.141) 

 

E, υ and ρ denote Young's modulus, Poisson's ratio and mass density respectively where in 

suffix as „c‟ and „m‟ indicate the corresponding values at the outer surface (ceramic rich) and 

inner surface(metal rich) of the FG conical shell. 

 

2.5.5.2 SIGMOIDAL POWER LAW 

FGMs are defined as a combination of two or more constituent materials with smooth 

variation of the material properties along their thickness. The one surface is ceramic rich 

while the other surface is metal rich. Most of the FGMs are generally used in high-

temperature locations and most of the constituent materials possess temperature-dependent 

mechanical and thermal properties. 

 
The volume fraction „Vc‟ of Sigmoidal FGM (S-FGMs) is expressed as (Jung and Han, 2015) 
 

            (  
  

 
)
 

  For         (2.142) 

 
 

                   [        ]  For         
(2.143) 

 

Where N is the material property graded index, a positive real number (0   N   ∞). h is the 

thickness of the shell. By using rule of mixture (ROM) the material property „Peff‟ for S-

FGM are 

 

                         (2.144) 

  

                      (2.145) 

  

                      (2.146) 
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                      (2.147) 

  

                      (2.148) 

 

On the other hand the effective material properties for other half on the S-FGM can be written 
as. 

                   [        ]  For               (2.149) 

 

                         (2.150) 

  

                      (2.151) 

  

                      (2.152) 

  

                      (2.153) 

  

                      (2.154) 

 

 
Where (Peff) is material property and (Vc1 and Vc2) are volume fraction of the constituent 

material (Jung and Han, 2015).  

 
The sum of the volume fractions for S-FGM for each layer is unity. Effective material 

properties such as E (Young's modulus), υ (Poisson's ratio) and ρ (mass density) can be 

calculated effectively with the help of equation 2.143 and 2.149 for each layer of the FGM 

shell. Figure 2.10 shows the variation of ceramic volume fraction (Vc) and metallic volume 

fraction (Vm) along the non-dimensional thickness (z/h) direction with sigmoidal power law 

exponent (N) of functionally graded material as furnished in equation 2.143 and 2.149. From 

 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 

 

 

 

 

 

 

 
Figure 2.10 (a) Variation of Ceramic volume fraction (Vc) and  (b) Metallic  volume fraction 
(Vm) along the non-dimensional thickness direction for different values of N for S-FGM 
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the Sigmoidal FGM properties, linear variation of volume fractions for both ceramic as well 

as metal constituents can only be observed for N = 1. 

 
2.5.5.3 EXPONENTIAL POWER LAW  

 

This particular idealization for FGM modeling is very common in the structural mechanics. 

For a perfect FGM (porosity free) shell structure with uniform thickness „h‟, the typical 

material properties „Peff‟ at any point located at a distance „z‟ from the reference surface (mid-

surface along the thickness direction) is given by equation 2.155.  
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For the top surface and bottom surface of the conical shell the value of non-dimensional 

thickness (z/h) are considered to be -0.5 and 0.5, respectively. Figure 2.11 shows the variation 

 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

 

 

 

 

 

 

 
Figure 2.11 (a) Variation of Ceramic volume fraction (Vc) and  (b) Metallic  volume fraction 
(Vm) along the non-dimensional thickness direction for E-FGM 
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of ceramic volume fraction (Vc) and metallic volume fraction (Vm) along the non-dimensional 

thickness (z/h) direction for exponential power law. 

 

2.5.6 FGM WITH POROSITY 

Production of porosity free FGM is extremely difficult with the available manufacturing 

techniques. Porosities possibly occur inside functionally graded materials (FGMs) during 

fabrication because of technical constraints that lead to creation of micro-voids in these 

materials. So it is necessary to consider the effect of porosities on the free vibration behavior 

and low velocity impact characteristics of FGM shell in the present study. Imperfect FGM 

shell structure are assumed to have even and uneven distributions of porosities over the shell 

cross-section and material properties of FGM shell are supposed to vary in the z-axis 

direction based on modified power-law model (P-FGM) which approximate the porous 

material properties with even and uneven distributions of porous phases. Figure 2.12 

represents the cross sectional view with even and uneven distribution of porosities. 

 

 

 

 

(a) 

 

 

 

(b) 

 

Figure. 2.12 Cross sectional view of (a) even and (b) uneven distributions of porosities 

 

2.5.6.1 FGM WITH EVEN POROSITY 

The effective material properties (Peff) of FGM shell with even porosities distributed 

identically in two phases of ceramic and metal can be expressed by using the modified rule of 

mixture as (Wang and Zu, 2017) 

        (   
   

 
)   (   

   

 
)   

(2.160) 

Where     denotes the volume fraction of even porosities       . For perfect (without 

porosity) FGM     is set to zero.    and    are the material properties of metal and ceramic, 

and    and    are the volume fraction of metal and ceramic, respectively. 
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SIMPLE POWER LAW 

The effective material properties considering even porosity are obtained using the simple 

power law distribution (Wang and Zu, 2017) and are expressed in the following 

                  [
    

  
]
 

 
   

 
        (2.161) 

  

               [
    

  
]
 

 
   

 
        

 

(2.162) 

 

               [
    

  
]
 

 
   

 
        (2.163) 

               [
    

  
]
 

 
   

 
        (2.164) 

               [
    

  
]
 

 
   

 
        (2.165) 

 

E, υ and ρ denote Young's modulus, Poisson's ratio and mass density respectively where in 

suffix as „c‟ and „m‟ indicate the corresponding values at the outer surface (ceramic rich) and 

inner surface(metal rich) of the FG conical shell. 

 

SIGMOIDAL POWER LAW   

The effective material properties considering even porosity are obtained for the Sigmoidal 

FGM (S-FGMs) is expressed as (Wang and Zu, 2017a)  
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And, for           the effective material properties expressed as (Wang and Zu, 2017a)
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EXPONENTIAL POWER LAW  

The effective material properties considering even porosity are obtained for the Exponential 

FGM (E-FGMs) is expressed as  
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2.5.6.2 FGM WITH UNEVEN POROSITY 

The equivalent material properties (Peff) of FGM shell with uneven porosities in ceramic and 

metal are given by the modified rule of mixture (Wang and Zu, 2017) expressed as 
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Where     denotes the volume fraction of uneven porosities       . For perfect (without 

porosity) FGM     is set to zero. When uneven porosity is taken into account the effective 

material properties considering different FGM constituent laws are determined by the 

equation as described in the following.  

SIMPLE POWER LAW 

When uneven porosity is taken into account the effective material properties considering P- 

FGM constituent laws can be written as  
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Figure 2.13 represents the variation of Young‟s Modulus and density along the non-

dimensional thickness direction for different values of simple power law index (N). Porosity 

free FGM shows highest value of material properties and the material properties degrade with 

porosity percentage. Uneven porosity shows better mechanical property compare to even 

porosity for same porosity factor. 

 

SIGMOIDAL POWER LAW 

The effective material properties considering uneven porosity are obtained for the Sigmoidal 

FGM (S-FGMs) is expressed as (Wang and Zu, 2017a)  
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Figure. 2.13 Variation of Young‟s Modulus Density  along the non-dimensional thickness 
direction for different values of N of SS-Si3N4 P-FGM (a, b for N=1), (c, d for N=5),(e, f for 
N=1/5) 
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Figure. 2.14 Variation of Young‟s Modulus and Density  along the non-dimensional 
thickness direction for different values of N of SS-Si3N4 S-FGM ( a, b for N=5),(c, d for 
N=1/5) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

 

 

 
Figure. 2.15 (a) Variation of Young‟s Modulus (b) Density  along the non-dimensional 
thickness direction for SS-Si3N4 E-FGM 
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Figure 2.14 represents the variation of Young‟s Modulus and density along the non-

dimensional thickness direction for different values of sigmoidal power law index (N). 

Uneven porosity shows intermediate property compare to perfect and even porosity. 

 

EXPONENTIAL POWER LAW 

This particular idealization for E-FGM modeling with porosity, the typical material properties 

„Peff‟ at any point located at a distance „z‟ from the reference surface (mid-surface along the 

thickness direction) is given by equation 2.196. 
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Figure 2.15 represents the variation of Young‟s Modulus and density along the non-

dimensional thickness direction for exponential FGM considering perfect and porous FGM 

shell. Even porosity with 0.2 porosity factor shows lowest material property while material 

property for uneven porosity shows in between the perfect and even porosity.  
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__________________________________________________________________________________________ 

 
3.1 GENERAL 

A pretwisted shallow conical shell with low aspect ratio can be idealized as 

turbomachinery blades. A deep knowledge of the dynamic performance of FGM pretwisted 

conical shells is very much important from designer’s point of view in order to avoid the 

unsafe frequencies and escape the resonance zone by evaluating system response in respect of 

vibration frequency. FGM shell materials are advantageous in weight-sensitive and high 

thermal gradient applications such as aircraft engines, aero derivative gas turbines, windmills 

because of optimal weight, high stiffness, strength and ability to bear high thermal gradient 

without delamination like in composite materials. The properties of FGM could be tailored to 

realize high performance as layer of isotropic material with smooth variation by controlling 

the constituents’ (ceramic and metal in the present case) volume fraction variations along the 

thickness directions. In typical situations, twisted conical shell structures have geometrical 

complexities arising due to their specific applications in various service environments. 

Certain dynamic parameters are also to be considered when these structural elements are 

rotating leading to initial stresses. Finite element method is an efficient tool to the design 

engineer for the dynamic analysis of such type of applications. The work herein involves 

numerical investigation of free vibration characteristics of FGM shallow conical shells. The 

benchmark problems are identified from available literature, within the scope of the present 

study (Section 3.2). These problems are solved using the present finite element approach and 

the results are compared with the published ones to check the validity of the present 

formulation. Sections 3.3 to 3.7 illustrate the additional examples of FGM conical shells with 

different practical parametric variations followed by the analyses of the results from different 

practical standpoints.  

 

3.2 COMPARISON OF RESULTS 

The numerical results obtained from the developed computer codes based on finite 

element method are compared and validated with those published in open literature (Zhao 

FREE VIBRATION ANALYSIS OF FUNCTIONALLY 

GRADED SHALLOW CONICAL SHELLS 
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and Liew 2011a, Sreenivasamurthy and Ramamurti 1981, Pradyumna and Bandyopadhyay 

2008, Matsunaga 2008 and Ferreira et al. 2006) as furnished in Table 3.1, Table 3.2 and 

Table 3.3. Table 3.1 presents the validation of non-dimensional fundamental natural 

frequencies of functionally graded Al-ZrO2 conical shells (Zhao and Liew 2011a), while 

Table 3.2 provides the comparison of the non-dimensional fundamental natural frequencies of 

an isotropic rotating cantilever plate (Sreenivasamurthy and Ramamurti 1981). The 

comparative study shows an excellent agreement with the formerly published results in the 

open literature. The predictive capability of the computer programs in respect of FG conical 

shells, rotating and twisted models is thus confirmed. Therefore it can be concluded that the 

developed computer code is capable enough to determine the numerical data accurately. 

Convergence studies are also performed to determine the converged mesh size as furnished in 

Table 3.1. It is observed from the convergence study that uniform mesh divisions of (6 x 6), 

(8 x 8) and (10 x 10) considering the complete planform of the shell provide nearly equal 

results with the difference being around one percent (1%). The lower mesh size (6 x 6) 

consisting of 36 elements and 133 nodes, has been used for the analysis due to computational 

efficiency. The total number of degrees of freedom involved in the computation is 600 [(133-

13) x 5] as each node of the isoparametric element is having five degrees of freedom 

comprising of three translations, two rotations and the root of the blade consisting 13 element 

is fixed with the hub. Table 3.3 represents the non-dimensional fundamental natural 

frequencies of simply supported Aluminum-Zirconia functionally graded plate (Pradyumna 

and Bandyopadhyay 2008, Matsunaga 2008, Ferreira et al. 2006). 

 

Table 3.1 Convergence study for NDFF [ω=ωna
2
√(ρc/Ech

2
) / 2π, for the FGM Al-ZrO2 

conical shells, considering R1=0.2 m, h=0.01 m, L0=0.8 m, θv=30°, θo=120°. 

 

N 
Zhao and Liew 

(2011a) 

Present FEM 

6 x 6 8 x 8 10 x 10 

0 1.3666 1.3608 1.3449 1.2356 

0.5 1.2486 1.2387 1.2271 1.0848 

1 1.1893 1.1792 1.1641 1.1038 

5 1.0737 1.0578 1.0492 0.9910 

10 1.0404 1.0222 1.0102 0.9566 
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Table 3.2 Non-dimensional fundamental natural frequencies [ω=ωn L
2
 √(ρh/D)] of an 

isotropic rotating cantilever plate, L/b=1, h/L=0.12, D=Eh
3
/ {12(1-ν

2
)}, ν =0.3 

 

Non-dimensional Speed (Ω) Present FEM 
Sreenivasamurthy and 

Ramamurti (1981) 

0.0 3.4174 3.4368 

0.2 3.4933 3.5185 

0.4 3.7110 3.7528 

0.6 4.0458 4.1287 

0.8 4.4690 4.5678 

1.0 4.9549 5.0916 

 

 

Table 3.3 Non-dimensional fundamental natural frequencies [ω=ωn h
2
 √(ρm/Em)] of simply 

supported aluminum–zirconia FG plate a=b=1 m, N=1 (For aluminum: Em=70 GPa, 

νm=0.3,and ρm=2707 kg/m
3
 and for zirconia: Ec=200 GPa, νc=0.3 and ρc=2702 kg/m

3
) 

 

a / h Present FEM 

Pradyumna and 

Bandyopadhyay 

(2008) 

Matsunaga 

(2008) 

Ferreira et al. 

(2006) 

5 0.2235 0.2257 0.2285 0.2188 

10 0.0608 0.0613 0.0618 0.0592 

20 0.0156 0.0157 0.0158 0.0147 

 

 

Material properties of the Al- ZrO2 FGM material for the validation of the Zhao and Liew 

Liew (2011a) are considered as per the table 3.4. 

