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1 Introduction: 

1.1 An overview of Electric discharge machining process: 

Electrical discharge machining (EDM), also known as spark machining, spark eroding, die 

sinking, wire burning or wire erosion, is a metal fabrication process whereby a desired shape is 

obtained by using electrical discharges (sparks). EDM is one of the most extensively used non-

conventional material removal processes. Its unique feature of using thermal energy to machine 

electrically conductive parts regardless of hardness has been its distinctive advantage in the 

manufacture of mould, die, automotive, aerospace and surgical components. In addition, EDM 

does not make direct contact between the electrode and the workpiece eliminating mechanical 

stresses, chatter and vibration problems during machining.  

The material erosion mechanism primarily makes use of electrical energy and turns it into 

thermal energy through a series of discrete electrical discharges occurring between the electrode 

and workpiece immersed in a dielectric fluid. The thermal energy generates a channel of plasma 

between the cathode and anode at a temperature in the range of 8000 to 12,000 °C or as high as 

20,000 °C [1] initializing a substantial amount of heating and melting of material at the surface 

of each pole. When the pulsating direct current supply occurring at the rate of approximately 

20,000–30,000 Hz is turned off, the plasma channel breaks down. This causes a sudden reduction 

in the temperature allowing the circulating dielectric fluid to implore the plasma channel and 

flush the molten material from the pole surfaces in the form of microscopic debris. This process 

of melting and evaporating material from the workpiece surface is in complete contrast to the 

conventional machining processes, as chips are not mechanically produced. The volume of 

material removed per discharge is typically in the range of 10−6–10−4 mm3 and the material 

removal rate (MRR) is usually between 2 and 400 mm3/min depending on specific application. 

Since the shaped electrode defines the area in which the spark erosion will occur, the accuracy of 

the part produced after EDM is fairly high. After all, EDM is a reproductive shaping process in 

which the form of the electrode is mirrored in the workpiece. 

The EDM process is most widely used by the mold-making, tool, and die industries, but is 

becoming a common method of making prototype and production parts, especially in the 

aerospace, automobile and electronics industries [2]–[5] in which production quantities are 

relatively low. A number of EDM variations based on this basic configuration have emerged in 

the industry to cope with the machining of exotic materials or super hard metal alloys used 

exclusively in the manufacture of aeronautical and aerospace parts. Wire-cut EDM[6] is one of 

the most favourable variants owing to its ability to machine conductive, exotic and high strength 

and temperature resistive materials with the scope of generating intricate shapes and profiles. It 

uses a thin continuously travelling wire feeding through the workpiece by a micro-processor 

eliminating the need for elaborate pre-shaped electrodes, which are required in the EDM. Other 
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more specialised variations include electrical discharge texturing [7]used for the texturing of cold 

rolled steel and aluminium sheets and electrical discharge grinding (EDG) used for the 

manufacture of polycrystalline diamond cutting tools[8]. 
 

1.2 Need for prediction of response parameters in EDM process: 

Non-conventional machining processes continue to occupy a dominant fraction of all 

manufacturing operations. EDM is one of the most popular machining process among the non-

conventional machining processes. New advances in machining technologies, along with 

advanced material development, all aimed at improved manufacturing productivity, product 

quality and cost reduction, require predictive performance models for use in process planning 

systems for machining processes. At the discrete part/product level, this includes selection of: (1) 

optimal cutting conditions; (2) coolant/lubricant type; (3) cutting tools, (3) optimal power 

consumption etc. The goal is to satisfy functional design requirements with an optimized process 

plan. To enable this, predictive performance models need to be developed and integrated with 

process planning. Development of advanced predictive models has accelerated to accommodate 

demands. These models can be broadly clustered as analytical, numerical, experimental, Artificial 

Intelligence (AI) based, and hybrid modelling techniques [9]. However, a dichotomy remains 

whereby predictive models focus on fundamental physical process variables such as stresses, 

strains, strain-rates, temperatures, and dynamic tool deflection. Alternatively, applications require 

prediction of process performance measures such as tool-wear/tool-life, surface integrity, cutting 

forces/power/torque, part accuracy and process stability. 

Machining presents challenging and exciting intellectual problem that have fascinated 

researchers and practitioners for decades. Prediction of the fundamental physical variables by 

different methods has continued to make significant progress. However, we cannot ignore that 

the end goal of machining models is to predict industry-relevant outcomes, and thus improve 

productivity. Model inputs include cutting parameters, tool geometry, workpiece and tool 

materials. Models can calculate both intermediary fundamental physical variables or machining 

performance outcomes. Without successful models, expensive experimental testing will continue 

to dominate practical process development. Thus, the most successful models, in terms of their 

adoption by industry, are those that successfully that can compute incorporate modelling of both 

kind of variables, tool-life modelling is one such example. However, in the current state of-the-

art, while input variables appear to remain unchanged, process outcomes can still change 

drastically. This points to areas where there is still some fundamental lack of understanding, and 

this emphasizes the need for continued fundamental modelling efforts. 

There are various types of prediction techniques through which response parameters of EDM 

process can be predicted. However, we can not rely on one prediction techniques as different 
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prediction models works better based on some certain parameters. So in this work comparison of 

performance of different metamodeling techniques and neural networks has been performed on 

different response parameters like material removal rate, surface roughness and overcut. Through 

these models a conclusion can be drawn which model works best on that condition. 

1.3 Literature review: 

Dang[10] used the Kriging model to explore the highly nonlinear relationship between 

process factors and machining reactions in electric discharge machining (EDM), including 

material removal rate (MRR), surface roughness (SR), and electrode wear rate (EWR). The ideal 

machining conditions are then determined using particle swarm, a new multi-objective 

optimization technique that not only maximises machining speed but also minimises EWR while 

keeping the SR limitation. P20 steel was used in the experiment, which was done on a CNC EDM 

machine with a copper electrode. When the discharge current is increased, the MRR increases 

dramatically, according to the findings. An intelligent process modelling and optimization of 

EDM machining is a combination of Kriging regression model and particle swarm optimization. 

A data-driven strategy to metamodeling manufacturing/machining processes is explored in 

the study of  Kalita et.al.[11]. A non-predefined form-free technique is proposed as an alternative 

to the commonly used second-order polynomial regression metamodels. Using genetic 

programming, the highly adaptive metamodeling method known as symbolic regression is carried 

out. The training and testing data are taken from a central composite design-based experimental 

dataset on electric discharge machining. To quantify three different responses, four different 

process parameters, namely (voltage, pulse on time, pulse off time, and current), are employed as 

independent parameters (material removal rate, electrode wear rate, and surface roughness). 

Various statistical metrics such as R2, MAE, and MSE are used to assess the performance of 

metamodels. For all of the responses, the metamodels' performance on the training and testing 

data is judged to be satisfactory. 

Ghadai et. al. [12] approached a metamodel coupled with global optimization approach to 

predict suitable combinations of input parameters (current, pulse on-time and pulse off-time) that 

would effectively increase the material removal rate and minimize the tool wear. The metamodels 

are built by using a novel symbolic regression approach carried out using Genetic Programming 

(GP). On comparative evaluation against traditional RSM metamodels, the GP metamodels show 

much better and accurate estimation. GP metamodels are then coupled with a genetic algorithm 

to carry out multi-objective optimization of the EDM process. Using genetic programming (GP) 

metamodeling approach, MRR and TWR are expressed as functions of current, pulse on-time and 

pulse off-time. As compared to fixed-form polynomial RSM metamodels the genetically searched 
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form-free GP metamodels were seen to perform about 2% and 21% better for MRR and TWR 

respectively. 

Ulas et. al.[13]  in his study, experimented wire cut EDM (WEDM) on Al7075 aluminum 

alloy with different parameters (voltage, pulse-on-time, dielectric pressure and wire feed) . Each 

parameter is at 3 levels, so 81 experiments were carried out.  The experiments for machining of 

Al7075 via WEDM were modeled by machine learning methods. Four different models of two 

different methods were used for the prediction of surface roughness values of machined samples 

with WEDM. These models were extreme learning machine (ELM), weighted extreme learning 

machine (W-ELM), support vector regression machine (SVR) and quantum SVR (Q-SVR). All 

of the models were applied to the data set and the W-ELM model was the best performing model 

with the value of 0.9720 R2. 

Machine learning techniques such as artificial neural networks (ANN), support vector 

machines (SVM), and genetic algorithms (GA) are used by Paturi et. al. [14] to model and 

optimise surface roughness during Inconel 718 wire electrical discharge machining (WEDM). 

Surface roughness values were acquired using real-time WEDM experiments with various control 

parameters such as pulse on time, pulse off time, peak current, servo voltage, and wire feed rate. 

The best ANN model architecture was found to be 5-10-10-1, and SVM parameters were fine-

tuned using the grid search method. The predictions of the ANN and SVM models were compared 

to the predictions of the response surface methodology (RSM), and performance was assessed 

using the correlation coefficient (R-value) between experimental and model predictions. The R-

value of 0.99998 with experimental data and the least mean absolute percentage error (MAPE) 

of 0.0347 percent indicated that the SVM predictions were accurate among all the models 

evaluated. Furthermore, utilising the created RSM equation as the fitness function, the GA 

technique was executed, resulting in a 61.31 percent improvement in surface roughness. The 

suggested SVM and GA technique would aid in the prediction and optimization of surface 

roughness during Inconel 718 WEDM in a timely and precise manner. 

Rahman [15] implemented an artificial intelligence model for predicting the best machining 

parameters for Ti-6Al-4V via electrical discharge machining (EDM) with copper as the electrode 

and positive polarity. Effects of peak current, servo voltage, pulse on- and off-time in EDM on 

material removal rate (MRR), tool wear rate (TWR), and surface roughness (SR) is studied. The 

artificial neural network (ANN) modelling of MRR, TWR, and SR is developed using a radial 

basis function neural network (RBFNN). The response surface methodology (RSM) technique is 

used to implement the design of experiments (DOE) method. Analysis of variance was used to 

conduct a validity evaluation of the suggested models' fit and adequacy (ANOVA). The proposed 

ANN model is used to estimate and verify the best machining settings. The created model is found 



5 
 

to be within the acceptable error range when compared to experimental results. Sensitivity 

analysis is used to determine the relative impact of various factors on performance measurements. 

Peak current has been demonstrated to have a significant impact on performance measurements. 

The obtained findings show that the suggested ANN models can accurately assess the MRR, 

TWR, and SR in EDM.  

A new reduced modeling optimization framework is proposed by Surleraux et. al.[16], 

whereby the computational optimizer is replaced by an inexpensive surrogate that is trained by 

examplesMore specifically, given the geometry of the intended workpiece cavity, an artificial 

neural network (ANN) is trained using a small number of full reverse simulations and then used 

to directly produce optimal tool designs. A method of data augmentation is proposed to efficiently 

train the ANN, in which numerous characteristics from completely simulated EDM cavities are 

employed as distinct instances. Two ANNs are compared, one trained without changing process 

parameters (gap size and crater shape) and the other trained with a variety of process parameter 

cases. Two ANNs are compared, one trained without changing process parameters (gap size and 

crater shape) and the other trained with a variety of process parameter cases. When compared to 

the whole computational optimization procedure, the ANN can create unseen tool shape 

geometries with less than 6% variance and at essentially no cost in both circumstances. Our 

findings show that optimum tool shapes may be created very instantly, paving the way for virtual 

design and manufacturability evaluation of EDM die-sinking processes. 

Majumder[17] adjusted the process parameters of electric discharge machining for optimal 

material removal rate and minimum wear ratio in their paper. The relationship between process 

parameters and machining performance was established using a properly trained neural network. 

The neural network model was then combined with three distinct evolutionary techniques, 

including simulated annealing, genetic algorithm, and particle swarm optimization, to forecast 

the optimum process parameters for highest material removal rate and minimum wear ratio. The 

performance of the evolutionary algorithms utilised thus far has been compared. 

Zhang et. al.[18] suggested a new pulse classification approach based on the recurrent neural 

network (RNN) for high-speed EDM pulse analysis. During the machining process, discharge 

pulses of high-speed EDM were divided into five categories, which differed from typical EDM: 

open, spark, arc, partially short, and short. To assess the discharge pulses in the study, models 

based on three different RNNs with varying activation functions were created, including the 

standard RNN, LSTM (long short-term memory), and IndRNN (independently recurrent neural 

network). In the classification approach, a new input data structure based on the minimal signal 

change period was developed to simplify the model structure while also improving accuracy. The 

suggested model's highest classification accuracy is up to 97.85% without specifying thresholds, 
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and it can simultaneously categorise discharge pulses based on 10,000 orders of magnitude 

including diverse current values. The proposed method was successfully adapted to the complex 

machining conditions and the high-speed EDM's compound power source. Under varying 

currents, fluxes, and feeding speeds, the ideal model was utilised to examine the distribution of 

discharge pulses during the machining process. The proportion of discharge pulses could be 

anticipated with certainty. The management of discharge under varied machining parameters was 

disclosed more reliably by evaluating the discharge pulses of lengthy machining time, offering 

useful information for the enhancement of high-speed EDM servo systems. 

Sahu et al[19]. studied the performance of a rapid prototyping (RP) based rapid tool during 

electrical discharge machining (EDM) of titanium as the work piece utilising EDM 30 oil as the 

dielectric medium. The tool electrode is constructed of AlSi10Mg and is created by selective laser 

sintering, an RP process. The quick tool's performance is compared to those of solid copper and 

graphite tool electrodes. Material removal rate, tool wear rate, and surface integrity of the 

machined surface measured in terms of average surface roughness (Ra), white layer thickness, 

surface fracture density, and micro-hardness on white layer are the machining performance 

parameters considered in this study. The feasibility of using a predictive tool like the least square 

support vector machine to provide instructions for practitioners to anticipate various machining 

performance parameters before actual machining has been investigated. The predictive model is 

deemed to be robust because root mean square error for several performance indicators ranges 

from 0.11 to 0.34. For simultaneously optimising the performance metrics, a hybrid optimization 

technique known as desirability based grey relational analysis in tandem with the firefly algorithm 

is used. Peak current and tool type have been found to have a considerable influence on all 

performance indicators. 

The electrical discharge machining (EDM) of the aforementioned material is carried out with 

a 32-trial testing plan, and the outputs are predicted using artificial neural networks (ANN) and 

adaptive neuro-fuzzy inference system (ANFIS) by Pourasl et. al.[20]. The impacts of various 

key operational parameters, such as pulse on-time (Ton), pulse current (I), and voltage (V), on 

EDM process performance metrics such material removal rate (MRR), tool wear ratio (TWR), 

and average surface roughness (Ra), are investigated. Process plans (i.e., parameter–effect 

correlations) are established to guide the process operators. The MRR, TWR, and Ra estimate 

models were built using experimental data. To determine the error of training models, the root 

means the square error was utilised. Furthermore, the models' predicted outcomes have been 

validated through an unexplored set of tests. The results show that the ANFIS approach is superior 

to other ML techniques in terms of output parameter needs in electric discharge machining, with 

reduced RMSE and more dependable and accurate outcomes. 
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Conde et al.[21] proposed utilising an Elman-based Layer Recurrent Neural Network 

(LRNN) to forecast the correctness of components produced by WEDM. The average discrepancy 

between network predictions and real components is less than 6m, indicating that the network is 

doing exceedingly well. In a subsequent phase, a method for creating wire pathways with variable 

radius was proposed, allowing defects in machined parts to be remedied via software. Wire 

pathways of variable radius can be created by combining the predictions of the developed LRNN 

with the Simulated Annealing (SA) optimization technique, with radial deviations due to wire 

deformations eliminated. When the part radius is small and the part height is great, the wire's 

stiffness is lowered and the part's inaccuracy grows dramatically. The average deviation was 

lowered by as much as 80%, and the Coefficient of Variation (CV) was reduced by 43% in certain 

circumstances. Any current WEDM machine can be used to implement the solution. 