 

Table 3.4 Material Properties of Al- ZrO2 at 300 K 

 

Material 
Material Properties 

E  (N/m
2
) υ ρ (Kg/m

3
) 

Aluminum (Al) 70.000 x 10
9
 0.300000 2707 

Zirconia (ZrO2) 151.000 x 10
9
 0.300000 3000 

 

 

In the present study, Stainless Steel (SS)-Silicon Nitrite (Si3N4) FGM is considered for 

parametric analysis of free vibration conical shell, the material properties of FGM 

constituents’ material are calculated as per equation 2.133 of chapter 2 as furnished in table 

3.5. 
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Table 3.5 Temperature dependent material properties of the FGM constituent calculated at 

300 K  

 

 Material P-1 P0 P1 P2 P3 
Effective 
property 

E 

SS 0 2.01E+11 
N/m

2
 3.08E-04 -6.53E-07 0 2.07788E+11 

N/m
2
 

Si3N4 0 3.48E+11 
N/m

2
 -3.07E-04 2.16E-07 -8.95E-

11 3.22E+11 N/m
2
 

ν 
SS 0 0.326 -2.00E-04 3.80E-07 0 0.318 

Si3N4 0 0.24 0 0 0 0.24 

ρ 
SS 0 8166 kg/m

3
 0 0 0 8166 kg/m

3
 

Si3N4 0 2370 kg/m
3
 0 0 0 2370 kg/m

3
 

 

 

 

3.3 PARAMTERIC CONFIGURATION OF FGM CONICAL SHELL  

Parametric studies are carried out with respect to rotational speed and twist angle on natural 

frequencies of functionally graded shallow conical shells. Non-dimensional fundamental 

frequencies (NDFF) and Non-dimensional second frequencies (NDSF) for conical shells (rx = 

α) having rectangular plan-form (Lo/bo=5.59), curvature ratio (bo/ry) of 0.5 and thickness ratio 

(s/h) of 114 are obtained corresponding to non-dimensional speeds of rotation, 

Ω=(Ω′/ωo)=0.0, 0.25, 0.5, 0.75 and 1.0, considering three different angles of twist of conical 

shells, namely ψ = 15°, 30° and 45°, in addition to the untwisted one (ψ=0°). The variation of 

volume fractions (Vc, Vm) through the thickness direction are calculated based on different 

FGM power laws, namely simple power law FGM (P-FGM), sigmoidal power law FGM (S-

FGM) and exponential power law FGM (E-FGM). Two types of porosity factors, namely 

even (𝛼ep) and uneven (𝛼up) factors along with perfect (without porosity) FGM conical shells 

are considered for the present analysis. The porosity factor 0.1 and 0.2 are considered for the 

present analysis. Porosity factor greater than 0.2 is not considered as beyond that factor the 

FGM shell structure will not viable to take the desired load. 

 

 

 

 



93 

 

3.4 SIMPLE POWER LAW FGM (P-FGM) 

The parametric studies on the non-dimensional natural frequencies are conducted for SS-

Si3N4 functionally graded conical shells for different twist angles both stationary as well as 

rotating condition for simple power law FGM. The effect of different parameters on natural 

frequencies and mode shape are illustrated below. 

 

3.4.1 EFFECT OF SIMPLE POWER LAW INDEX (N) 

 

The NDFF and NDSF for SS-Si3N4 functionally graded conical shell with different twist and 

rotation considering simple power law index (N) are furnished in table 3.6. The non-

dimensional natural frequencies (NDFF and NDSF) are found to decrease with the increase 

of the simple power law index (N). This is due to the fact that the contribution of the metal 

part on FGM shell increases and the elastic stiffness matrix reduces with the increase of the 

material property graded index (N) which leads to decrease of the non-dimensional natural 

frequencies. At stationary condition, NDFF gives minimum value at N=100 while the 

maximum value is found at N=0 irrespective of angle of twist.  

Therefore the material property graded index (N) has pronounced effect in non-dimensional 

natural frequencies. Figure 3.1 stipulates the decreasing trend of NDSF with increase of 

material property graded index (N) irrespective of the twist angles. The decreasing trend for 

NDFF with increase of N can also be observed from the table 3.6.  

 

3.4.2 EFFECT OF TWIST ANGLE 

 

Twist angle has pronounced effect on the natural frequencies of the FGM conical shell blade. 

Figure 3.2 depicts the variation of the NDFF for different twist angles. The fundamental 

natural frequencies and second natural frequencies are observed to increase with the increase 

of the twist angles. The increasing trend of NDFF with increase of twist angles are observed 

from the figure 3.2. Hence it leads to the fact that twisted conical shells, irrespective of the 

rotational speeds the fundamental natural frequencies and second natural frequencies are 

predominantly higher compared to untwisted cases and the natural frequencies are observed 

to increase with the twist angles.  It is to be noted that the difference between maximum and 

minimum value of non-dimensional fundamental and second frequencies obtained from the 

analyses of four different twist angle for ψ=0°, 15°, 30° and 45° increases as the twist angle 

increases. For the FG conical shells, it is observed that the frequencies (NDFF and NDSF) at  
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Table 3.6  NDFF and NDSF [ω=ωn Lo
2
√(ρ/Eh

2
)] of rotating Stainless steel (SUS304)- Silicon nitride (Si3N4) functionally graded conical shells 

for various twist angles considering Lo/s=0.7, r1=0.2 m, Lo=0.8 m, h=0.01 m, 
o = 45º, 

ve =20º considering P-FGM. 

 

Twist 

Angle (Ψ) 

Simple Power 

Law Index ( N) 

NDFF 

  

NDFF 

Ω=0 Ω=0.25 Ω=0.5 Ω=0.75 Ω=1.0 Ω=0 Ω=0.25 Ω=0.5 Ω=0.75 Ω=1.0 

0
0
 

0 1.8700 1.9846 2.3279 2.8048 3.3407 4.8142 4.9804 5.4680 6.1894 7.0489 

1 1.1348 1.2364 1.6323 1.9234 2.3408 2.9190 3.0676 3.4365 4.1023 4.7699 

5 0.9217 0.9835 1.1724 1.4308 1.7169 2.3718 2.4619 2.7306 3.1236 3.5823 

10 0.8768 0.9327 1.1033 1.3386 1.6009 2.2565 2.3376 2.5796 2.9360 3.3556 

50 0.8228 0.8727 1.0249 1.2367 1.4743 2.1169 2.1890 2.4044 2.7239 3.1026 

100 0.8142 0.8632 1.0127 1.2211 1.4551 2.0945 2.1653 2.3769 2.6910 3.0637 

15
0
 

0 1.9659 2.0875 2.4497 2.9486 3.5079 4.8147 4.9976 5.5321 6.3139 7.2355 

1 1.1947 1.3031 1.6186 2.0242 2.4595 2.9194 3.0835 3.5569 4.2125 4.9199 

5 0.9677 1.0333 1.2327 1.5025 1.8004 2.3719 2.4710 2.7652 3.1902 3.6803 

10 0.9204 0.9797 1.1595 1.4053 1.6785 2.2566 2.3457 2.6105 2.9958 3.4445 

50 0.8646 0.9175 1.0781 1.2996 1.5475 2.1170 2.1964 2.4326 2.7786 3.1841 

100 0.8557 0.9078 1.0656 1.2837 1.5278 2.0946 2.1726 2.4048 2.7452 3.1444 

30
0
 

0 2.4269 2.5870 3.0445 3.6523 4.3251 4.7429 5.0191 5.7935 6.8594 8.0511 

1 1.4765 1.6235 2.0177 2.5030 3.0253 2.8758 3.1281 3.8057 4.6638 5.5282 

5 1.1861 1.2722 1.5225 1.8476 2.2026 2.3359 2.4841 2.9052 3.4737 4.0937 

10 1.1281 1.2058 1.4317 1.7283 2.0543 2.2223 2.3557 2.7351 3.2526 3.8235 

50 1.0644 1.1343 1.3371 1.6060 1.9031 2.0852 2.2051 2.5469 3.0165 3.5377 

100 1.0548 1.1236 1.3232 1.5882 1.8812 2.0632 2.1814 2.5181 2.9812 3.4952 

45
0
 

0 3.2889 3.5506 4.2010 5.0063 5.8804 4.5963 5.0771 6.3121 7.8524 9.4422 

1 2.0019 2.2374 2.7760 3.4129 4.0893 2.7861 3.2228 4.2564 5.4481 6.5686 

5 1.5987 1.7396 2.0884 2.5132 2.9717 2.2597 2.5196 3.1797 3.9817 4.7944 

10 1.5207 1.6475 1.9640 2.3532 2.7744 2.1500 2.3834 2.9815 3.7180 4.4704 

50 1.4400 1.5546 1.8417 2.1967 2.5820 2.0190 2.2297 2.7740 3.4503 4.1450 

100 1.4282 1.5412 1.8244 2.1747 2.5549 1.9982 2.2060 2.7433 3.4115 4.0982 
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rotating condition (Ω=0.5 or 1.0) as well as at stationary condition (Ω=0.0)] the untwisted cases 

are mostly in the lower range compared to those of twisted ones and this has been depicted in 

figure 3.2. 

 

3.4.3 EFFECT OF ROTATIONAL SPEEDS  

 

For the FG conical shells, it is observed that the natural frequencies (NDFF and NDSF) at 

rotating condition (Ω=0.5 or 1.0) as well as at stationary condition (Ω=0.0)] the untwisted cases 

are mostly in the lower range compared to those of twisted ones and this has been depicted in 

figure 3.2. It can be conclude that the rotating effect is more pronounced for twisted shell in 

comparison to untwisted one. The centrifugal stiffening effect (i.e., increase of structural  

 

 

 

 

  

 

 

Figure 3.1 Variation of non-dimensional second natural frequencies (NDSF) with material 

property graded index (N) at (Ω=0.0, 0.25, 0.5, 0.75, 1.0) for Stainless steel (SUS304)- Silicon 

nitride (Si3N4) graded conical shells with various twist angles considering Lo/s=0.7, r1=0.2 m, 

Lo=0.8 m, h=0.01 m, 
o = 45º, θve=20º 
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Figure.3.2 Variation of non-dimensional fundamental frequencies (NDFF) with various twist 

angles along with untwisted case with (Ω=0.0, 0.25, 0.5, 0.75 and 1.0) for SS- Si3N4 

functionally graded conical shells for different values of N considering Lo/s=0.7, r1=0.2 m, 

Lo=0.8 m, h=0.01 m, 
o = 45º, 

ve =20º. 

 

stiffness with increase of rotational speeds) for NDFF and NDSF are observed for all the values 

of N irrespective of twist angle. This leads to the fact of increasing trend of the NDFF and 

NDSF with increase of rotational speed. 

 

3.3.4 MODE SHAPES FOR SIMPLE POWER LAW 

The mode shapes corresponding to the natural frequencies are furnished for various twist 

angles (ψ=0°, 15°, 30° and 45°) and non-dimensional rotational speeds (Ω=0.0, 0.5 and 1.0), 

for Stainless steel (SUS304)-Silicon nitride (Si3N4) FG conical shells. The mode shapes 
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corresponding to N=1 are shown in Figure 3.3 while the mode shapes corresponding to N=10 

are shown in Figure 3.4. The fundamental frequency is observed to be the torsional mode at 

lower rotational speed for all cases. It is noted that for both the material property graded index 

(N=1 and N=10) the symmetry modes are absent for rotating pretwisted conical shells. Span 

wise bending is notified at higher rotational speeds (Ω=0.5 and 1.0) corresponding to both 

NDFF and NDSF, irrespective of twist angle. The first span wise bending is found for both 

NDFF and NDSF at higher rotational speeds (Ω= 0.5, 1.0) for both twisted and untwisted shells 

corresponding N=10. The first span wise bending is found for all values of N for both the 

NDFF and NDSF only at higher rotational speeds (Ω= 0.5, 1.0). Unlike the rotational shell the 

span wise bending mode is absent for the stationary shell for all values of twist angle 

irrespective of the (N). For stationary shell (Ω= 0) torsional mode is observed for all the cases 

irrespective of N.  
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Figure 3.3 Effect of twist and rotation on NDFF and NDSF for mode shapes for SS-Si3N4 P-FGM conical shells for different twist angles, 

considering r1=0.2 m, h=0.01 m, N=1, s/h=114, Lo/s=0.7, 
o = 45º, 

ve = 20º. 
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Figure.3.4 Effect of twist and rotation on NDFF and NDSF for mode shapes of SS-Si3N4 P-FGM conical shells for different twist angles, 

considering r1=0.2 m, h=0.01 m, N=10, s/h=114, Lo/s=0.7, 
o = 45º, 

ve = 20º. 
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3.4 SIGMOIDAL POWER LAW FGM (S-FGM) 

The parametric studies on the non-dimensional natural frequencies of SS-Si3N4 conical 

shells are conducted for different sigmoidal power law index and twist angles both stationary 

as well as rotating condition. The effect of different parameters on natural frequencies and 

mode shape are illustrated below. 

 

3.5.1 EFFECT OF SIGMOIDAL POWER LAW INDEX (N) 
 

The NDFF and NDSF for different values of twist and rotation are furnished in table 

3.7 considering N=1, 5 and 10. Interestingly the NDFF and NDSF for different values of N are 

not varied and remain nearly same irrespective of the sigmoidal power law index.  The natural 

frequencies is invariant with the sigmoidal power law index (N) for a given twist angle and 

rotational speed. This is due to the fact that total contribution of metal and ceramic parts 

remains unchanged irrespective of the N and this has been shown in the figure 2.10 in chapter 

2.  As the contribution of metal part and ceramic part remains same, therefore the total stiffness 

matrix and geometric mass matrix remains same for the structure hence the natural frequency 

remains unaltered. As the NDFF & NDSF are invariant with sigmoidal power law index “N” 

therefore sigmoidal power law will be more useful for designer to get the desired application 

arresting the variation of natural frequencies. But it can be noticed that higher values of N 

(>10) sharp change of material property will occur like composite material which may lead to 

delamination or debonding between the layers. Therefore a range of values (0.1 to 10) for N is 

preferred to consider during choosing of such FGM components.  

 

3.5.2 EFFECT OF TWIST ANGLE 

 

Twist angle has significant effect on the natural frequencies of the S-FGM conical shell 

also. Figure 3.5 depicts the variation of the NDFF and NDSF for different twist angles. The 

increasing trend of NDFF with increase of twist angles are observed while for the NDSF the 

increase of the frequencies with twist angle can distinctively observed for higher rotational 

speeds. In general, for untwisted conical shells the fundamental natural frequencies and second 

natural frequencies at twisted cases are predominantly higher compared to respective NDFF 

and NDSF values of untwisted cases. It is to be noted that the difference between maximum 

and minimum value of non-dimensional fundamental and second frequencies obtained from the 

analyses of four different twist angle for ψ=0°, 15°, 30° and 45° increases as the twist angle  
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Figure.3.5 Variation of NDFF and NDSF with various twist angles along with untwisted case 

with (Ω=0.0, 0.25, 0.5, 0.75 and 1.0) for SS- Si3N4 functionally graded conical shells for S-

FGM N=1, considering Lo/s=0.7, r1=0.2 m, Lo=0.8 m, h=0.01 m, 
o = 45º, 

ve =20º. 