In the research work of Pradhan et. al.[22] two neuro-fuzzy models and a neural network 

model are presented for predictions of material removal rate (MRR), tool wear rate (TWR), and 

radial overcut (G) in die sinking electrical discharge machining process for American Iron and 

Steel Institute D2 tool steel with copper electrode. The network's inputs are the discharge current 

(Ip), pulse length (Ton), duty cycle (τ), and voltage (V). The studies were carried out using a full-

factorial design with varying amounts of Ip, Ton, τ and V. Ip is the most influencing factor for 

MRR and G, with the maximum degree of contributions of 87.61 percent and 81.90 percent, 

respectively, according to the analysis of variance results. Neural network architechtures were 

made with a different set of data to obtain appropriate number of neurons, epoch, and the fuzzy 

rule base. The comparison results reveal that the artificial neural network and the neuro-fuzzy 

models are comparable in terms of accuracy and speed, and further, the proposed models can be 

employed successfully in prediction of MRR, TWR, and G of the stochastic and complex EDM 

process. 

Fazlollahtabar et al.[23] used the fuzzy theory to evaluate the impact of EDM settings on 

surface roughness, material removal rate, and electrode corrosion percentage. A fuzzy possibility 

regression model examines the relationship between the machining parameters and the output 

process specification, and mathematical relationships between exact inputs and fuzzy outputs of 

the EDM process are recovered. Interfacing models and fuzzy hypothesis testing are used to 

assess the effectiveness of the three outputs. A fuzzy adaptive neural network is utilised to 

identify the ideal levels of each output, and relevant models are generated to be modified with a 

fitted model of fuzzy possibility regression for comparison reasons. The computational results 

presented and the efficiency and effectiveness of the fuzzy adaptive neural network indicated the 

good performance and high accuracy of the proposed method for solving such problems. 
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Khan et. al.’s[24] research focuses on the creation of an artificial neural network (ANN) 

model for predicting surface roughness (Ra). Data that is discovered following the design of 

experiments is used for training and testing. Scanning electronic microscopy was used to examine 

the surface topography of the machined item. The results show that the ANN model can 

accurately predict surface roughness. Smaller craters and micro-cracks arise from low discharge 

energy, resulting in an appropriate surface structure. This method aids in cost-effective EDM 

machining. 

The electrical discharge machining (EDM) process is described and optimised by 

Moghaddam et al.[25] utilising an artificial neural network and an optimization heuristic method. 

The EDM process' performance parameters include material removal rate (MRR), tool wear rate 

(TWR), and surface roughness (SR). The goal of this study is to optimise process parameters in 

order to identify a combination of process parameters that minimises TWR and SR while 

maximising MRR. Back propagation neural network (BPNN) was utilised to build the 

relationships between the input and output process parameters. The particle swarm optimization 

(PSO) algorithm was used to optimise the various response characteristics in the concluding phase 

of this study. A series of verification tests are also run to ensure that the optimization approach is 

accurate in determining the best levels of process parameters. The proposed modelling technique 

(BPNN) can accurately imitate the actual EDM process with less than 1% inaccuracy, according 

to the results. Furthermore, PSO algorithm outcomes with less than 4% error are extremely 

efficient in the optimization process. 

Shakeri et al.[26] investigated wire electro-discharge machining of cementation alloy 

steel 1.7131 and developed a linear regression model and feedforward backpropagation neural 

network to predict surface roughness and material removal rate for effective machining. For the 

experiments, the full factorial experiment was adopted. Experiments were carried out with 

various pulse current, frequency, wire speed, and servo speed cutting circumstances. The 

optimised neural network with the best prediction performance contained eight neurons in the 

hidden layer and was capable of 0.773 percent overall mean prediction error, while the regression 

model indicated 2.547 percent mistakes. Overall, the comparison of findings revealed that the 

neural network is more reliable and accurate. 

An Elman network is used by Pradhan et.al.[27] for the prediction of material removal 

rate (MRR) in electrical discharge machining (EDM).  Training of the models is performed with 

data from series of EDM experiments on AISI D2 tool steel from finishing, semi-finish to 

roughing operations. The machining parameters such as discharge current, pulse duration, duty 

cycle, and voltage were used as model input variables during the development of predictive 

models. The developed model is validated with a new set of experimental data that was not used 
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for the training step. The mean percentage error of the model is found to be less than 6 per cent, 

which shows that the proposed model can satisfactorily predict the MRR in EDM. 

The results of an experimental investigation to investigate the effect of parameters that 

create residual stresses during electric discharge machining of two particulate-reinforced metal 

matrix composites are reported in the article by Sidhu et al.[28] Several variables were changed 

to see how they affected the generation of residual stresses, with pulse-off time being the most 

important. To anticipate residual stresses, an artificial neural network was used. Residual stresses 

are lower in metal matrix composites with a low coefficient of thermal expansion and a high 

reinforced particle content. Additionally, when better conductive electrode materials are utilised 

during machining, residual stress is reduced. The residual stresses are accurately predicted by the 

artificial neural network model, making it a dependable method for predicting residual stresses.  

The micrographs reveal that a workpiece with a higher concentration of reinforced particles has 

a smaller flow line in the matrix material, resulting in less residual stresses. The phase 

transformation on the machined surface is also revealed by X-ray spectra. 

Tzeng et al.[29] investigated the effects of process parameters on material removal rate, 

electrode wear ratio, and workpiece surface polish during the manufacturing of SKD61 by 

electrical discharge machining (EDM). To discover the best parameter settings for the EDM 

process, a hybrid method combining a back-propagation neural network (BPNN), a genetic 

algorithm (GA), and response surface methodology (RSM) was presented. Specimens were 

created using a Taguchi orthogonal array table and varied EDM processing conditions. The 

BPNN was trained to predict the material removal rate (MRR), relative electrode wear ratio 

(REWR), and roughness average (Ra) attributes using the data of 18 experimental runs. 

Simultaneously, the RSM and GA techniques were used to find the best possible setting. 

Furthermore, ANOVA was used to determine significant factors for the EDM process parameters, 

and the findings from the BPNN with integrated GA were compared to those from the RSM 

technique. The results reveal that the GA approach's proposed algorithm outperforms the RSM 

method in terms of prediction and confirmation. 

Maji et al.[30] used an adaptive network-based fuzzy inference system to create input–

output correlations of an electrical discharge machining process in both forward and backward 

orientations. The mappings took into account three input parameters: peak current, pulse-on-time, 

and pulse-duty-factor, as well as two output parameters: material removal rate and surface 

roughness. For the created adaptive network-based fuzzy inference system, which was designed 

utilising linear (say triangular) and non-linear (bell-shaped) membership function distributions of 

the input variables independently, a batch method of training was used with 1000 data. With the 

help of certain test cases collected from genuine trials, the performance of the proposed models 
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was tested for both forward and backward translations. The forward and reverse mapping 

difficulties are effectively addressed by an adaptive network-based fuzzy inference method. For 

the input variables, the fuzzy inference system using non-linear membership functions performs 

marginally better than the one using linear membership functions. 

Krishnan et al.[31] used an artificial neural network with a feed-forward back-

propagation algorithm and an adaptive neuro-fuzzy inference system to represent wire electrical 

discharge turning (WEDT). To train the neural network and test its performance, the experiments 

were created using Taguchi design of experiments. The process is adjusted with two output 

process factors in mind: material removal rate and surface roughness, both of which are critical 

for boosting product productivity and quality. Because the output parameters are incompatible, 

the process is optimised using a multi-objective optimization method based on the non-dominated 

sorting genetic algorithm-II. Using the proposed techniques, a pareto-optimal front leading to a 

collection of optimal solutions for material removal rate and surface roughness is generated.  

Experiments back up the findings, which show that it improves the performance of the WEDT 

process. Required input parameters can be adjusted using this collection of solutions to get a 

higher material removal rate and an excellent surface finish. 

Ghadai et. al. [32] created a data-driven genetic programming based symbolic regression 

metamodels for electrical discharge machining (EDM). In this study, the data-driven method 

of metamodeling of production / machine processes is improved by implementing symbolic 

regression along with gene expression programming. Four different process parameters i.e. 

(voltage, heart rate, pulse duration, and current) are used as independent parameters to measure 

three different responses (removal rate, electrode aging rate, and surface hardness). The 

performance of metamodels is tested using various mathematical metrics such as R2, MAE, 

MSE. The effectiveness of metamodels in training and assessment data is found to be adequate 

for all responses. 

1.4 Objective and scope of the present research works: 

Machine learning models and neural networks are becoming increasingly used in every 

industry for detecting patterns in unlabelled data. From anticipating next session's sale to 

predicting stock market health, predicting consumer behaviour for a company, detecting cancer 

from a health report, facial recognition, and voice commands, machine learning (ML) and deep 

learning have a solution for every problem (DL). ML and DL have significantly decreased human 

effort and intervention in pattern recognition and calculation. This study aims to incorporate the 

benefits of ML and DL into a widely used non-conventional machining method, namely electric 

discharge machining. ML and DL will aid in reducing the human effort of trial and error in 

determining the best input parameters for achieving desired results. But the categories of ML and 
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DL models are not less. Trying and experimenting with each model to get the best forecast results 

will take up more human time. The goal of this study is to evaluate certain commonly used 

metamodeling techniques and neural networks on electric discharge machining and electric 

discharge turning processes. This research work also involves several accuracy and error metrics 

to study the performances of the prediction model over actual responses.  Finally, a conclusion to 

be drawn  declaring the most accurate and consistent metamodel and neural network so that the 

time can be reduced to find the best model for building prediction models for such type of dataset. 
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2 Different prediction models: 

2.1 PR metamodel 

The PR is a simple but useful technique to represent the nonlinear relationship between 

various input (process parameters) and output (response) variables [33]. In general, an mth-order 

PR model can be represented in the following matrix form: 
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where y1, y2,...,yn are the output variables, x1, x2,...,xn are the input variables, β0, β1,...,βn are the 

coefficients and ԑ1, ԑ2,...,ԑn are the random error terms. 

In this paper, a second-order PR metamodel having the following form is considered to 

explore the nonlinear relationships between the EDM process parameters and responses. 
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where y(x) is the response, β0 is the intercept, βi  is the coefficient of ith process parameter, xi  is 

the ith process parameter (i = 1,2,…,n), βii  is the coefficient of xi
2 term, βij is the coefficient for 

process parameters i and j (i ≠ j), and ε is the random error term.   

2.2 RBF metamodel 

A RBF is a real-valued function which depends on the Euclidian distance between the layer 

of inputs and some fixed point which is either origin or any other point. It is one of the classical 

algorithms of supervised learning which functions as a radial kernel of some other machine 

learning algorithms, like GPR and SVM [34]. The surrogate RBF model represents the integration 

function as a linear combination of basic functions, one for each training data. It is so named 

because the basic functions depend only on the Euclidean range from the predictive location to 

the primary activity training area. In this model, the coefficients of the basic functions are 

calculated during the training phase maintaining the best fit. The RBFs are often added with a 

polynomial function to capture the general trends. The prediction equation of RBF can be 

represented using the following expression:  


nt

i rip wxxwxfy ),().(         (2.3) 

where x ∈ Rnx is the prediction input vector, y ∈ R is the prediction output, xi ∈ Rnx is the input 

vector for ith training point, f(x) ∈ Rnp is the vector mapping the polynomial coefficients to the 
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prediction output, ψ(x, xi) ∈ Rnt is the vector mapping the RBF coefficients to the prediction 

output, wp ∈ Rnp is the vector of polynomial coefficients, and wr ∈ Rnt is the vector of RBF 

coefficients. The coefficients, wp and wr, can be computed by solving the following linear system: 
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    (2.4) 

 

Some of the most commonly employed vector mapping equations of RBF include thin plate 

spline, Gaussian basis function, multi-quadratic function and inverse multi-quadratic function. In 

this paper, Gaussian basis function is considered due to its several advantageous features, like 

excellent representation of nonlinear relationship between the input and output variables, faster 

computational speed, exact modeling of the real-time data etc. It can be represented using the 

following equation [35]: 
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where d0 is the scaling parameter. 

The RBF metamodel has already been applied as an effective prediction tool in various 

machining processes. Leyva-Bravo et al. [36] adopted three soft computing tools, i.e. fuzzy logic, 

back-propagation neural network (BPNN) and RBF for prediction of MRR while treating gap 

voltage, peak current and frequency as the input parameters of an electrochemical discharge 

machining process. It was observed that BPNN and RBF had better prediction accuracy as 

compared to fuzzy logic. The RBF was also employed by Nguyen et al.[37] to predict power 

factor, energy consumption and surface roughness during dry milling of stainless steel 304 

material. Cutting speed, feed rate, depth of cut and nose radius of the tool were considered as the 

input parameters. It was observed that there had been a good congruence between the predicted 

and experimental results.   

2.3 Kriging metamodel 

Kriging is the most popular interpolation method in statistics, precisely in geostatistics 

[38]. It is the linear combination of a weighted deterministic function which is added to the 

realization of a stochastic process. Depending on the stochastic characteristics of the random field 

and different degrees of conception, it has several forms, like ordinary kriging, simple kriging, 
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universal kriging, indicator kriging etc. The basic form of an ordinary kriging can be presented 

as below: 

  )()(ˆ
1

xZxfwy
k

i ii  
        (2.6) 

where fi(x) is the deterministic function which can be constant, linear, quadratic or multi-quadratic 

and wi is the weight assigned to fi(x). In this equation, the deterministic term may be considered 

as constant. On the other hand, Z(x) is the realization of a stochastic process with mean zero and 

spatial covariance function, as given in Eq. (2.7). 

       )()(2)()( ,,cov jiii xxRxZxZ        (2.7) 

where σ2 is the process variance and R is the correlation function. Several correlation functions, 

like exponential correlation function (Ornstein-Uhlenbeck process), squared exponential 

(Gaussian) correlation function, Matérn 5/2 correlation function, Matérn 3/2 correlation function 

etc. can be considered while developing the corresponding kriging metamodels. In this paper, for 

prediction of the response values of the considered EDM processes, the Gaussian correlation 

function is employed (due to its simple representation and straightforward computation) which 

can be expressed using the following equation:  
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where θl is the initial hyperparameter. 