 

increases. For the FG conical shells, it is observed that the frequencies (NDFF and NDSF) at 

rotating condition (Ω=0.5 or 1.0) as well as at stationary condition (Ω=0.0)] the untwisted 

cases are mostly in the lower range compared to those of twisted ones and this has been 

depicted in figure 3.5. 

 

3.5.3 EFFECT OF ROTATIONAL SPEED 

 

For the S-FMG conical shells, it is observed that the frequencies (NDFF and NDSF) at 

rotating condition (Ω=0.5 or 1.0) as well as at stationary condition (Ω=0.0) the untwisted cases 

are mostly in the lower range compared to those of twisted ones. This observation can be found 

depicted in figure 3.5. It can be conclude that the rotating effect is more pronounced for twisted 

shell in comparison to untwisted one. The centrifugal stiffening effect (i.e., increase of 

structural stiffness with increase of rotational speeds) for NDFF and NDSF are observed for all 

the values of sigmoidal power law index irrespective of twist angle. This leads to the fact of 

increasing trend of the NDFF and NDSF with increase of rotational speed. 

 

3.5.4 MODE SHAPES FOR FGM SIGMOIDAL LAW  
 

The mode shapes corresponding to the natural frequencies are furnished in Figure 3.6 

for various twist angles (ψ=0°, 15°, 30° and 45°) and non-dimensional rotational speeds 

(Ω=0.0, 0.5 and 1.0), for Stainless steel (SUS304)-Silicon nitride (Si3N4) S-FGM considering 

N=1. As the fundamental natural frequencies are invariant with sigmoidal power law index N,  
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Table 3.7  NDFF and NDSF [ω=ωn Lo
2
√(ρ/Eh

2
)] of rotating Stainless steel (SUS304)- Silicon nitride (Si3N4) functionally graded conical shells 

for various twist angles considering Lo/s=0.7, r1=0.2 m, Lo=0.8 m, h=0.01 m, 
o = 45º, 

ve =20º considering S-FGM. 

 

Twist 

Angle (Ψ) 

Sigmoidal 

Power Law 

Index (N) 

NDFF 

  

NDFF 

Ω=0 Ω=0.25 Ω=0.5 Ω=0.75 Ω=1.0 Ω=0 Ω=0.25 Ω=0.5 Ω=0.75 Ω=1.0 

0
0
 

1 1.1348 1.2364 1.6323 1.9234 2.3408 2.9190 3.0676 3.4365 4.1023 4.7699 

5 1.1327 1.2390 1.6327 1.9228 2.3440 2.9242 3.0730 3.4426 4.1095 4.7783 

10 1.1341 1.2364 1.6325 1.9238 2.3408 2.9186 3.0671 3.4360 4.1017 4.7692 

15
0
 

1 1.1947 1.3031 1.6186 2.0242 2.4595 2.9194 3.0835 3.5569 4.2125 4.9199 

5 1.1948 1.3032 1.6187 2.0243 2.4596 2.9245 3.0890 3.5631 4.2200 4.9286 

10 1.1946 1.3040 1.6186 2.0240 2.4597 2.9189 3.0831 3.5563 4.2119 4.9191 

30
0
 

1 1.4765 1.6235 2.0177 2.5030 3.0253 2.8758 3.1281 3.8057 4.6638 5.5282 

5 1.4766 1.6232 2.0178 2.5015 3.0254 2.8809 3.1336 3.8124 4.6721 5.5380 

10 1.4765 1.6235 2.0176 2.5030 3.0252 2.8754 3.1276 3.8051 4.6631 5.5274 

45
0
 

1 2.0019 2.2374 2.7760 3.4129 4.0893 2.7861 3.2228 4.2564 5.4481 6.5686 

5 2.0017 2.2381 2.7778 3.4130 4.0910 2.7910 3.2285 4.2639 5.4577 6.5802 

10 2.0018 2.2377 2.7781 3.4128 4.0882 2.7857 3.2223 4.2557 5.4472 6.5676 

 

Table 3.8  NDFF and NDSF [ω=ωn Lo
2
√(ρ/Eh

2
)] of rotating Stainless steel (SUS304)- Silicon nitride (Si3N4) functionally graded conical shells 

for various twist angles considering Lo/s=0.7, r1=0.2 m, Lo=0.8 m, h=0.01 m, 
o = 45º, 

ve =20º considering E-FGM. 

 

Twist 

Angle (Ψ) 

NDFF 

  

NDFF 

Ω=0 Ω=0.25 Ω=0.5 Ω=0.75 Ω=1.0 Ω=0 Ω=0.25 Ω=0.5 Ω=0.75 Ω=1.0 

0
0
 1.1969 1.3163 1.6592 2.0959 2.5622 2.9190 3.0676 3.4365 4.1023 4.7699 

15
0
 1.2598 1.3870 1.7486 2.2044 2.6908 2.9194 3.0835 3.5569 4.2125 4.9199 

30
0
 1.5557 1.7258 2.1760 2.7215 3.3043 2.8758 3.1281 3.8057 4.6638 5.5282 

45
0
 2.1081 2.3807 2.9899 3.7030 4.4572 2.7861 3.2228 4.2564 5.4481 6.5686 
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Ψ 
NDFF NDSF 
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Figure.3.6 Effect of twist and rotation on NDFF and NDSF for mode shapes of SS- Si3N4 S-FGM conical shells for different twist angles, 

considering r1=0.2 m, h=0.01 m, N=1, s/h=114, Lo/s=0.7, 
o = 45º, 

ve = 20º. 
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therefore linear variation of material property (N=1) is consider for the mode shape 

evaluation. The fundamental frequency is observed to be the torsional mode at lower 

rotational speed for both NDFF and NDSF. Symmetry modes are absent for rotating 

pretwisted conical shells. Span wise bending is notified at higher rotational speeds (Ω=0.5 

and 1.0) corresponding to both NDFF and NDSF, irrespective of twist angle. The first span 

wise bending is found for both the NDFF and NDSF only at higher rotational speeds (Ω= 

0.5, 1.0). For stationary shell (Ω=0) torsional mode is observed for all the twist angles. 

 

3.6     EXPONENTIAL POWER LAW FGM (E-FGM) 

The parametric studies on the non-dimensional natural frequencies of SS-Si3N4 conical shells are 

conducted for exponential power law considering different twist angles both stationary as well as 

rotating condition. For the exponential power law the constituent material property is varied 

based on exponential law as per figure 2.11. Therefore for this law, the material property graded 

index is absent and it follows a single variation of the material property. 

 

3.6.1    EFFECT OF TWIST ANGLE 

 

The NDFF and NDSF for different values of twist and rotation for E-FGM conical shell are 

furnished in table 3.8. Twist angle has prominent effect on the natural frequencies of the E-FGM 

conical shell blade. Figure 3.7 represents the variation of the NDFF and NDSF with different 

rotational speeds for various twist angles. The increasing trend of NDFF with increase of twist 

angles for all rotational speed are observed while for the NDSF the increase of the frequencies 

with twist angle can distinctively observed for higher rotational speeds. In general, for twisted 

conical shells the fundamental natural frequencies and second natural frequencies are 

predominantly higher compared to respective NDFF and NDSF values of untwisted cases. It is to 

be noted that the difference between maximum and minimum value of non-dimensional 

fundamental and second frequencies obtained from the analyses of four different twist angle for 

ψ=0°, 15°, 30° and 45° increases as the twist angle increases. For the FG conical shells, it is 

observed that the frequencies (NDFF and NDSF) at rotating condition (Ω=0.5 or 1.0) as well as 

at stationary condition (Ω=0.0)] the untwisted cases are mostly in the lower range compared to 

those of twisted ones and this has been depicted in figure 3.7 
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Figure.3.7 Variation of NDFF and NDSF with various twist angles along with untwisted case 

with (Ω=0.0, 0.25, 0.5, 0.75 and 1.0) for SS- Si3N4 functionally graded conical shells for E-

FGM, considering Lo/s=0.7, r1=0.2 m, Lo=0.8 m, h=0.01 m, 
o = 45º, 

ve =20º. 

 

3.6.2 EFFECT OF ROTATIONAL SPEEDS  

 

For the E-FGM conical shells, it is observed that the non-dimensional natural frequencies (NDFF 

and NDSF) at rotating condition (Ω=0.5 or 1.0) as well as at stationary condition (Ω=0.0) the 

untwisted cases are mostly in the lower range compared to those of twisted ones. This 

observation can be found depicted in figure 3.7. It can be conclude that the rotating effect is 

more pronounced for twisted shell in comparison to untwisted one. The centrifugal stiffening 

effect (i.e., increase of structural stiffness with increase of rotational speeds) for NDFF and 

NDSF are observed for E-FGM shell irrespective of twist angle. This leads to the fact of 

increasing trend of the NDFF and NDSF with increase of rotational speed. 

 

3.6.3 MODE SHAPES FOR EXPONENTIAL LAW 

The mode shapes corresponding to the natural frequencies are presented in Figure 3.8 for various 

twist angles (ψ=0°, 15°, 30° and 45°) and non-dimensional rotational speeds (Ω=0.0, 0.5 and 

1.0), for Stainless steel (SUS304)-Silicon nitride (Si3N4) E-FGM conical shell. The fundamental 

natural frequencies are varied based on exponential variation of material property and the 

corresponding shape are evaluated. The non-dimensional fundamental natural frequency is 

observed to be the torsional mode at lower rotational speed. Symmetry modes are absent for 

rotating pretwisted conical shells. Span wise bending is notified at higher rotational speeds 

(Ω=0.5 and 1.0) corresponding to both NDFF and NDSF, irrespective of twist angle. The first 

span wise bending is found for both the NDFF and NDSF only at higher rotational speeds (Ω= 

0.5, 1.0). For stationary shell (Ω=0) torsional mode is observed for all the twist angles.  
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Figure 3.8 Mode shapes of Perfect (porosity free) SS-Si3N4 E-FGM conical shells considering 

r1=0.2 m, h=0.01 m, s/h=114, Lo/s=0.7, 
o = 45º, 

ve = 20º. 
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3.7 POROUS FGM 

Parametric studies are carried out for perfect (porous free) and porous (even and uneven 

porosity) FGM conical shell with respect to rotational speed and twist angle on natural 

frequencies of functionally graded shallow conical shells. Non-dimensional fundamental 

frequencies (NDFF) and Non-dimensional second frequencies (NDSF) for conical shells (rx = α) 

having rectangular plan-form (L0/b0=5.59), curvature ratio (b0/ry) of 0.5 and thickness ratio (s/h) 

of 114 are obtained corresponding to non-dimensional speeds of rotation, Ω=(Ω′/ωo)=0.0, 0.25, 

0.5, 0.75 and 1.0, considering three different angles of twist of conical shells, namely ψ = 15°, 

30° and 45°, in addition to the untwisted one (ψ=0°). 

 

3.7.1    FGM WITH EVEN AND UNEVEN POROSITY 

 

The parametric studies on the non-dimensional natural frequencies are conducted for SS-Si3N4 

functionally graded conical shells with different twist angles for both stationary as well as 

rotating condition. The NDFF and NDSF for even porous, uneven porous P-FGM (N=5) are 

furnished in table 3.9 considering different porosity factors along with perfect FGM (porosity 

free) while the table 3.10 and 3.11 present the data for the S-FGM (N=1) and E-FGM, 

respectively. NDFF are found to decrease with increase of the porosity factor as the presence of 

porosity lowers the total stiffness of the shell. For even porosity the decrement of NDFF is 

higher than that of uneven case. The variation of the NDFF with twist angle for perfect and 

porous FGM shell considering different even and uneven porosity factors are shown graphically 

in the figure 3.9 ( for P-FGM) , 3.11 ( for S-FGM) and 3.13 ( for E-FGM). On the other hand 

Figure 3.10 (for P-FGM) depicts the NDFF variation for different twist angles while Figure 3.12 

(for S-FGM) and 3.14 (for E-FGM) represents the NDSF variation considering different twist 

angle and porosity factors. The NDFF is found to increase with the angle of twist irrespective of 

the porosity factor for all the cases. The maximum NDFF is found for twist angle of 45
0
 for 

perfect FGM shell. NDFF is identified to attain lowest value for twist angle, ψ=0°and gradually 

increase to a maximum value for twist angle, ψ=45° for highest rotational speed for all the cases 

as depicted in Figure 3.9, 3.11 and 3.13. This is due to the fact that the geometric stiffness matrix 

has higher dominance at higher twist angle. For a typical FGM configuration the perfect FGM 

predicts highest non-dimensional natural frequencies and the non-dimensional natural 

frequencies are observed to reduce with increase of the porosity factor. For the same porosity 

factor the even porous FGM shell predicts lower natural frequencies than that of corresponding 

uneven porous FGM shell.  
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Table 3.9.  NDFF and NDSF [ω=ωn Lo
2
√(ρ/Eh

2
)] of rotating Stainless steel (SUS304)- Silicon nitride (Si3N4) functionally graded conical shells 

for various twist angles considering Lo/s=0.7, r1=0.2 m, Lo=0.8 m, h=0.01 m, 
o = 45º, 

ve =20º for P-FGM Shell, N=5 

 

Twist 

Angle 

(Ψ) 

Porosity Factor 
NDFF 

  

NDSF 

Ω=0 Ω=0.25 Ω=0.5 Ω=0.75 Ω=1.0 Ω=0 Ω=0.25 Ω=0.5 Ω=0.75 Ω=1.0 

0
0
 

Perfect FGM (𝛼ep=𝛼up= 0) 0.9217 0.9835 1.1724 1.4308 1.7169 2.3718 2.4619 2.7306 3.1236 3.5823 

Even Porous (𝛼ep =0.1) 0.8903 0.9451 1.1158 1.3329 1.6053 2.2910 2.3781 2.6376 3.0173 3.4603 

Uneven Porous (𝛼up=0.1) 0.8369 0.8884 1.0488 1.2529 1.5090 2.1536 2.2354 2.4794 2.8362 3.2527 

 Even Porous (𝛼ep =0.2) 0.8921 0.9529 1.1350 1.3839 1.6601 2.2971 2.3852 2.6444 3.0241 3.4725 

Uneven Porous (𝛼up=0.2) 0.8826 0.9376 1.1087 1.3466 1.6120 2.2717 2.3520 2.5935 2.9532 3.3838 

15
0
 

Perfect FGM (𝛼ep=𝛼up= 0) 0.9677 1.0333 1.2327 1.5025 1.8004 2.3719 2.4710 2.7652 3.1902 3.6803 

Even Porous (𝛼ep =0.1) 0.9347 0.9981 1.1907 1.4513 1.7391 2.2911 2.3869 2.6710 3.0815 3.5550 

Uneven Porous (𝛼up=0.1) 0.8786 0.9382 1.1192 1.3642 1.6347 2.1536 2.2437 2.5107 2.8966 3.3417 

 Even Porous (𝛼ep =0.2) 0.9351 0.9994 1.1908 1.4505 1.7379 2.3619 2.4181 2.7329 3.1304 3.5868 

Uneven Porous (𝛼up=0.2) 0.9260 0.9844 1.1647 1.4131 1.6894 2.1985 2.3131 2.5789 2.9771 3.4748 

30
0
 

Perfect FGM (𝛼ep=𝛼up= 0) 1.1861 1.2722 1.5225 1.8476 2.2026 2.3359 2.4841 2.9052 3.4737 4.0937 

Even Porous (𝛼ep =0.1) 1.1457 1.2288 1.4707 1.7847 2.1276 2.2563 2.3995 2.8062 3.3554 3.9543 

Uneven Porous (𝛼up=0.1) 1.0770 1.1551 1.3824 1.6776 1.9999 2.1209 2.2555 2.6378 3.1541 3.7171 

 Even Porous (𝛼ep =0.2) 1.1397 1.2231 1.4605 1.7737 2.1145 2.2371 2.3682 2.4199 3.2688 3.8642 

Uneven Porous (𝛼up=0.2) 1.1324 1.2091 1.4343 1.7346 2.0631 2.1197 2.2390 2.2803 3.0719 3.6364 

45
0
 

Perfect FGM (𝛼ep=𝛼up= 0) 1.5987 1.7396 2.0884 2.5132 2.9717 2.2597 2.5196 3.1797 3.9817 4.7944 

Even Porous (𝛼ep =0.1) 1.5443 1.6804 2.0173 2.4276 2.8705 2.1827 2.4338 3.0714 3.8461 4.6311 

Uneven Porous (𝛼up=0.1) 1.4516 1.5796 1.8962 2.2819 2.6982 2.0517 2.2877 2.8871 3.6153 4.3533 

 Even Porous (𝛼ep =0.2) 1.5300 1.6630 1.9958 2.4024 2.8410 2.1859 2.4294 3.0531 3.8167 4.6129 

Uneven Porous (𝛼up=0.2) 1.5238 1.6482 1.9660 2.3572 2.7810 2.1633 2.3917 2.9907 3.7328 4.5127 
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Table 3.10.  NDFF and NDSF [ω=ωn Lo
2
√(ρ/Eh

2
)] of rotating Stainless steel (SUS304)- Silicon nitride (Si3N4) functionally graded conical 

shells for various twist angles considering Lo/s=0.7, r1=0.2 m, Lo=0.8 m, h=0.01 m, 
o = 45º, 

ve =20º for S-FGM Shell, N=1. 

 

Twist 

Angle 

(Ψ) 

Porosity Factor 
NDFF 

  

NDSF 

Ω=0 Ω=0.25 Ω=0.5 Ω=0.75 Ω=1.0 Ω=0 Ω=0.25 Ω=0.5 Ω=0.75 Ω=1.0 

0
0
 

Perfect FGM (𝛼ep=𝛼up= 0) 1.1341 1.2364 1.5600 1.9800 2.3408 2.9242 3.0730 3.4426 4.1095 4.7783 

Even Porous (𝛼ep =0.1) 1.0955 1.1882 2.0844 2.0988 2.1887 2.8246 2.9683 3.3254 3.9696 4.6156 

Uneven Porous (𝛼up=0.1) 1.0297 1.1169 1.9594 1.9729 2.0574 2.6551 2.7902 3.1258 3.7314 4.3387 

 Even Porous (𝛼ep =0.2) 1.0978 1.1980 2.1205 2.1791 2.2634 2.8320 2.9772 3.3339 3.9786 4.6319 

Uneven Porous (𝛼up=0.2) 1.0860 1.1788 2.0712 2.1203 2.1978 2.8008 2.9357 3.2697 3.8853 4.5136 

15
0
 

Perfect FGM (𝛼ep=𝛼up= 0) 1.1946 1.3040 1.6186 2.0240 2.4597 2.9189 3.0831 3.5563 4.2119 4.9191 

Even Porous (𝛼ep =0.1) 1.1539 1.2596 1.5635 1.9551 2.3759 2.8195 2.9781 3.4352 4.0684 4.7516 

Uneven Porous (𝛼up=0.1) 1.0847 1.1840 1.4697 1.8378 2.2334 2.6503 2.7994 3.2291 3.8243 4.4665 

 Even Porous (𝛼ep =0.2) 1.1543 1.2611 1.5637 1.9540 2.3743 2.9067 3.0170 3.5148 4.1330 4.7941 

Uneven Porous (𝛼up=0.2) 1.1431 1.2422 1.5293 1.9036 2.3081 2.7055 2.8861 3.3167 3.9306 4.6444 

30
0
 

Perfect FGM (𝛼ep=𝛼up= 0) 1.4765 1.6235 2.0176 2.5030 3.0252 2.8758 3.1281 3.8057 4.6638 5.5282 

Even Porous (𝛼ep =0.1) 1.4262 1.5682 1.9489 2.4178 2.9222 2.7779 3.0215 3.6761 4.5050 5.3399 

Uneven Porous (𝛼up=0.1) 1.3407 1.4741 1.8320 2.2727 2.7468 2.6112 2.8402 3.4555 4.2347 5.0195 

 Even Porous (𝛼ep =0.2) 1.4188 1.5608 1.9354 2.4030 2.9042 2.7543 2.9822 3.1701 4.3888 5.2183 

Uneven Porous (𝛼up=0.2) 1.4096 1.5431 1.9008 2.3499 2.8337 2.6097 2.8195 2.9872 4.1244 4.9106 

45
0
 

Perfect FGM (𝛼ep=𝛼up= 0) 2.0018 2.2377 2.7781 3.4128 4.0882 2.7857 3.2223 4.2557 5.4472 6.5676 

Even Porous (𝛼ep =0.1) 1.9336 2.1615 2.6835 3.2966 3.9490 2.6908 3.1126 4.1108 5.2617 6.3439 

Uneven Porous (𝛼up=0.1) 1.8176 2.0318 2.5225 3.0988 3.7120 2.5294 2.9258 3.8641 4.9460 5.9633 

 Even Porous (𝛼ep =0.2) 1.9158 2.1392 2.6549 3.2623 3.9084 2.6947 3.1070 4.0863 5.2215 6.3190 

Uneven Porous (𝛼up=0.2) 1.9080 2.1201 2.6152 3.2010 3.8258 2.6669 3.0589 4.0027 5.1067 6.1817 
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Table 3.11.  NDFF and NDSF [ω=ωn Lo
2
√(ρ/Eh

2
)] of rotating Stainless steel (SUS304)- Silicon nitride (Si3N4) functionally graded conical 

shells for various twist angles considering Lo/s=0.7, r1=0.2 m, Lo=0.8 m, h=0.01 m, 
o = 45º, 

ve =20º for E-FGM Shell 

 

Twist 

Angle 

(Ψ) 

Porosity Factor 
NDFF 

  

NDSF 

Ω=0 Ω=0.25 Ω=0.5 Ω=0.75 Ω=1.0 Ω=0 Ω=0.25 Ω=0.5 Ω=0.75 Ω=1.0 

0
0
 

Perfect FGM (𝛼ep=𝛼up= 0) 1.1969 1.3163 1.6592 2.0959 2.5622 3.0788 3.2526 3.7499 4.4354 5.1730 

Even Porous (𝛼ep =0.1) 1.1561 1.2649 1.5790 1.9525 2.3957 2.9739 3.1418 3.6222 4.2843 4.9968 

Uneven Porous (𝛼up=0.1) 1.0867 1.1890 1.4843 1.8353 2.2519 2.7955 2.9533 3.4048 4.0272 4.6970 

 Even Porous (𝛼ep =0.2) 1.1585 1.2754 1.6063 2.0271 2.4774 2.9818 3.1512 3.6315 4.2940 5.0145 

Uneven Porous (𝛼up=0.2) 1.1461 1.2549 1.5690 1.9725 2.4057 2.9489 3.1073 3.5616 4.1933 4.8864 

15
0
 

Perfect FGM (𝛼ep=𝛼up= 0) 1.2598 1.3870 1.7486 2.2044 2.6908 4.8147 4.9976 5.5321 6.3139 7.2355 

Even Porous (𝛼ep =0.1) 1.2168 1.3398 1.6890 2.1293 2.5992 2.9194 3.0835 3.5569 4.2125 4.9199 

Uneven Porous (𝛼up=0.1) 1.1438 1.2594 1.5877 2.0016 2.4432 2.3719 2.4710 2.7652 3.1902 3.6803 

 Even Porous (𝛼ep =0.2) 1.2173 1.3414 1.6893 2.1282 2.5974 2.2566 2.3457 2.6105 2.9958 3.4445 

Uneven Porous (𝛼up=0.2) 1.2054 1.3213 1.6521 2.0733 2.5250 2.1170 2.1964 2.4326 2.7786 3.1841 

30
0
 

Perfect FGM (𝛼ep=𝛼up= 0) 1.5557 1.7258 2.1760 2.7215 3.3043 4.7429 5.0191 5.7935 6.8594 8.0511 

Even Porous (𝛼ep =0.1) 1.5027 1.6671 2.1019 2.6288 3.1918 2.8758 3.1281 3.8057 4.6638 5.5282 

Uneven Porous (𝛼up=0.1) 1.4125 1.5670 1.9758 2.4711 3.0003 2.3359 2.4841 2.9052 3.4737 4.0937 

 Even Porous (𝛼ep =0.2) 1.4949 1.6592 2.0873 2.6127 3.1721 2.2223 2.3557 2.7351 3.2526 3.8235 

Uneven Porous (𝛼up=0.2) 1.4852 1.6403 2.0500 2.5551 3.0951 2.0852 2.2051 2.5469 3.0165 3.5377 

45
0
 

Perfect FGM (𝛼ep=𝛼up= 0) 2.1081 2.3807 2.9899 3.7030 4.4572 4.5963 5.0771 6.3121 7.8524 9.4422 

Even Porous (𝛼ep =0.1) 2.0363 2.2996 2.8881 3.5769 4.3054 2.7861 3.2228 4.2564 5.4481 6.5686 

Uneven Porous (𝛼up=0.1) 1.9141 2.1617 2.7148 3.3623 4.0471 2.2597 2.5196 3.1797 3.9817 4.7944 

 Even Porous (𝛼ep =0.2) 2.0175 2.2759 2.8573 3.5397 4.2612 2.1500 2.3834 2.9815 3.7180 4.4704 

Uneven Porous (𝛼up=0.2) 2.0093 2.2556 2.8146 3.4732 4.1712 2.0190 2.2297 2.7740 3.4503 4.1450 
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Figure 3.9 Variation of NDFF with non-dimensional speed of rotation (Ω=0.0, 0.25, 0.5, 0.75, 

1.0) for various twist angle considering different even and uneven porosity factor along with 

perfect Stainless steel (SUS304)- Silicon nitride (Si3N4) graded conical shells ( L0/s=0.7, r1=0.2 

m, L0=0.8 m, h=0.01 m,
 o = 45º, 

ve =20º), P-FGM, N=5. 
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Figure 3.10 Variation of NDFF with non-dimensional speed of rotation (Ω=0.0, 0.25, 0.5, 0.75, 

1.0) for different even and uneven porosity factor along with perfect Stainless steel (SUS304)- 

Silicon nitride (Si3N4) graded conical shells (r1=0.2 m, h=0.01 m, s/h=114, Lo/s=0.7, 
o = 45º, 

ve =20º) P-FGM, N=5. 
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Figure 3.11 Variation of NDFF with non-dimensional speed of rotation (Ω=0.0, 0.25, 0.5, 0.75, 

1.0) for various twist angle considering different even and uneven porosity factor along with 

perfect Stainless steel (SUS304)- Silicon nitride (Si3N4) graded conical shells ( L0/s=0.7, r1=0.2 

m, L0=0.8 m, h=0.01 m, 
o = 45º, 

ve =20º), S-FGM, N=1. 
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Figure 3.12 Variation of NDSF with non-dimensional speed of rotation (Ω=0.0, 0.25, 0.5, 0.75, 

1.0) for various twist angle considering different even and uneven porosity factor along with 

perfect Stainless steel (SUS304)- Silicon nitride (Si3N4) graded conical shells (r1=0.2 m, h=0.01 

m, s/h=114, Lo/s=0.7, 
o = 45º, 

ve = 20º.) S-FGM, N=1. 
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Figure 3.13 Variation of NDFF with non-dimensional speed of rotation (Ω=0.0, 0.25, 0.5, 0.75, 

1.0) for various twist angle considering different even and uneven porosity factor along with 

perfect Stainless steel (SUS304)- Silicon nitride (Si3N4) graded conical shells ( L0/s=0.7, r1=0.2 

m, L0=0.8 m, h=0.01 m, 
o = 45º, 

ve =20º), E-FGM 
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Figure 3.14 Variation of NDSF with non-dimensional speed of rotation (Ω=0.0, 0.25, 0.5, 0.75, 

1.0) for various twist angle considering different even and uneven porosity factor along with 

perfect Stainless steel (SUS304)- Silicon nitride (Si3N4) graded conical shells (r1=0.2 m, h=0.01 

m, s/h=114, Lo/s=0.7, 
o = 45º, 

ve = 20º.) E-FGM 

 

3.7.2    MODE SHAPES WITH POROUS FGM CONICAL SHELL 

 

Mode shapes corresponding to the first natural frequencies are furnished in figure 3.15 for 

various twist angles (ψ=0°, 15°, 30° and 45°) and non-dimensional rotational speeds (Ω=0.0, 0.5 

and 1.0) for porous (𝛼        SS-Si3N4 E-FGM conical shells. The dotted line represents the 

deflection in negative direction (negative z direction) while the firm line shows the deflection in 

positive direction (positive z direction) of the conical shell. The first frequency is found to be the 

torsional mode at stationary condition irrespective of the twist angle. Torsional modes are also 

observed with Ω=0.5 for untwisted and lower twist angle (15
0
), but the torsional mode reversal 

along the longitudinal axis is observed for ψ=30°, 45°. The torsional symmetry modes are not 

observed for other twist angle under rotation. Bending mode along the longitudinal direction is  
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Figure 3.15. Mode shapes of Porous SS-Si3N4 E-FGM conical shells (even porosity factor, 