During dry milling of SKD61 steel material with depth of cut, feed rate, spindle speed and 

tool nose radius as the input parameters, Nguyen [39] developed the corresponding kriging 

metamodels for prediction of specific cutting energy, Ra, distance between the highest peak and 

the deepest valley (Rz) and MRR. It was confirmed that kriging metamodels could be employed 

instead of PR and ANN to better capture the nonlinear relationships between various milling 

parameters and responses. Based on simulated data, Meng et al.[40] proposed the deployment of 

kriging metamodels to predict cost per volume and machining temperature during corner-milling 

of H62 brass material. The developed metamodels were observed to be quite accurate in 

predicting the considered responses with mean error of 6% and 3% respectively. Finally, a K-

means PSO algorithm was employed to solve the multi-objective optimization problem of the 

said milling process.   

2.4 GEP 

It belongs to the family of evolutionalry algorithms which overcomes many of the 

limitations of GA and genetic programming [41]. It consists of a number of operators, like 

replication, mutation, transportation, recombination etc. In GEP, a chromosome is a fixed-length 

linear expression representing genetic information encoded. Thereafter, genetic information is 
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transformed into indirect objects (computer programs or expression trees (ETs)) of varying 

lengths and sizes. The chromosome may have more than one gene, each gene encoding 

(genotype) represents small subprograms. Each chromosome in real value is then expressed 

(phenotype) through a random process. To assess suitability of each chromosome, a set of fitness 

functions is considered. The chromosomes with the right solutions are selected based on their 

fitness values, and re-evaluated by genetic modification (mutation, transportation and 

recombination) and re-testing. This process is repeated until the most suitable solution 

(chromosome) is achieved having the required level of accuracy.  

The GEP has two main components, i.e. chromosome and ET; the latter being the 

expression of the genetic information encoded (translation) in the former. Translation is the one-

to-one relationship between symbols of the gene and nodes they represent in the tree. The rules 

for translation define the spatial arrangement of the nodes in the ET and types of interactions 

between their sub-elements (sub-ETs) or phenotype. Figure 2.1 presents an example of ET of an 

evolved GEP, where d0, d1 and d2 are the input variables. In this tree, there are also several 

algebraic functions, like +, -, *, /, average and inverse. It also considers other random constants, 

like c0, c1 and c2 in the model. 

 

Figure 2.1 Example of an ET in GEP 

The corresponding algebraic equation that can be derived from the ET of Figure 2.1 is represented 

as shown below:  
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During minimum quantity lubrication (MQL)-assisted milling of Inconel 690 alloy, Sen et 

al. [42] applied two predictive models, i.e. GEP and ANN to monitor tool wear based on cutting 

speed, feed rate, depth of cut and flow rate of MQL as the input parameters. It was concluded that 

GEP had better prediction performance than ANN. Shah et al. [43] modelled two important 

properies of fly ash, i.e. compressive strength and splitting tensile strength using GEP, and later 

compared its prediction performance against RSM, multiple linear and nonlinear regression 

models.  

2.5. Feed-forward neural network (FNN): 

An FNN is a mathematical model that is inspired by the biological NNs’ functional 

features. A NN is made up of a group of artificial neurons that work together to interpret data in 

a connectionist manner. In general, an FNN is an adaptive system that adjusts its structure in 

response to external or internal data that flow over the network during the learning process. Figure 

2.2 provides a general representation of an FNN. In this figure, the NN has one input layer with 

four neurons, one hidden layer having five neurons and one output layer with one neuron. 

Information from the input layer combined with appropriate weights move to the hidden layer 

where the information coming from different neurons are accumulated and the most weighted 

information is passed to the output layer. This whole process does not send back any information 

to the previous neurons for feedback, information move only in forward direction. So, this NN is 

called as FNN.  

 

Figure 2.2 Architecture of a typical FNN  

2.6 Convolutional neural network (CNN) 

The CNN is a deep learning model for data processing with a grid pattern, such as 

photographs. It is inspired by the organization of animal visual cortex [44], [45], and meant to 

learn spatial hierarchies of characteristics, from low- to high-level patterns, automatically and 
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adaptively. A typical CNN is usually made up of three types of layer (or building blocks), i.e. 

convolution, pooling and fully connected layers. The first two layers (convolution and pooling) 

extract features, whereas, the third one which is a fully linked layer, transfers those features into 

final output, such as classification. The convolution layer is an important component of CNN, 

consisting of a stack of mathematical operations, like convolution, which is a specific sort of 

linear operation. A CNN can effectively analyze one-dimensional (forecasting, regression 

models), two-dimensional (picture pattern recognition) or three-dimensional (MRI, CT scan 

analysis) datasets. In this paper, for predicting the response values of an EDT process, one-

dimensional CNN (1D CNN) is employed. Figure 2.3 exhibits a simple representation of a CNN 

model. The first layer in this model is an input layer represented by 1D arrays. Each array is a 

representation of one data point. The second layer is a 1D convolutional layer. Each block of the 

array represents the imputation of several input layers or several input features. The next layer is 

a flatten layer where the layers of convolutional 1D are flattened into one single array. The most 

important imputed data from the flatten layer is finally obtained in the output layer. 

 

 

Figure 2.3 Representation of a typical CNN architecture 

2.7 Recurrent neural network (RNN) 

A RNN is a type of NN in which nodes form a directed or undirected graph along a 

temporal axis. As a result, it can display temporal dynamic behavior of a given system. The RNN, 

which is based on FNN, can process variable length sequences of inputs using their internal state 

(memory). The term ‘RNN’ is employed to describe a type of network with an infinite impulse 

response, whereas, ‘CNN’ is considered to represent a type of network having a limited impulse 

response. An infinite impulse recurrent network is a directed cyclic graph that cannot be unrolled 

and replaced with FNN. On the other hand, a finite impulse recurrent network is a directed acyclic 

graph that can be unrolled and replaced with a strictly FNN. Figure 2.4 is the flowchart 

representation of a traditional RNN process, as developed by Zhang et. al.[18]. The computational 

process of the traditional RNN can be explained using the following equation: 
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h<t> = σ (W x<t> + Uh<t−1> + b)           (10) 

 

where x<t>is the input data at time step t, h<t−1> is the information from the previous cell, W and U 

are the weight matrixes, b is the bias vector, and σ is the activation function. The computational 

result h<t> is entered into the next cell. This cycle goes on until all the determined epochs are run. 

 

Figure 2.4 Representation of a typical RNN flow [18] 

 

 2.8. RNN with long short term memory (LSTM) 

The LSTM has a RNN architecture that is artificial in nature. The LSTM has feedback 

connections, unlike normal FNNs. It can effectively deal with not only individual data points 

(such as photos), but also complete data streams (such as speeches or videos). A cell, an input 

gate, an output gate and a forget gate usually make up a typical LSTM model. These three gates 

control the flow of information into and out of the cell, and the cell remembers values across 

arbitrary time intervals. 

Figure 2.5 provides a simple representation of an LSTM cell. The input value xt after being 

concatenated to the previous cell output ht-1 first moves through the tanh layer. The input is then 

passed through an input gate which is activated by sigmoid function (σ). In the next step, it passes 

through a forget gate loop where the internal state variable st  and st-1, is added to the input data 

to develop an effective layer of recurrence. Through this process, the network learns to decide 

which state of variables should be remembered or forgotten. Finally, there is a tanh squashing 

function, whose output is controlled by an output gate. This gate determines which values are 

actually permitted as cell output ht. 
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Figure 2.5 Representation of a typical LSTM cell 

2.9.  General regression neural network (GRNN) 

The GRNN is a memory-based FNN which is a combination of radial basis function 

network (RBFN) and probabilistic neural network (PNN). The GRNN asymptotically converges 

to the ideal regression surface as the number of training samples increases. The GRNN has a 

unique property in that it does not require iterative training, in addition to having a solid statistical 

foundation. The GRNN training is a one pass technique, unlike the most prevalent error-back-

propagation (EBP) algorithm, which trains multilayer feedforward networks iteratively. 