𝛼       ) considering r1=0.2 m, h=0.01 m, s/h=114, Lo/s=0.7, 
o = 45º, 

ve = 20º 

 

observed for those cases. Bending mode is also observed at rotational speed Ω=1 for twisted and 

untwisted cases. For the porous FGM conical shell the deflection is higher compared to that of 
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perfect FGM shell. The deflection is proportional to the percentage of porosity. The Figure 3.15 

of mode shapes show the relative non-dimensional deflection (calculated based on perfect FGM) 

considering the even porosity factor 0.2 and the corresponding mode shapes of the figure show 

higher deflection compared to perfect FGM. The mode shapes for the intermediate percentage of 

porosity have same basic nature of deflection with higher deflection compared to perfect FGM 

shell. Maximum deflection is observed for the even porous FGM shell considering porosity 

factor 0.2.     
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4.1 GENERAL 

For low velocity impact problems penetrations is not happening due to the low energy 

of the impact. Though the penetration is not happening still the structure may be damaged 

severely due to the cascading effect of low energy and low velocity impact. The transient 

dynamic analysis for low velocity impact response of FGM materials subjected to localized 

contact loading is of significant concern in many advanced engineering structures and 

components, such as the leading edge of an aircraft wing, fan blades in a jet engine or the 

protruded sections of machinery blade and other  areas  where  these materials are used 

extensively. Recent widespread applications of FGM conical shells are facing with the 

situations wherein the shells are impacted by foreign bodies of arbitrary shapes moving at 

relatively low velocities (typically less than 10m/s). Impact of masses moving at relatively 

low velocities with underwater vehicles, windmill blades, automobile or aircraft bodies, 

steam turbine blades or spaceships is quite common in actual practice. Low-velocity impact 

may also occur during manufacturing, processing, maintenance or transportation of the FGM 

structures as in tool drop or rough handling. Micro-voids or porosity may present due to 

manufacturing discrepancy of the FGM materials. An impact with a foreign mass may result 

in the coalescence of such micro-voids or porosity at different location of the FGM shells 

structures. The turbomachinery blades are under a preload originated from the centrifugal 

forces resulting in initial stresses which may aggravate the damage due to impact especially 

in the presence of porosity. In most practical applications as in hailstorm or ballistic attacks, 

impact on FGM shell structure is never a localized phenomenon and the loading and 

unloading cycles of multiple impactors can greatly influence the contact force and 

displacement. Thus an analytical method to predict the dynamic response of FGM conical 

shells under single, multiple and time delayed multiple impact is very helpful in most 

practical applications. Hence, attention is needed for in-depth study of transient impact 

performance of pretwisted and untwisted FGM conical shells subjected to low velocity 

normal impact. Numerical results are obtained for FGM shells impacted centrally and at 

LOW VELOCITY IMPACT RESPONSE OF 

FUNCTIONALLY GRADED SHALLOW 

CONICAL SHELLS  
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location away from the centre. Parametric studies are performed in respect of angle of twist, 

rotational speeds, velocity of the impactor, location of the impact, thickness of conical shell 

and different FGM power laws and material property graded index. This chapter presents a 

finite element based numerical  study for transient dynamic impact performance of FGM 

conical shells. 

 

4.2 LOW VELOCITY NORMAL IMPACT  

The centrifugal forces arising out of rotation induce the initial stresses in FGM 

conical shells. The pretwist of the FGM shell also causes coupling in both bending directions. 

Moreover, the pretwisted FGM conical shells are prone to incur damage by impacts 

especially those normal to the shell surface. Hence, reliable and accurate prediction of normal 

impact response of delaminated composite pretwisted conical shells covers a wide range of 

parameters. The analyses herein are concerned with some important aspects in this context. 

The investigation primarily concentrates upon the low velocity normal impact which is said 

to occur for impactor speeds less than 10 m/sec. A modified Hertzian contact law considering 

permanent indentation is used to calculate the contact force along with other impact response 

parameters. Using the Newmark’s time integration scheme (constant average acceleration 

method) the time dependent equations are solved. Parametric studies are performed to study 

the effect of prime parameters like initial velocity of impactor, mass of the impactor, twist 

angle, location of the impact and material property garded index through different FGM 

constituent laws. 

 

4.3 CONTACT PHENOMENON AND INDENTATION 

The contact force depends on a contact law which relates the contact force with the 

indentation. The present study considers FGM conical shells having a large ratio of the radius 

of curvature to its thickness as well as a high value of width to thickness ratio. Conway 

(1956) established a Hertzian-type contact force model which is appropriate for transversely 

isotropic materials. Yang and Sun (1982) proposed a power law based on static indentation 

tests using steel balls as indentors. The Hertzian-type contact model has been used to state the 

contact between the impactor and FGM materials by Larson and Palazotto (2006). The 

indentation parameter α depends on the difference of the displacements of the impactor and 

the target structure at any instant of time, and so also the contact force. The values of α are 

changing with time because of time varying displacements of both the rigid impactor and the 
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target structure. So at an instant the maximum indentation takes place and as a result the 

maximum contact force is also obtained. At this instant the displacement of the impactor also 

attains the maximum value. Thereafter, the displacement of the impactor gradually decreases, 

but the target point displacement keeps on changing and finally increases to a maximum 

value and at some point of time these two displacements become equal. This leads to zero 

value of indentation and eventually the contact force becomes zero. At this instant the 

impactor looses contact with the target. The process after attaining the maximum contact 

force till the reduction of contact force to zero value is essentially referred to as unloading. 

An elastic spherical mass impact on top surface of a functionally graded conical shell as 

shown in figure 4.5, where the top surface is ceramic-rich and bottom surface is metal rich. 

The shell is initially at rest and undeformed with one end clamped boundary condition that 

could be idealized as a turbo machinery blade. The spherical impactor is assumed to add no 

mass to the system that would affect the modes and net response. Furthermore, the contact 

phenomenon is idealized by neglecting gravitational effect and assuming the impactor 

bounces off the shell structure immediately after impact. The governing equations of low-

velocity, low-energy impact event between a sphere and a plate have been defined by 

Goldsmith (1960). The formulation initiates by considering the pressure distribution from an 

impact event which can be resolved into a concentrated force of magnitude F. At impact, the 

projectile will deform the shell globally as well as a small localized area where the elastic 

sphere indents the shell. The impact force causes the localized deformation on the shell. Fc, is 

a contact force that can be expressed by the Hertzian contact formulation which is valid for a 

relatively low-velocity, low-energy impact where deformation between the impactor and 

target are elastic in nature. For the high velocity impact this assumption does not hold good, 

and in the present analysis the low velocity impact is considered 

 

4.4 COMPARISON OF RESULTS 

In order to validate the computer codes developed for the transient dynamic analysis 

of FGM conical shells under low velocity single impact, the results obtained on the basis of 

present finite element modelling are compared with those of the reference solutions published 

in the open literature for low velocity impact model. The present finite element formulation 

for impact response a computation study has been carried out with 15 mm thick isotropic 

FGM beam that could be idealized for the present conical shell formulation with 

rx=ry=infinity and a rectangular planner form. In this context, essentially two important 
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aspects namely, analytical solution and finite element treatment have been taken into account. 

The results of Kiani et al. (2013) are compared considering a simply supported boundary 

condition of 153.5 mm length (L0), 10mm width (b) and 15 mm thick (h) FGM beam 

impacted centrally by an steel sphere of 12.7 mm radius and 10 gm mass with initial velocity 

of impactor (VOI) 2.0 m/sec which provides solution of an integral equation for a modified 

Hertzian contact law expressed as in equation 2.106. Figure 4.1 depicts the comparisons of 

time histories of contact force ,indentation, shell displacement and impactor velocity obtained 

from present FEM and that of Kiani et al. (2013). This shows a good match between the 

present FEM analysis and the reference (Kiani et al., 2013) results. The slight differences in 

the present results can be attributed to the fact that Kiani et al. (2013) used energy method. 

From the comparison as per Figure 4.1 it can be seen that the nature of variation is similar 

and the present FEM formulation can be acceptable for carrying out these analysis with FGM 

conical shell considering single impact problem.  
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Figure 4.1 (a) Contact force, (b) indentation, (c) lateral deflection and (d) projectile velocity 
histories of an FGM beam clamped at both ends with immovable in-plane boundary 
conditions. L0 = 153.5 mm, b0 = 10 mm, h = 15 mm, Mass of impactor (M0)= 10 gm, ri = 12.7 
mm, VOI = 2 m/s, FGM power law index (N) =5.0 
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To validate the present finite element formulation for the transient dynamic analysis of FGM 

conical shells under low velocity multi impact response, computation has been carried out for 

10 mm thick isotropic FGM beam that could be idealized for the conical shell formulation 

with rx=ry=∞ and a rectangular planner form. In this context, essentially two important 

aspects namely, analytical solution and finite element treatment have been taken into account. 

The results of Lam and Sathiyamoorthy (1999) are compared considering a clamped-free 

boundary condition of 300 mm length (L0), 10mm width (b0) and 10 mm thick (h) FGM beam 

simultaneously impacted at location 1 (L/6, b/2) and location 2 (5L/6,b/2) by two steel sphere 

of 10 mm radius and 10 gm mass with initial velocity of both the impactors 2.0 m/sec which 

provides solution of an integral equation for a modified Hertzian contact law expressed as in 

equation 2.106. Figure 4.2 depicts the comparisons of time histories of Contact force and 

deflection obtained from present FEM and that of Lam and Sathiyamoorthy (1999). This 

shows a good agreement between the present FEM analysis and the reference (Lam and 

Sathiyamoorthy, 1999) results. The slight differences in the present results can be attributed 

to the fact that Lam and Sathiyamoorthy used energy method. From the comparison as per 

figure 4.2 it is observed that the nature of variation is similar and the present FEM 

formulation can be acceptable for carrying out these analysis with FGM conical shell for 

multiple impact problem. 
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Figure.4.2 Contact force and beam displacement histories of a cantilever composite 

([0
0
/90

0
/90

0
/0

0
]) beam at Loc 1 and 2. L= 0.3 m, b=0.01m, h=0.01m,    =    = 0.01m, 

       =2.0 m/s, 1E = 144.80 GPa, 2E = 9.65 GPa, 12G = 13G =4.14 GPa, 23G =3.45 GPa, 12

= 0.30,  = 1389.23 kg/m
3
. Loc 1 (L/6, b/2), Loc2 (5L/6,b/2) 
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The present study for low velocity impact performance of FGM conical shell is carried out to 

investigate the effect of initial velocity of impactor, mass of the impactor twist angle, location 

of the impact and material property garded index through different FGM constituent laws. 

Accordingly the dimensions of length (L0) and width (b0) are taken as 0.8m and 0.143m 

respectively. The other parameters of the conical shells (rx = α) having rectangular plan-form 

(Lo/bo) of=5.59, curvature ratio (bo/ry) of 0.5 and aspect ratio (Lo/s) of 0.7 are considered. 

Considering the complete planform of the shell a uniform mesh division of 8 × 8 has been 

used for the analyses. For all the cases shells are impacted at centre as well as other locations 

by a spherical steel ball of 0.0127 m diameter with differnt initial velocity of 1 m/s, 3 m/s, 5 

m/s and 10 m/s. The material property used for the present analysis are are considerd as per 

table 3.5.  Figure 4.3 and 4.4 represnts the time step convergence study for both end clamped 

and one end clamped condistion respectively. It has been observed that the time step beyond 

1 µ-sec the impact parametsrs remains almost same, therefore the time step has not much 

influence on the impact parameters. A converged optimum value of time step (1.0 µ-sec) and 

mesh size of 8x8 is considered for the further analysis. 

 

0 5 10 15 20 25 30

0

500

1000

1500

2000

2500

C
o

n
ta

c
t 

F
o

r
c
e
 (

F
C

) 
in

 N

Time (T) in sec

 t=0.25 sec

 t=0.50 sec

 t=1.0 sec

 t=1.50 sec

 t=2.0 sec

 

0 5 10 15 20 25 30

0.000

0.002

0.004

0.006

0.008

0.010

0.012

S
h

el
l 

d
is

p
la

ce
m

en
t 

(m
m

)

Time (T) in sec 

 t=0.25 sec

 t=0.50 sec

 t=1.0 sec

 t=1.50 sec

 t=2.0 sec

 

Figure.4.3 Time convergence study for histories of contact force (Fc) and shell displacement 

of  FGM beam clamped at both ends with immovable in-plane boundary conditions. L0 = 

153.5 mm, b0 = 10 mm, h = 15 mm, Mass of impactor (M0)= 10 gm, ri = 12.7 mm, v0 = 2 m/s, 

FGM power law index (N) =5.0 
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4.5 RESULTS AND DISCUSSION 

4.5.1    SINGLE IMPACT 

 

The conical shell are impacted at centre (L0/2,b0/2) [denoted by “H” in the figure 4.5] of the 

shell for single impact problem with different initial velocities of 1m/s, 2m/s, 3m/s, 4m/s and 

5m/s. The impact parameters are varied to see the effect on the single impact response and 

these are described below.  

 

 

 

 

 

 

 

Figure. 4.5  Location (H) and node number (113) for the single normal impact problem  
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Figure.4.4 Time convergence study for histories of contact force (Fc) and shell displacement 

of  FGM cantilevered conical shell clamped at one ends.  Length=0.8m, width=0.143m, 

thickness=0.01 m,  mass of the impactor (M0)=0.01 Kg. , h = 0.01m, ri = 12.7 mm, VOI = 3 

m/s, FGM power law index (N) =1.0 

R
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4.5.1.1     EFFECT OF INITIAL VELOCITY OF THE IMPACTOR  

 

Design of an impact mitigating system is very essential for the turbomachinery blade to avoid 

catastrophic failure during operation. The initial velocity of the impactor is an important 

factor affecting the various impact responses. The effect of initial velocity of impactor (VOI) 

for simple power law index N=1 are furnished in Figure 4.6. The peak value of contact force 

is found to increase with increase of initial velocity of impactor as per Figure 4.6 (a). It is also 

observed that the contact duration reduces with the increase of VOI. The impactor’s 

displacement curve is observed to increase during loading and after reaching the peak value, 

it is found to decrease with a slope which is proportional to initial velocity of impactor. From  

  

  
Figure. 4.6 (a) Contact Force, (b) Impactor displacement, (c) Impactor velocity, (d) Target 
displacement for N=1 with respect to time for SS-Si3N4 FG conical shell impacted at the 
center of top surface. Length=0.8m, width=0.143m, thickness=0.01 m, time step=1.0 μ-sec, 
mass of the impactor (M0)=0.01 Kg.  
 