Furthermore, the GRNN formulation has only one free parameter that can be tuned quickly. As a 

result, when compared to EBP-based training, the GRNN trains itself in much less time. 

The general network flow of a GRNN architecture is exhibited in Figure 2.6. This 

architecture consists of four layers, i.e. input layer, pattern layer, summation layer and output 

layer. Each pattern unit corresponds to a single training sample. The chance of an input vector 

fitting into a pattern unit is estimated by each pattern unit. The pattern layer’s neurons are 

organized into K groups (to be decided by the model itself), one for each category. The RBF 

kernel is employed by ith pattern neuron in kth group to compute its output. The neurons of 

summation layer compute the approximation of the conditional class probability function through 

a combination of previously computed densities. 
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Figure 2.6 Representation of a GRNN architecture  
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3. Prediction of EDM responses using different metamodeling techniques: 

3.1 Experimental data  

In order to contrast the prediction performance of PR, RBF, kriging and GEP metamodels 

with respect to four model accuracy metrics, the experimental data of Anitha et al. [46] is 

considered in this example. Using a die-sinking EDM setup (Model: Electronica Electraplus PS 

50ZNC) and electrolytic copper electrode (30 mm diameter with positive polarity), Anitha et al. 

[41] performed 30 experiments to study the effects of pulse current (Ip) (in A), pulse duration 

(Ton) (in μs), duty cycle (DC) and voltage (V) (in V) on volumetric MRR (in mm3/min) and Ra 

(in μm). The workpiece material was AISI D2 (DIN 1.2379) tool steel (rectangular in shape 

having density and thickness of 7.7 g/cc and 4 mm respectively). Commercial grade EDM oil 

was utilized as the dielectric fluid and a side flushing technique with pressure 0.3 kgf/cm2 was 

maintained during the EDM experiments. During the experiments, pulse current was varied 

between 5 and 15 A, whereas, the range for pulse duration was from 50 to 100 μs. The duty cycle 

and voltage were varied between 50 and 83, and 40 V and 50 V respectively. Table 3.1 shows the 

experimental dataset along with the measured response values. 

 

Table 3.1 Experimental dataset [46] 

Exp. 

No. 

EDM process parameters Responses 

Ip (A) Ton (μs) DC V (V) MRR (mm3/min) Ra (μm) 

1 10 75 66.5 45 9.04 5.98 

2 5 50 50 50 5.18 5.01 

3 5 100 83 40 5.25 5.03 

4 5 50 83 40 8.87 4.71 

5 15 100 50 50 51.09 8.1 

6 10 75 66.5 45 8.95 6.12 

7 5 100 50 40 4.35 4.89 

8 15 100 50 40 51 10.93 

9 5 100 83 50 6.97 5.7 

10 15 100 83 40 33.02 12.49 

11 5 50 83 50 14.12 5.19 

12 10 75 66.5 45 8.42 6.54 

13 15 50 83 40 20 12.01 
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14 10 75 66.5 40 8.94 8.2 

15 10 75 83 45 9.36 7.13 

16 15 75 66.5 45 33.08 9.68 

17 10 50 66.5 45 9.18 5.87 

18 5 75 66.5 45 5.36 6.07 

19 10 75 66.5 45 10.35 5.55 

20 15 50 83 50 29.16 8.43 

21 5 50 50 40 4.61 4.59 

22 15 50 50 40 29.74 10.49 

23 10 75 66.5 45 11.01 6.25 

24 10 75 50 45 9.25 5.92 

25 15 50 50 50 33.1 7.43 

26 5 100 50 50 4.35 5.59 

27 15 100 83 50 33.11 9.01 

28 10 75 66.5 50 11.01 6.35 

29 10 100 66.5 45 10.43 7.27 

30 10 75 66.5 45 9.35 6.75 

 

3.2 Data sampling 

The application of any of the metamodeling techniques as well as machine learning 

algorithms starts with a set of training data. The success of a metamodel as an effective and 

accurate prediction tool thus depends on how well it has been trained using the data provided. 

Therefore, the training dataset should adequately represent all the features under the design space. 

It is thus required to build a training database from the design space without any bias. For this 

purpose, several sampling techniques are available, including random sampling, Latin hypercube 

sampling, Hammersley sequence sampling etc. In this paper, random sampling technique is 

considered to generate both the testing and training data points. It has numerous advantages, like 

less chance of error, equal chance of selection of data points, less knowledge requirement, 

simplest way of data generation, minimum biasness, applicability to entire population etc. The 

training data points are employed to train and construct a metamodel, while the testing data points 

are utilized to validate the metamodel and check its prediction accuracy over a new set of input 

data points. In this example, from the experimental dataset of Table 2, a randomly chosen set of 
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80% of the available observations (i.e. 24) is used to train all the four metamodels and the 

remaining 20% of the observations are considered to test those metamodels. However, for a fair 

analysis, both the training and testing datasets are considered to be the same for all the 

metamodels. 

3.3 Selection of the tuning parameters 

For each of the metamodeling techniques, selection of the most appropriate set of tuning 

parameters during training of the metamodels is extremely important. Proper combination of 

those tuning parameters results in development of an accurate metamodel. In this paper, several 

trials are conducted with different combinations of the tuning parameters and those parameters 

with the best results are noted. The values of the considered tuning parameters for each of the 

metamodeling techniques are summarized in Table 3.2. 

Table 3.2 Values of different tuning parameters 

Metamodel Tuning parameter Value 

PR Degree of polynomial 2 

RBF 
Basis function scaling parameter (d0) 7 

Polynomial degree 2 (Quadratic) 

Kriging 
Number of optimization runs 10 

Initial hyperparameters 0.01 

GEP 

Number of chromosomes 30 

Head size 8 

Number of genes 3 

Linking function Addition (+) 

Fitness function RMSE 

Mutation rate 0.00138 

Insertion sequence transposition rate 0.00546 

Root insertion sequence transposition 

rate 
0.00546 

Inversion rate 0.00546 

One-point recombination rate 0.00277 

Two-point recombination rate 0.00277 

Gene recombination rate 0.00277 
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Gene transposition 0.00277 

Constants per gene 10 

Data type Floating-point 

Lower bound -100 

Upper bound 100 

 

3.4 Results and discussion 

As mentioned earlier, this example deals with development of four metamodels in the form 

of PR, RBF, kriging and GEP to predict MRR and Ra values of an EDM process while machining 

AISI D2 tool steel material. At first, based on the training dataset, the following two PR-based 

metamodels are developed with the help of a Python library Scikit-Learn.      

PR(MRR) =  28.439 – 3.736×Ip + 0.303×Ton + 1.194×DC – 3.207×V + 0.42×Ip2 + 0.035×Ip×Ton 

– 0.058×Ip×DC – 0.013×Ip×V + 0.001×Ton2 – 0.005×Ton×DC – 0.009×Ton×V – 0.004×DC2 + 

0.005×DC×V + 0.044×V2          (3.1) 

PR(Ra) =  29.69 + 1.043×Ip + 0.003×Ton + 0.374×DC – 1.826×V + 0.048×Ip2 + 0.001×Ip×Ton 

+ 0.004×Ip×DC – 0.041×Ip×V – 0.002×DC2 – 0.002×DC×V – 0.024×V2     (3.2)  

In the similar direction, using appropriate values of the considered tuning parameters, the 

corresponding RBF and kriging metamodels are subsequently developed for prediction of MRR 

and Ra responses. In case of RBF metamodel, 20 trials with the basic function scaling parameter 

(d0) ranging between 1 and 10, and polynomial degree as 1 and 2 are conducted, and it is noticed 

that the best performance of RBF with respect to maximum R2 value is attained at d0  = 7 and 

polynomial degree = 2.  For kriging model, the number of optimization runs is decided based on 

elbow method, and it can be noted that with 10 optimization runs, the most satisfactory result 

with respect to maximum R2 value can be obtained with minimum computational cost. On the 

other hand, for construction of GEP-based metamodels, a computer software called GenXpro 

Tools 5.0 is employed. Besides the four basic arithmetic operators (+, -, *, /), some other 

mathematical functions, like exponential, log, inverse, power of 2, cube root, minimum of 2, 

maximum of 2, average, arctangent, hyperbolic tangent, complement etc. are also considered for 

developing the GEP-based models for MRR and Ra. In this paper, ‘/’ is defined as the protected 

division which returns a value of 106 if division by zero is encountered. Addition operator is 

considered as a linking function to connect the mathematical terms encoded in each gene. While 

developing these GEP metamodels, all the four genetic operators, i.e. mutation, recombination, 

inversion and transportation are used. Figure 3.1 exhibits the corresponding ET representing the 

relationships between the EDM process parameters and MRR. Similar ET can also be developed 
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for Ra response. These ETs lead to the development of GEP-based metamodels for MRR and Ra, 

as provided in Eqs. (3.3) and (3.4) respectively.  

 

 

Figure 3.1 Expression tree for MRR 
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𝐺𝐸𝑃(𝑅𝑎) = (1 − 𝑡𝑎𝑛−1(max2(𝐴𝑣𝑔2(𝑉, (𝑉 − 86.75)), 1 − √𝐼𝑝3 ))) +

(𝑡𝑎𝑛−1(𝑡𝑎𝑛−1(𝐴𝑣𝑔2(−75.96, 𝑉) × 𝐼𝑝 + 39.07 + 𝑉))) + 𝐴𝑣𝑔2 (
1

𝑡𝑎𝑛−1(𝑉2)
, min2 (𝑉, √𝐷𝐶

3
+

𝐼𝑝))                                                                                                                                                            (3.4)           

                                                                           

After proper training of all the developed metamodels with the considered dataset, an 

attempt is now put forward to predict both the values of MRR and Ra for the EDM process. Table 

3.1 provides the target and predicted values for both the responses (including training as well as 
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testing dataset) for all these metamodels. To have better visualization of the prediction 

performance of the metamodels, both the target and predicted values for MRR and Ra are plotted 

in Figures 3 and 4 respectively. It can be revealed from these figures that all the developed 

metamodels are quite capable of predicting both these responses within a ±20% error band for 

the considered EDM process. In fact, it is evident from Figure 3.2 that for MRR prediction on 

training data, all the metamodels have near ideal estimation with most of the data points lying on 

the diagonal identity line or hugging it. However, in case of RBF and GEP metamodels, one 

training data point is found to be beyond the ±20% error band. Nevertheless, GEP metamodel 

shows superior performance on the testing dataset, with almost all the test data predictions being 

in the ±20% error threshold. This indicates that there is no overtraining in the GEP metamodel 

and it has excellent generalization. On the contrary, the RBF metamodel, despite having a near 

ideal performance on the training data, has three large error outliers in the testing data. 

Interestingly, the performance of PR metamodel is observed to be quite similar to kriging 

metamodel for both training and testing data.  

In case of prediction of Ra by the metamodels (Figure 3.3), a trend similar to MRR is 

observed. The PR and kriging metamodels have quite similar prediction behaviour, where most 

of the relatively poor predictions are noticed towards the lower Ra values. The RBF has more 

extreme error data points as compared to other metamodels. It should be pointed out here that in 

the experimental dataset (Table 3.3), the central point is replicated six times to estimate pure error 

for the lack of fit test. All the metamodels seem to have dealt with this repeated point (with 

different response values) by approximating it around the mean of the six replicates. This is why 

a small horizontal cluster of data points is observed in the lower Ra region. 

The deviations of the predicted response values from the target ones, i.e. residuals for each 

of the developed metamodels are portrayed in Figure 3.4. It should be noted here that the zero 

line in Figure 3.4 represents zero error in prediction, whereas, points lying above and below it 

indicate underprediction (i.e. target value greater than predicted value) and overprediction (i.e. 

target value lower than predicted value) respectively. In general, the performance of all the 

metamodels (except RBF) on test data is similar to their corresponding performance on training 

data. This indicates that the training is adequate. There is also no observable pattern in the scatter 

of the residuals indicating lack of biasness. 

 

  Table 3.3 Target and predicted values of MRR and Ra for the developed metamodels 

Exp. 

No. 

MRR Ra 

Target PR RBF Kriging GEP Target PR RBF Kriging GEP 
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1 9.04 9.199 9.520 9.161 9.384 5.98 6.474 6.242 6.486 6.325 

2* 5.18 5.374 5.180 5.380 6.802 5.01 5.581 3.491 5.611 5.231 

3 5.25 4.766 5.250 4.752 6.367 5.03 5.260 5.030 5.243 5.641 

4 8.87 9.766 8.870 9.738 7.964 4.71 4.802 4.710 4.794 4.641 

5 51.09 49.935 51.090 49.960 50.980 8.1 8.008 8.100 8.016 8.238 

6 8.95 9.200 9.520 9.161 9.384 6.12 6.474 6.242 6.486 6.325 

7 4.35 4.095 4.350 4.079 4.767 4.89 4.890 4.890 4.885 5.302 

8 51 51.095 51.000 51.068 51.080 10.93 11.112 10.930 11.110 10.630 

9 6.97 6.715 6.970 6.731 6.436 5.7 5.700 5.700 5.689 5.570 

10 33.02 32.571 33.020 32.561 32.031 12.49 12.655 10.665 12.669 11.969 

11* 14.12 16.349 17.060 16.344 10.140 5.19 5.104 5.190 5.127 5.570 

12 8.42 9.200 9.520 9.161 9.384 6.54 6.474 6.242 6.486 6.325 

13 20 20.194 20.000 20.194 20.816 12.01 11.800 12.010 11.807 11.969 

14 8.94 8.940 8.940 8.949 9.133 8.2 7.783 8.200 7.790 8.200 

15* 9.36 6.115 14.433 6.045 10.240 7.13 6.067 7.822 6.068 6.481 

16 33.08 33.720 33.080 33.702 31.627 9.68 9.959 9.680 9.948 9.823 

17 9.18 7.312 9.180 7.365 9.463 5.87 6.085 5.870 6.092 6.325 

18* 5.36 5.665 5.802 5.639 6.539 6.07 5.405 6.070 5.417 5.783 

19 10.35 9.200 9.520 9.161 9.384 5.55 6.474 6.242 6.486 6.325 

20 29.16 25.459 18.510 25.370 32.348 8.43 7.991 9.561 7.986 8.577 

21* 4.61 0.589 16.585 0.654 4.625 4.59 4.713 4.590 4.717 5.302 

22* 29.74 30.209 20.110 30.263 29.681 10.49 10.539 9.160 10.529 10.630 

23 11.01 9.200 9.520 9.161 9.384 6.25 6.474 6.240 6.486 6.325 

24 9.25 9.890 9.250 9.872 8.487 5.92 5.534 5.920 5.550 6.142 

25 33.1 33.679 33.100 33.698 21.213 7.43 7.296 7.430 7.299 7.238 

26 4.35 4.250 4.350 4.234 4.837 5.59 5.896 5.590 5.900 5.231 

27 33.11 33.205 33.110 33.194 31.931 9.01 8.984 9.010 8.984 8.577 

28 11.01 11.650 11.010 11.573 9.515 6.35 6.381 6.350 6.394 5.926 

29 10.43 12.938 10.430 12.877 8.645 7.27 6.669 7.270 6.667 7.325 

30 9.35 9.200 9.520 9.133 9.384 6.75 6.474 6.240 6.516 6.325 
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*Testing data  