Figure 4.6 (b) it is to be noted that the negative value of impactor’s displacement indicates 

the situation when the impactor bounces back from the target after hitting the target surface. 

The contact duration has inverse relationship with initial velocity of impactor while the time 
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of attaining the peak value of contact force is found to reduce with the increase of initial 

velocity of impactor. The variation of the indentation is similar to the contact force with 

respect to initial velocity of the impactor. The slope of time history curves for velocity of 

impactor ( from Figure 4.6.c ) is found to be maximum value for VOI=5 m/sec, followed by 

VOI=4 m/sec, VOI=3 m/sec, VOI=2 m/sec and VOI=1 m/sec, respectively. It is also to be 

noted that the velocity of the impactor comes down to zero value at the end of contact 

duration and subsequently it falls down to negative value wherein null value of contact force 

is observed. Figure 4.6.d shows the increasing trend of shell displacement with increase of 

VOI.  

 

4.5.1.2     EFFECT OF MASS OF THE IMPACTOR 

 Like initial velocity of the impactor, the mass of the impactor also plays a significant role 

affecting the impact responses and designer must be aware of the effect of impactor mass for 

the low impact phenomenon. Based on the mass of the outside/inside debris or small torn out 

objects from the turbo machines which impacts on the turbomachinery blade the impact 

performance varies. The impact characteristics greatly influenced by the mass of the impactor 

and it is obvious that the contact force as well as the impactor displacement, shell 

displacement and indentation will have basic similar nature with variation of mass. The figure 

4.7 (a), 4.7 (b), 4.7 (c) and 4.7 (d) represents the contact Force, impactor displacement, 

impactor velocity and target displacement respectively considering initial velocity of the 

impactor 3 m/s for the power law index N=1. From figure 4.7 (a) it is observed that with 

higher the mass of the impactor the contact force is higher and the longer contact duration is 

observed with higher mass of the impactor. This trend can also be observed irrespective of the 

initial velocity of the impactor and the power laws index (N). The time of attaining  peak 

value of the contact force is found to be lower  for light mass of the impactor. Figure 4.7 (b) 

reveals the fact that the impactor displacement is higher for the higher mass of the impactor. It 

can also observed form the same figure that impactor displacement reaches quickly to the null 

value for lower mass of the impactor compared to the higher mass and the former one 

bounces back with higher displacement. Though the contact force is higher for heavier mass 

of the impactor but the impator bounces back with lesser velocity after hitting the target 

surface compared to lower mass of the impactor because the heavier mass has to overcome 

greater gravitational force while bouncing upward direction. Figure 4.7 (c) indicates this 

trend. The shell or target displacement is proportional to the mass of the impactor. Figure 4.7 

(d) shows the predicted shell displacement enhances with increment of the impactor mass.     
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Figure. 4.7 (a) Contact Force, (b) Impactor displacement, (c) Impactor velocity, (d) Target 
displacement for N=1 with respect to time for SS-Si3N4 FG conical shell impacted at the 
center of top surface. Length=0.8m, width=0.143m, thickness=0.01 m, time step=1.0 μ-sec, 
VOI= 3m/s 
 

4.5.1.3    EFFECT OF LOCATION OF IMPACT 

The point hitting by the spherical impactor on the target surface of functionally graded 

conical shell plays significant role on the impact characteristics. The different locations on the 

conical shell on which the impactor is hitting are shown in Figure 4.8. diagonal direction as 

Point 1-2-3-C-4-5-6-7, in axial direction as Point 8-9-10-C-11-12-13-14 and transverse 

direction as Point 15-16-17-18-C-19-20-21-22 . The point C represents the centre of the 

conical shell along the axial and transverse direction. The variation of location of hitting point 

is observed to affect in the variation of effective elastic stiffness. The effective elastic 

stiffness is higher near the fixed end of the blade while the effective elastic stiffness reduces 

towards the free end of the blade. Due to this reason the peak value of the contact force is 

found to be maximum at point 8 and minimum at point 14 along axial (span wise) direction as 

shown in Figure 4.9. Due the same reason the maximum value of contact force obtained at 

point 1 and the lowest value of contact force is observed at point 7 as furnished in Figure 4.9 
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Figure. 4.8 Planner view of  location of impact on top surface of the conical shell in axial, 

transverse and diagonal direction 

  

 

Figure. 4.9 Contact Force with respect to time for SS-Si3N4 FG conical shell impacted at 
different location on the top of the conical shell surface. Length=0.8m, width=0.143m, N=1, 
VOI=3m/s, time step=1.0 μ-sec, mass of the impactor (M0)=0.01 Kg. 
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Figure. 4.10  Impactor displacement with respect to time for SS-Si3N4 FG conical shell 
impacted at different location on the top of the conical shell surface. Length=0.8m, 
width=0.143m, N=1, VOI=3m/s, time step=1.0 μ-sec, mass of the impactor (M0)=0.01 Kg. 
 

Hence, in case of span wise direction (point 8 to point 14), the peak value of contact force is 

found to decrease as the point of hitting moves from bottom (fixed end) to the tip (free end) of 

the functionally graded conical shells blade wherein the time duration of contact is found to 

increase from bottom of the blade to tip of the blade. In the similar way along the diagonal 

direction, maximum value of contact force is found at fixed diagonal end (i.e, at point 1) and 

reduces as it moves diagonally from fixed end to free end (i.e, at point 7)  while the total 

contact duration is found to increase gradually from point 1 to point 7, which means the time 

duration of the contact is found to reduce from free end to fixed end. The contact force along 

the transverse direction is also shown in figure 4.9. The contact force for point 15 and 22 are 

same in nature as these two points are symmetric from central point. The similar nature is 

observed for other symmetrical points along the transverse direction i.e. point (15, 22), (16, 

21), (17, 20) and (18, 19). The centre point (C)  has the minimum contact force and gradually 

it increases towards the both end along the transverse direction. Figure 4.10 revels the fact 
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that the impactor bounces back with higher velocity when the impactor hits near the fixed end 

of the blade compared to the tip of the blade both for axial and diagonal direction while for 

the transverse direction the impactor bounces back with higher velocity when it hits  

  

Figure. 4.11 Impactor velocity with respect to time for SS-Si3N4 FG conical shell impacted 
at different axial and diagonal location on the top of the conical shell surface. Length=0.8m, 
width=0.143m, N=1, VOI=3m/s, time step=1.0 μ-sec, mass of the impactor (M0)=0.01 Kg. 

 

  

 

Figure. 4.12 Target displacement with respect to time for SS-Si3N4 FG conical shell 
impacted at different location on the top of the conical shell surface. Length=0.8m, 
width=0.143m, N=1, VOI=3m/s, time step=1.0 μ-sec, mass of the impactor (M0)=0.01 Kg. 
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on the centre compared to the side of the blade. Impactor velocity has not much effect on the 

location of the impact. The nature of the impactor velocity shows is similar trend irrespective 

of the location of the impact. However it is observed from the figure 4.11 that the fixed end of 

the blade has slight higher velocity of the impact while returning after hitting the surface 

compared to the free end of the blade. From the figure 4.12 it can be seen that the shell or 

target displacement is maximum towards the tip of the blade compared to the fixed end of the 

blade both for the axial and diagonal direction. Also for the transverse direction the maximum 

shell displacement is observed towards the side of the blade compared to the centre of the 

blade.  From the above discussion it can be conclude that for low velocity impact of FG 

conical shell in axial direction could be severe compared to the diagonal or transverse 

direction as location 14 has higher contact force compared to location 7. In other words, the 

FG conical shell subjected to low velocity impact which is safe in axial direction, 

subsequently will also be safe in design along the diagonal or transverse direction. 

 

4.5.1.4    EFFECT OF THICKNESS OF THE CONICAL SHELL 

The effect of thickness of the conical shell on the impact performance for power law index 

N=1 are furnished in Figure 4.13 (a-d). The peak value of contact force is found to increase 

with increase of conical shell thickness. It is also observed from figure 4.13 (a) that the 

contact duration reduces with the increase shell thickness. The impactor’s displacement curve 

of figure 4.13 (b) is observed to lower during loading and after reaching the peak value, it is 

found to decrease with a higher slope for higher thickness of the shell. From Figure 4.13 (c) it 

is to be noted that the higher impactor’s displacement is observed after bouncing from the 

shell. This indicates that the striker bounces back from the target surface with higher velocity 

for the thicker shell compared to thinner shell. The contact duration has inverse relationship 

with the shell thickness for same velocity of impactor while the time at which peak value of 

contact force is found to be unaltered with shell thickness. The unloading time for thicker 

shell is found to be less than that of thicker shell as the contact duration is lower for the 

former case. The slope of time history curves of velocity of impactor is found to be maximum 

value for highest thickness of the shell and minimum for the lowest thickness of the shell. It 

is also to be noted that the velocity of the impactor comes down to zero value at a faster rate 

for thicker shell and subsequently it falls down to maximum negative value while there is no 

contact force observed during that period. As the shell becomes thick the elastic stiffness of 

the shell becomes higher, hence the target/shell displacement is higher for the thinner shell 

compared to the thicker shell as depicted in figure 4.13 (d).  
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Figure. 4.13 (a) Contact Force, (b) Impactor displacement, (c) Impactor velocity, (d) Target 
displacement for N=1 with respect to time for SS-Si3N4 FG conical shell impacted at the 
center of top surface. Length=0.8m, width=0.143m, VOI=3m/s, time step=1.0 μ-sec, mass of 
the impactor (M0)=0.01 Kg.  
 

4.5.1.5    EFFECT OF TWIST ANGLE 

For a particular value of material property graded index, the peak value of contact force is 

found to enhance slightly as the twist angle increases. The trend of contact force histories for 

different VOI with different twist angles has been furnished in Figure 4.14 (a), 4.14 (b), 4.14 

(c) and 4.14 (d) for the contact force, impactor displacement, target displacement and 

impactor velocity histories, respectively. The increasing trend of contact force histories 

observed due to the fact that the coupling effect at higher twist angle enhances the stiffness 

which helps to raise the maximum contact force. The contact duration for twisted cases 

reduces marginally than that of untwisted cases irrespective of material property graded index 

and mass of the impactor. The time of attaining the peak value of contact force is found to be 

unaltered with the rise twist angle. Hence, it can be inferred that the effect of twist angle has 

significant impact on contact force and has marginal impact on contact duration but has no 

impact on time of attaining the peak value. The unloading time for untwisted cases is 
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observed to be higher than that of twisted cases while the contact force is found to increase 

minutely as the twist angle increases. The slope of time history curves of velocity of impactor 

is found to be maximum value for highest angle of twist and minimum for the untwisted shell. 

It is also to be noted that the velocity of the impactor comes down to zero value at a faster rate 

for higher angle of twist. Also it can be observed that for the higher twist angle the impactor 

bounces back from target after hitting the target surface with higher velocity following the 

stiffer slope. From Figure 4.14 (d) it can be observed that the target or shell displacement for 

the untwisted case is found to be less compared to the twisted case and the shell displacement 

value rises with the increase of angle of twist. This trend is observed due to the fact that, as 

the angle of twist increases the geometric stiffness matrix rises which results the shell to 

become more stiff and it gives more resistance to the shell displacement for higher twist angle 

compared to the lower twist angle or untwisted case. 

  

 

 

 

 

 

 

 

 

Figure. 4.14 (a) Contact Force, (b) Impactor displacement, (c) Impactor velocity, (d) Target 
displacement for untwisted (Ψ=0°) and twisted (Ψ=15°,30°and 45°) conical shell with 
respect to time for SS-Si3N4 FG conical shell impacted normally at the center of top surface. 
Length=0.8m, width=0.143m, thickness=0.01 m, time step=1.0 μ-sec, N=5, VOI=3m/s, 
mass of the impactor (M0)=0.01 Kg.  
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4.5.1.6    EFFECT OF MATERIAL PROPERTY GRADED INDEX (N) 

The variation of properties profile is studied to enumerate its effect on impact parameters. It 

is observed that the impact parameters like contact force, target (shell) displacement, 

impactor’s displacement, velocity of the impactor with respect to time have notable change 

with the variation of material property graded index of functionally graded shallow conical 

shells irrespective of twist angle. For N<1 ( i.e ceramic rich FGM structure) the contact force 

is higher compared to N>1 (for metal rich FGM structure) and for N=1 (i.e equal volume 

fraction of ceramic and metal mixture) the contact force lies in between the above two cases. 

This can be attributed to the fact that ceramic material has higher values of Youngs’s 

modulus (E) than that of metal hence the total contact stiffness of the FGM shell for lower 

values of N is higher compared to the higher values of N. Therefore in general it can be 

conclude that the contact force decreases with increase of the material property graded index 

and contact duration of the loading-unloading cycle increases with N as shown in figure 4.15  

  

  

Figure. 4.15  (a) Contact Force, (b) Impactor displacement, (c) Impactor velocity, (d) Target 
displacement with respect to time for SS-Si3N4 FG conical shell impacted at the center of top 
surface for different values of N. Length=0.8m, width=0.143m, thickness=10mm, VOI=3m/s, 
time step=1.0 μ-sec, mass of the impactor (M0)=0.01 Kg.  
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(a). Interestingly, it is to be noted that the contact force histories are identical in nature for the 

five different power law index cases. When the material property graded index increases, the 

shell displacement reduces (shown in figure 4.15 (d)) which is expected since the functionally 

graded conical shell becomes harder as the material property graded index increases up. The 

indentation parameter will also show the similar trend as that of shell displacement with the 

variation of N. However this observation is specific to the combination of FGM constituent 

materials where the ceramic constituent are harder than the metal constituent. But for the 

other combination where the metal constituent is harder than the corresponding ceramic 

constituent this trend will be reverse ( i.e contact force and shell displacement will be higher 

for higher values of N). 

 

4.5.2    MULTIPLE IMPACTS  

 

The FGM conical shell are impacted at location A (Node 61) and location B (Node 

165) simultaneously (as shown in figure 4.16) by a different spherical impactor of mass 10 

gm, 15gm and 20gm with different initial velocities of 1m/s, 3m/s and 5m/s. The various 

power law exponents (N=0.1, 1 and 10) are considered for the analysis to see the effect of 

constituent volume fraction on the impact response of the shallow conical shell. The impact 

parameters are varied to see the effect on the multiple impact response and these are 

described below.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 4.16  Location (A and B)  and node number (61 and 165) for the simultaneous 

multiple impact problem 

 

4.5.2.1    VARIATION OF THE INITIAL VELOCITY OF THE IMPACTOR 

Design of an impact alleviating system is vital for the turbomachinery blade to avoid 

catastrophic failure during operation. The initial velocity of the impactor is a significant 
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factor affecting the various impact response. The effect of initial velocity of impactor (VOI) 

for power law index N=1 is provided in Figure 4.17. Irrespective of the power law index and 

twist angle the peak value of contact force is found to increase with increase of initial 

velocity of impactor for both the location A and location B. The contact force (Figure 4.17.a) 

for location A is always higher than the corresponding location B however the contact 

duration for location A is slightly shorter than that of corresponding location B. It is also 

observed that the contact duration increases with the decrease of VOI. The impactor’s 

displacement value is observed to increase during loading and after attaining a peak value, it 

is found to decrease with a slope which is proportional to VOI. From Figure 4.17 (b) it is also 

noted that the negative value of impactor’s displacement shows the situation when the 

impactor bounces back from target after hitting the target surface. The shell displacement 

(Figure 4.17.d) is proportional to the VOI till it reaches to the peak value of the contact force, 

thereafter the trend becomes constant. Shell displacement shows higher trend for location A  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure. 4.17 (a) Contact Force, (b) Impactor displacement, (c) Impactor velocity, (d) Target 
displacement for N=1 with respect to time for SS-Si3N4 FG conical shell impacted at the 
center of top surface. Length=0.8m, width=0.143m, thickness=0.01 m, time step=1.0 μ-sec, 
mass of the impactor (M0)=0.01 Kg.  
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compared to location B for all the cases because the contact force is always higher for the 

later one. The slope of the impactor velocity (Figure 4.17.c) for location A is stiffer than that 

of location B for all the cases. The slope of time history curves of velocity of impactor is 

found to be maximum value for the VOI=5 m/sec, followed by VOI=3 m/sec and VOI=1 

m/sec respectively. It is also to be noted that the velocity of the impactor comes down to zero 

value at the end of contact duration and subsequently it falls down to negative value wherein 

null value of contact force is observed. 

4.5.2.2    EFFECT OF MASS OF THE IMPACTOR 

Like initial velocity of the impactor, the mass of the impactor also plays a significant role 

affecting the impact response and designer must be aware of the effect of impactor mass for 

the low velocity impact phenomenon. The impact characteristics greatly influenced by the 

mass of the impactor and it is obvious that the contact force as well as the impactor 

displacement, shell displacement and indentation will have basic similar nature.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.18  (a) Contact Force, (b) Impactor displacement, (c) Impactor velocity, (d) Target 
displacement for N=1 with respect to time for SS-Si3N4 FG conical shell impacted at the 
center of top surface. Length=0.8m, width=0.143m, thickness=0.01 m, time step=1.0 μ-sec, 
mass of the impactor (M0)=0.01 Kg.  
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Figure. 4.18 (a, b, c, d) illustrates the effect of impactor mass on low velocity multi-impact 

problem for the different values for sigmoidal power law index N =1. The contact force 

increases with the increase of mass of the impactor and the time for attaining the peak value 

of the contact force becomes more with higher mass of the impactor. Target displacement also 

increases with higher mass of the impactor, but for the location B higher shell displacement is 

found compared to location A for all the cases. Impactor velocity curve is stiffer for lower 

mass of the impactor while the location A shows slightly lower trend compared to location B.   

  

4.5.2.3    EFFECT OF TWIST ANGLE 

For a particular value of material property graded index, the peak value of contact force is 

found to enhance slightly as the twist angle increases. The trend of contact force histories for 

different twist angles with VOI=5 m/s has been furnished in Figure 4.19 (a), 4.19 (b), 4.19 

(c), and 4.19 (d) for the impactor displacement, target displacement and impactor velocity 

histories, respectively. The increasing trend of contact force histories observed due to the fact 

that the coupling effect at higher twist angle enhances the stiffness which helps to raise the  

  

  

Figure 4.19 (a) Contact force, (b) Impactor displacement, (c) Target displacement, (d) 
Impactor Velocity histories of SS-Si3N4 FGM conical shell for various angle of twist (Ψ), 
VOI=5, L0 = 0.8m, b0 = 0.143m, h = 0.01m, Mass of impactor (M0) = 10 gm, ri = 12.7 mm, 
N=1. 
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maximum contact force. Also it can be noted from Figure 4.19 (a) that the contact force for 

location A is always higher compared to corresponding location B.  The contact duration for 

twisted cases reduces marginally than that of untwisted cases irrespective of material property 

graded index and mass of the impactor. The time at which peak value of contact force occurs 

is found to be unaltered with the rise in twist angle. Hence, it can be inferred that the effect of 

twist angle has significant impact on contact force and has marginal impact on contact 

duration but has no impact on the time of achieving the peak value. 

 

4.5.2.4    EFFECT OF POWER LAW INDEX (N) 

The variation of the contact force, impactor displacement, target displacement and impactor 

velocity histories of FGM conical shell for various power law index (N) are depicted in the 

Figure 4.20 (a), 4.20 (b), 4.20 (c), and 4.20 (d) respectively. The contact force increases with 

the increase of power law index (N) but the contact duration reduces. The peak value of the 

contact force decreases considerably with the increase of N. Also it is noted that the  

 

  

  

Figure 4.20 (a) Contact force, (b) Impactor displacement, (c) Target displacement, (d) 
Impactor Velocity histories of SS-Si3N4 FGM conical shell for various power law index(N), 
VOI=3, L0 = 0.8m, b0 = 0.143m, h = 0.01m, Mass of impactor (M0) = 10 gm, ri = 12.7 mm. 
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corresponding time for attaining peak contact force decreases with N. The peak value of the 

contact force always predicts higher for location A compared to location B for all the cases. 

Higher impactor displacement is observed for the lower values of N and also it can be noted 

that the location B predicts the higher impactor displacement compared to location A. 

Impactor velocity curve is almost similar in nature for all the values of N but for the higher 

values of N the curve has higher slope which signifies that for higher values of N the time 

taken to bounce back is lower and gradually it increases with the increase of N. 

 

 

4.5.3   TIME DELAYED MULTIPLE IPACT 

 

The FGM conical shell are first impacted at location A (Node 61) and after a time 

delay second impact is ocuured at location B (Node 165) with different initial velocities of 

1m/s, 3m/s and 5m/s. The time delay for second impact at location B  are considered 25 𝜇-sec 

and 50 𝜇-sec on the impact response of the shallow conical shell. The impact parameters are 

varied to see the effect on the multiple impact response and these are descriebed in the 

following.   

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21  Contact force histories of SS-Si3N4 FGM conical shell considering time delayed 

multiple impact problem for various VOI and time delay, L0 = 0.8m, b0 = 0.143m, h = 0.01m, 

Mass of impactor (M0) = 10 gm, ri = 12.7 mm. 
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Figure 4.22 Impactor displacement curve of SS-Si3N4 FGM conical shell considering time 

delayed multiple impact problem for various VOI and time delay, L0 = 0.8m, b0 = 0.143m, h 

= 0.01m, Mass of impactor (M0) = 10 gm, ri = 12.7 mm. 

 

Figure 4.21 represnts the contact force histories for multiple impact cases considering 

simultaneous ( time delay, Nil) , 25 𝜇-sec and 50 𝜇-sec time delay for impact at location B 

with respect to location A. It is observed that the location B predicts lower contact force than 

that of location A for simultaneous impact irrespective of VOI. On the other hand, location B 

predicts further lower contact force with time delay for a given VOI if the contact at location 

B occurs during the time duration of location A. The contact force at location B regains to the 

actual values, as per the simultaneous multiple impact cases, if the impact on location B 

occurs after the time duration of impact of location A. From Figure 4.22 higher impactor 

displacement is observed at location B than that of location A and with time delay the 

impactor displacement at location B further increases. Figure 4.23 represents the impactor 

velocity curve for simultaneous and time delayed impact for different VOI. For simultaneous 

impact the  impactor velocity curve for location B is slightly stiffer than that of location A 

irrespective of the VOI. For the time delayed impact case the impactor velocity at location B 
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is observed to be in lower range while returning after hitting the surface than that of 

simultaneous impact. Figure 4.24 represents the target/shell displacement histories for 

simultaneous and time delayed impact considering different VOI. For simultaneous impact 

the  maximum value of the  target/shell displacement is observed at a time when the contact 

force achieve its peak value. For a given VOI, the maximum  value of the  target/shell 

displacement is observed at location B than that of location A. For the time delayed impact 

case the target/shell displacement at location B is observed to be in lower range compared to 

simultaneous impact. As the time delay increases target/shell displacement at location B  

reduces further. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.23 Impactor velocity curve of SS-Si3N4 FGM conical shell considering time 

delayed multiple impact problem for various VOI and time delay, L0 = 0.8m, b0 = 0.143m, h 

= 0.01m, Mass of impactor (M0) = 10 gm, ri = 12.7 mm. 
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Figure 4.24 Shell displacement histories of SS-Si3N4 FGM conical shell considering time 

delayed multiple impact problem for various VOI and time delay, L0 = 0.8m, b0 = 0.143m, h 

= 0.01m, Mass of impactor (M0) = 10 gm, ri = 12.7 mm. 
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desired load for intendent application. The different spherical impactor of mass 10gm and 

20gm with different porosity factors are considered.  

 

4.5.4.1    EFFECT OF POROSITY  FOR SINGLE IMPACT 
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for a given VOI. Maximum value of the contact force is found for perfect (porosity free) 

FGM shell while the peak value of the contact force decreases with the increase of the 

porosity factor. Uneven porous FGM shell predicts higher contact force than that of even 

porous FGM shell for a given porosity factor. This may be attributed to the fact that with the 

increase of porosity factor the stiffness of the shell material decreases, hence it predicts the 

lower contact force. The time at which peak value of contact force is obtained and the total 

contact duration is found to be unaltered with the increase of the porosity factor. From Figure 

4.25 (b) it is to be noted that the negative value of impactor’s displacement indicates the 

situation when the impactor bounces back from target after hitting the target surface. The 

contact duration has inverse relationship with initial velocity of impactor while the time at 

which peak value of contact force is achieved, is found to reduce with the increase of initial 

velocity of impactor. The slope of time history curves for velocity of impactor (from Figure 

4.25.c) is found to be maximum value for VOI=5 m/sec and the slope decreases with lower  

  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.25 (a) Contact force, (b) Impactor displacement, (c) Impactor Velocity (d) Target 
displacement, histories of SS-Si3N4 porous FGM conical shell for various power law 
index(N), VOI=3, L0 = 0.8m, b0 = 0.143m, h = 0.01m, Mass of impactor (M0) = 10 gm, ri = 
12.7 mm. 
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values of VOI. It is also to be noted that the velocity of the impactor comes down to zero 

value at the end of contact duration and subsequently it falls down to negative value wherein 

null value of contact force is observed. Figure 4.25 (d) shows the increasing trends of shell 

displacement with time. It can also be noted that the maximum shell displacement is found 

for even porous FGM shell with porosity factor 0.2          . Shell displacement is lowest 

for perfect FGM shell, maximum for even porous           FGM shell while the uneven 

porous           FGM shell predicts the intermediate shell displacements. 
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Figure 4.26  (a) Contact force, (b) Impactor displacement, (c) Impactor Velocity and (d) 

Target displacement, histories of SS-Si3N4 E-FGM untwisted conical shell for different mass 

of the impactor and porosity factor,  VOI=3 m/s, L0 = 0.8m, b0 = 0.143m, h = 0.01m, M0 = 10 

gm, ri = 12.7 mm. 

 

The impact characteristics greatly influenced by the mass of the impactor (M0) and it is 

obvious that the contact force as well as the impactor displacement, shell displacement and 

indentation will vary with M0. Figure. 4.26 (a, b, c, d ) illustrate the effect of impactor mass 

(c) (d) 

(a) (b) 
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on low velocity (VOI=3m/s) impact performance. The contact force increases with the 

increase of mass of the impactor also the time of achieving the peak value of the contact force 

increases with higher M0 (shown in Figure 4.26.a). Even porous FGM shell predicts lower 

contact force than that of uneven porous FGM shell while perfect FGM shell shows 

maximum contact force for a given M0. Impactor displacement (as per Figure 4.26.b) 

enhances with M0 while the slope of the impactor velocity curve (shown in Figure 4.26.c) is 

stiffer for lower M0 than that of higher M0 for a given VOI.Shell displacement (shown in 

Figure 4.26.d) shows increasing trend with higher M0, where perfect FGM predicts lowest 

shell displacement and even porous FGM shell predicts highest shell displacement. 

 

4.5.4.2    EFFECT OF POROSITY  FOR MULTIPLE  IMPACT 

For the multiple impact problems the impact performance are shown graphically in 

Figure 4.27.  From Figure 4.27 (a), it is observed that the higher peak value of contact force  

  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.27 (a) Contact force, (b) Impactor displacement, (c) Impactor Velocity (d) Target 
displacement, histories of SS-Si3N4 porous FGM conical shell for various power law 
index(N), VOI=3, L0 = 0.8m, b0 = 0.143m, h = 0.01m, Mass of impactor (M0) = 10 gm, ri = 
12.7 mm. 
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and lower contact duration are predicted at location A (near the fixed end ) than that of 

location B (near the free end ). Lower peak value of the contact force is observed for even 

porous case compared to uneven porous case. As depicted in figure 4.27 (b), higher impactor 

displacements are observed at location B compared to the location A. Higher impactor 

velocity is observed for location A than that of location B ( as per figure 4.27.c). Impactor 

velocity is found to decrease with the increase of the porosity factor. Figure 4.27 (d) depicts 

higher value of shell displacement for location B than that of location A. 

For a particular value of initial velocity of impactor, the peak value of contact force is 

found to increaes slightly as the twist angle increases. The trend of contact force histories 

with different angle of twist with  0.1 even porous FGM shell for VOI=3m/s, has been 

furnished in Figure 4.28 (a) while Figure 4.28 (b), 4.28 (c) and 4.28 (d) corresponding to the 

impactor displacement, impactor velocity and target displacement histories, respectively at 
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Figure 4.28 (a) Contact force, (b) Impactor displacement, (c) Impactor Velocity and (d) 

Target displacement, histories of SS-Si3N4 E-FGM porous conical shell for different angle of 

twist,  VOI=3 m/s, L0 = 0.8m, b0 = 0.143m, h = 0.01m, Mass of impactor (M0)= 10 gm, ri = 

12.7 mm. Even porosity factor (    =0.1. 
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different twist angles. The increasing trend of contact force histories observed due to the fact 

that the coupling effect at higher twist angle increases the stiffness which consequentlyhelps 

to raise the maximum contact force. The time for attaining the peak value of contact force is 

found to be unaltered with the rise in twist angle. Hence, it can be inferred that the effect of 

twist angle has significant impact on contact force and has marginal effect on contact 

duration but has no effect on time of achieving peak value. Impactor displacement shows 

(Figure 4.28.b) decreasing trend with the increase of twist angle. 
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__________________________________________________________________________________________ 

 
5.1      INTRODUCTION 

The outcome of the results in the form of tables and graphs for free vibration 

characteristics and low velocity impact response of FGM conical shell within the present 

scope of work is summarized in this chapter. The finite element based computer codes are 

developed to obtain numerical results for free vibration characteristics and low velocity 

transient impact performance of FGM conical shell. The convergence studies of the finite 

element solution method are obtained by varying mesh sizes for free vibration analysis. Also 

the convergence studies are performed varying mesh sizes and time steps for the case of 

transient response. The present analysis is carried out to investigate the effect of various 

triggering parameters on free vibration characteristics and transient low velocity impact 

performance of FGM shallow conical shells. Parametric studies are carried out for both free 

vibration and transient dynamic impact response reported in previous Chapter 3 and Chapter 

4, respectively. The significant conclusions extracted from the present analysis are 

enumerated in this chapter. The results obtained are the first identified results of the type of 

analyses carried out in the present analysis and serve as benchmark solutions for future 

investigators. The future scope for extension of the present study or new study related to the 

similar type of problem areas is also listed in this chapter.  

 

5.2      GENERAL 

(a) In this present work numerical studies are performed for the dynamic 

characteristics in respect of free vibration and low velocity impact performance of FGM 

conical shells. The present model of FGM shallow conical shell can be idealized as rotating 

turbomachinery blades which can be employed in different application in mechanical and 

aviation field.  

 

(b) The governing dynamic equilibrium equation is derived from Lagrange’s equation 

of motion neglecting the Coriolis effect (Sreenivasamurthy and Ramamurti, 1981) for 

moderate rotational speeds. 

CONCLUSIONS 
 



152 

 

 

(c) The effect of transverse shear deformation and rotary inertia are incorporated in 

the present finite element formulation. The present finite element method is versatile in 

analyzing shells of complex geometry and is sufficiently accurate, covering a wide range of 

span or width to thickness ratios.      

 

(d) Convergence studies in terms of mesh sizes of (6 x 6), (8 x 8) and (10 x 10) are 

performed. The results are found to be nearly equal for (6 x 6) and (8 x 8) with the percentage 

difference less than 1% while the higher mesh size (10 x 10) predicts slight higher percentage 

difference than 1%. To avoid ill-conditioning of the numerical eigen value problem 

(Sreenivasamurthy and Ramamurti, 1981) lower mesh size of (6x6) has been adopted instead 

of (8x8) for the analysis without sacrificing computer accuracy and efficiency. But for the 

transient impact response, FEM results are generated using converged mesh size of (8 x 8) 

which also used to determine the converged value of time step for each parametric case.  

 

5.3      FREE VIBRATION ANALYSIS 

Based on the study on free vibration characteristics of pretwisted FGM shallow 

conical shells considering different FGM constituent’s law varying the material property 

graded index and porosity factors for porous FGM shells the following important 

observations are found:  

 

5.3.1 SIMPLE POWER LAW FGM (P-FGM) 

(a) The non-dimensional natural frequencies (NDFF and NDSF) are found to decrease 

with the increase of the simple power law index (N). This is due to the fact that the 

contribution of the metal part on FGM shell increases and the elastic stiffness matrix reduces 

with the increase of the material property graded index (N) which leads to decrease of the 

non-dimensional natural frequencies. 

 

(b) The fundamental natural frequencies and second natural frequencies are observed 

to increase with the increase of the twist angles irrespective of the rotational speed. The 

centrifugal stiffening effect (i.e., increase of structural stiffness with increase of rotational 

speeds) for NDFF and NDSF is also observed for all the values of N irrespective of twist 
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angle. This leads to the fact of increasing trend of the NDFF and NDSF for conical shell with 

increase of rotational speed and twist angle. 

 

(c) The natural frequencies (NDFF and NDSF) at rotating condition (Ω=0.5 or 1.0) as 

well as at stationary condition (Ω=0.0), the untwisted cases are mostly in the lower range 

compared to those of twisted ones 

 

(e) The fundamental frequency is observed to be the torsional mode at lower 

rotational speed for all cases. The symmetry modes are absent for rotating pretwisted conical 

shells. Span wise bending is notified at higher rotational speeds (Ω=0.5 and 1.0) 

corresponding to both NDFF and NDSF, irrespective of twist angle. The first span wise 

bending is found for both NDFF and NDSF at higher rotational speeds (Ω= 0.5, 1.0) for both 

twisted and untwisted shells. Unlike the rotational shell the span wise bending mode is absent 

for the stationary shell for all values of twist angle irrespective of the (N).  

 

5.3.2 SIGMOIDAL POWER LAW FGM (S-FGM) 

(a) The natural frequencies is invariant with the sigmoidal power law index (N) for a 

given twist angle and rotational speed. This is due to the fact that total contribution of metal 

and ceramic parts remains unchanged irrespective of the N and therefore, the total stiffness 

matrix and mass matrix remains same for the structure. Hence the sigmoidal power law will 

be more useful for designer to get the desired application arresting the variation of natural 

frequencies.  

 

(b) The centrifugal stiffening effect (i.e., increase of structural stiffness with increase 

of rotational speeds) for NDFF and NDSF is also observed for all the values of sigmoidal 

power law index irrespective of twist angle. This leads to the fact of increasing trend of the 

NDFF and NDSF with increase of rotational speed. In addition increase of twist angle has 

also rising trend on the natural frequencies of S-FGM conical shell.  

 

(c) As the fundamental natural frequencies are invariant with sigmoidal power law 

index N, therefore only linear variation of material property (N=1) is sufficient for the mode 

shape evaluation. Fundamental frequency is observed to be the torsional mode at lower 

rotational speed for both NDFF and NDSF. Symmetry modes are absent for rotating 
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pretwisted conical shells. Span wise bending is notified at higher rotational speeds (Ω=0.5 

and 1.0) corresponding to both NDFF and NDSF, irrespective of twist angle.  

 

5.3.3 EXPONENTIAL POWER LAW FGM (E-FGM) 

(a) Twist angle has prominent effect on the natural frequencies of the E-FGM conical 

shell. The increasing trend of NDFF with increase of twist angles for all rotational speeds are 

observed while for the NDSF the increase of the frequencies with twist angle can 

distinctively observed for higher rotational speeds. The rotating effect is more pronounced for 

twisted shell in comparison to untwisted one and frequency increases with the increase in 

rotational speed as in the case of P-FGM and S-FGM. 

 

(b) The non-dimensional fundamental natural frequency is observed to be the 

torsional mode at lower rotational speed. Symmetry modes are absent for rotating pretwisted 

conical shells. Span wise bending is notified at higher rotational speeds (Ω=0.5 and 1.0) 

corresponding to both NDFF and NDSF, irrespective of twist angle. 

 

5.3.4 FREE VIBRATION CHARACTERISTICS CONSIDERING POROSITY  

(a) Non-dimensional natural frequencies for Stainless steel (SUS304) - Silicon nitride 

(Si3N4) FG conical shells are consistently observed to decrease with the increase of the 

porosity factor as the presence of porosity lowers the total stiffness of the shell.  For the 

uneven FGM conical shell the decrement of natural frequency (considering perfect FGM) is 

less compared to even porous FGM conical shell. For a typical FGM configuration the 

perfect FGM predicts highest non-dimensional natural frequencies. The NDFF is found to 

increase with the angle of twist irrespective of the porosity factor for all the cases.  

 

(b) The first frequency is found to be the torsional mode at stationary condition 

irrespective of the twist angle. Torsional modes are also observed with Ω=0.5 for untwisted 

and lower twist angle (15
0
), but the torsional mode reversal along the longitudinal axis are 

observed for the latter case. The torsional symmetry modes are not observed for other twist 

angle for rotating shells. Bending mode along the longitudinal direction is observed for those 

cases. For mode shapes with even porosity factor 0.2, the relative non-dimensional deflection 

(calculated based on perfect FGM) shows higher value compared to perfect FGM and mode 

shapes for the intermediate percentage of porosity have same basic nature of deflection. 
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5.4       TRANSIENT IMPACT ANALYSIS 

 Transient impact analyses of pretwisted FGM shallow conical shells subjected to low 

velocity normal impact are investigated by varying initial velocity of the impactor, rotational 

speeds, location of impact, angle of twist, thickness of shell, different FGM power law graded 

index and porosity factors. The significant observations from the present analysis are outlined 

below: 

 

5.4.1 SINGLE IMPACT PROBLEM 

In the present analysis, the computer code is authenticated with the benchmark problems of 

open literature. The developed computer code can be utilized to numerically predict the low 

velocity impact performance of other type of functionally graded shallow conical shells 

considering different FGM power law exponent. The following conclusions can be drawn 

from the present analysis. 

a) Peak value of contact force is proportional with initial velocity of impactor, but contact 

duration shows inverse relation with the VOI and the shell displacement is proportional to 

the VOI till it reaches to the peak value of the contact force.  

b) The maximum value of the contact force decreases considerably with the increase of the 

N and the corresponding time for attaining the peak value of contact force increases with 

N. This is because of the fact that for higher value of N the elastic stiffness matrix of the 

shell becomes lower.  

c) Contact force as well as indentation is proportional to the mass of the impactor while the 

contact duration shows inverse relation with the mass of the impactor. 

d) Contact force is found to increase with the increase of twist angles. The shell 

displacement value has inverse relationship with angle of twist. The time to attain peak 

value of contact force is found to be unaltered with the rise twist angle.  

 

5.4.2 MULTIPLE IMPACT PROBLEM 

a) Higher peak value of contact force and lower contact duration are observed at location A 

(near the fixed end ) than that of location B (near the free end ) and shell displacement 

shows higher value for location B than that of location A. 
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b) Slope of the impactor velocity curve for location A is stiffer than that of  location B for all 

the cases 

 

5.4.3 TIME DELAYED MULTIPLE  IMPACT PROBLEM 

a) For delayed multi impact problem the contact force at location B reduces with increase in 

time delay if the impact on location B occurs during the time duration of impact for the 

location A. The contact force at location B regains to the actual values, as per the 

simultaneous multiple impact cases, if the impact on location B occurs after the time 

duration of impact of location A. 

b) Time duration of impact at location A persists for longer period for lower VOI, but 

corresponding contact force at location B shows lower trend for a particular value of time 

delay. 

 

5.4.4 EFFECT OF POROSITY ON IMPACT RESPONSE 

a) Contact force for perfect FGM (porosity free) shell is higher than that of porous FGM 

shell, also the contact force has inverse relation with the porosity factor but the shell 

displacement has proportional relationship with porosity factor. 

b) Even porous FGM shell predicts lower contact force but higher shell displacement than 

that of uneven porous FGM for a given porosity factor.  

c) Twisted shell shows higher contact force but lower shell displacement than that of 

untwisted one for a given porosity factor.  

 

5.5    CONTRIBUTION OF THE THESIS 

The contribution of the present work and the objective assessment of the thesis are presented 

as follows: 

a) The finite element based numerical analysis program for determining the free vibration 

characteristics and low velocity impact (single, multiple and time delayed) response of 

functionally graded conical shell structures are developed and validated with benchmark 

solutions. The programs are so general that it can be used for other types of shallow shell 

geometry with different boundary conditions. This generic computer code can also be 

used to draw the mode shapes. 
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b) Natural frequencies are found to increase with the increase of power law exponent as well 

as with the twist angle of the FG conical shell blade. The rotating effect is found to be 

more pronounced for twisted FG conical shells compared to untwisted one for free 

vibration characteristics. It is identified that torsional mode is observed for untwisted 

conical shell with lower rotational speed but for twisted conical shell torsional symmetric 

modes are observed only at stationary condition and spanwise bending modes are 

observed for rotating case.  

c) Natural frequencies are consistently observed to decrease with the increase of the porosity 

factor but for the uneven porous FGM the decrement of natural frequency is less 

compared to even porous FGM conical shell. Both the natural frequencies (NDFF and 

NDSF) increase with the rise of rotational speed irrespective of twist angle and porosity 

factor. For the mode shape the deflection is proportional to the percentage of porosity 

present in the shell. 

d) Moderate rotational speeds have negligible effect on the impact response of FGM conical 

shells for low velocity impact (single, multiple and time delayed impact). 

e) Contact force decreases considerably with the increase of the FGM material property 

graded index. 

f) Contact force for perfect FGM (porosity free) shell is higher than that of porous FGM 

shell, also the contact force has inverse relation with the porosity factor. Even porous 

FGM shell predicts lower contact force but higher shell displacement than that of uneven 

porous FGM for a given porosity factor. Irrespective of the percentage of porosity present 

in the conical shell, twisted shell always shows higher contact force but lower shell 

displacement than that of untwisted one.  

 

5.6  FUTURE SCOPE OF WORK 

In this present study some important aspects of FGM conical shell have been 

attempted and solved. But due to technical significance and demand further research is 

needed for diverge applications of FGM pretwisted conical shells in relation to design, 

analysis, modeling and manufacturing. Further research can be carried out to completely 

explore the dynamic behaviour of these specialized FGM structures to provide broader scope 

of extension of the present work or as a new set of problems. Several potential areas to which 

the present work can be extended are mentioned as follows: 
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(i) The present shallow conical shell geometry of with open conical shell can be altered 

with closed conical shells having moderate thickness and can also be extended to 

incorporate the structural damping. 

(ii) The effect of low-velocity impact for transient dynamic analysis may be extended to 

include oblique impact.  

(iii) The extension of the present work can be made to analyze the conical shell structure 

considering the hydrothermal (combined effect of moisture and temperature) effect.  

(iv) The present analysis can be extended considering the stiffened shells or shells with 

different sizes of cutouts. 

(v) CNTs-reinforced shallow conical shell can be used for higher structural stiffness. 

(vi) Functionally graded graphene reinforced cylindrical or conical shell can be considered 

for free vibration and low velocity impact problems. 
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