 

 

Figure 3.2 Comparison between target and predicted MRR values for a) PR, b) RBF, c) kriging 

and d) GEP 
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Figure 3.3 Comparison between target and predicted Ra values for a) PR, b) RBF, c) kriging and 

d) GEP 

 

Figure 3.4 Residuals of predicted MRR for (a) training dataset, (b) testing dataset, and residuals 

of predicted Ra for (c) training dataset, (d) testing dataset. 
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Now, after critically analyzing Figures 3.2-3.4, it can be unveiled that while predicting the 

values of MRR, the relative performance of PR, kriging and GEP metamodels is quite 

satisfactory. For all these three metamodels, the predicted MRR values have extremely low 

deviations from the corresponding target values. However, the application of RBF metamodel 

provides average prediction results, with moderate deviations of the predicted MRR values from 

the target. Similar observations are also noticed for Ra response. However, just by visualizing the 

above figures, it is quite difficult to determine which of the developed metamodels has the best 

prediction performance for the considered example. For this purpose, values of four model 

accuracy metrics in the form of R2, R2
adj, RMSE and RRMSE are computed, as exhibited in Table 

3.4. It is worthwhile to mention here that for any of the predictive models, higher values of R2 

and R2
adj, and lower values of RMSE and RRMSE are always desirable [47].  

 

Table 3.4 Values of model accuracy metrics for both the responses 

Response Metamodel Dataset R2 R2
adj RMSE RRMSE 

MRR 

PR 

Testing 0.9298 0.915 1.661 0.1392 

Training 0.9958 0.995 0.9491 0.0663 

Overall 0.9878 0.9859 1.2139 0.0886 

RBF 

Testing 0.3299 0.1888 2.9193 0.5625 

Training 0.999 0.9988 0.6653 0.0464 

Overall 0.9129 0.899 1.9874 0.1369 

Kriging 

Testing 0.9296 0.91481 1.663 0.1396 

Training 0.996 0.9951 0.9423 0.0658 

Overall 0.9879 0.986 1.2143 0.0886 

GEP 

Testing 0.9821 0.9783 1.1261 0.1122 

Training 0.9901 0.9881 1.1185 0.0833 

Overall 0.9894 0.9877 1.1741 0.0878 

Ra 

PR 

Testing 0.9518 0.9417 0.7523 0.2666 

Training 0.9698 0.9635 0.576 0.2995 

Overall 0.9667 0.9614 0.6245 0.2904 

RBF 

Testing 0.7687 0.72 1.1137 0.4261 

Training 0.9904 0.9883 0.4326 0.2226 

Overall 0.9267 0.915 0.7612 0.3654 
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Kriging 

Testing 0.9511 0.9408 0.7572 0.2693 

Training 0.9703 0.964 0.5739 0.2986 

Overall 0.9666 0.9613 0.6251 0.2908 

GEP 

Testing 0.9717 0.9657 0.5610 0.2585 

Training 0.9706 0.9644 0.6136 0.3 

Overall 0.9709 0.9662 0.6040 0.295 

 

It can be noticed from Table 3.4 that in case of MRR, RBF metamodel has the best values 

of R2 and R2
adj as 0.999 and 0.9988 respectively on training dataset. The corresponding values of 

RMSE and RRMSE as 0.6653 and 0.0464 respectively also validate the superior performance of 

RBF metamodel based on the training dataset. However, considering the performance with 

respect to the test dataset, GEP has the maximum values of R2 and R2
adj as 0.9821 and 0.9783 

respectively. For the same test data, it has also the minimum RMSE and RRMSE values as 1.1261 

and 0.1122 respectively. Prediction of MRR based on the overall dataset (training as well as 

testing) reveals that GEP is the best metamodel having the maximum R2 (0.9894) and R2
adj 

(0.9877), and minimum RMSE (1.1741) and RRMSE (0.0878) values. Furthermore, based on the 

overall dataset, RBF metamodel exhibits the least R2 (0.9129) and R2
adj (0.899), and the worst 

RMSE (1.9874) and RRMSE (0.1369) values. It can be concluded that kriging and PR 

metamodels rank second and third respectively in predicting MRR values on the overall dataset.  

While predicting Ra values for the considered EDM process, similar results can also be 

noticed. The RBF has the best accuracy on the training dataset having the maximum R2 and R2
adj, 

and minimum RMSE and RRMSE values. But for prediction of Ra values using the test data, 

GEP emerges out as the most accurate metamodel with the maximum R2 (0.9717) and R2
adj 

(0.9657), and minimum RMSE (0.561) and RRMSE (0.2585) values. On the overall dataset, GEP 

also shows the best performance with respect to all the model accuracy metrics, followed by PR 

and kriging metamodels. The RBF shows the worst values of all the four metrics on overall 

dataset. Thus, the performnace of RBF is noticed to be quite inconsistent for both MRR and Ra 

responses. Interestingly, it exhibits good accuracy with training datasets, but its prediction 

accuracy deteriorates with the testing and overall datasets. In contrast, GEP has consistent 

accuracy level on the overall datasets for both the responses under consideration.   

For intuitive assessment of the metamodels, Taylor diagram depicting the standard 

deviation, correlation coefficient and root mean square deviation (RMSD) of the metamodels is 

presented, and contrasted against their experimental results in Figure 6. It can be revealed from 

Figure 3.5(a) that the performance of all the metamodels is quite similar on training data. 
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However, on testing data (Figure 3.5(b)), the RMSD of RBF metamodel is observed to be more 

than twice that of the other metamodels. The performance of PR and kriging metamodels is 

noticed to be almost similar. In Figure 3.5(c), for Ra, all the metamodels show very high 

correlation with the experimental data, but the RMSD of RBF is slightly higher than the rest. For 

Ra testing data (Figure 3.5(d)), the lowest RMSD is observed for GEP metamodel. Thus, based 

on all the model accuracy metrics, and both testing and overall datasets, GEP evolves out as the 

best metamodel for almost accurately predicting MRR as well as Ra values for the EDM process 

under consideration.  

 

 

Figure 3.5 Taylor diagram for standard deviation, correlation coefficient and RMSD of the 

metamodels for MRR (a) training dataset (b) testing dataset, and for Ra (c) training dataset (d) 

testing dataset 
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4. Prediction of electric discharge turning (EDT) responses using different neural 

networks: 

It has already been mentioned that the basic objective of this paper focuses on applications 

of five NN models, i.e. FNN, CNN, RNN, LSTM and GRNN for predicting the responses of an 

EDT process, and comparing their prediction performance using four statistical error metrics. For 

this purpose, the experimental dataset of Jadidi et al. [5] is considered here. On a TEHRAN 

EKRAM machine modified by a spindle to perform turning operation to produce sharp edge 

grooves, Jadidi et al.[48] performed 81 experiments to study the effects of magnetic field (M) (in 

T), pulse current (Ip) (in A), pulse duration (Ton) (in μs) and angular velocity (N) (in rpm) on 

volumetric MRR (in mm3/min) and OC (in μm). The EDT operation was performed on round 

bars of AISI D2 alloy steel with dimensions of 200 mm in length and 20 mm in diameter. A 

rectangular-shaped pure copper tool (6 mm thickness, and 30 mm width and length) was 

employed as the electrode. During the experiments, pulse current was varied between 5 and 15 

A, whereas, the range for pulse duration was between 600 and 1000 μs. On the other hand, the 

magnetic field and angular velocity were varied between 0 and 0.4 T, and 50 and 250 rpm 

respectively. Table 4.1 depicts the experimental dataset and the measured response values.  

 

Table 4.1 Experimental dataset and measured responses [48] 

Exp. 

No.  
M  I  Ton  N  MRR  OC  

1  0  5  600  50  231  113  

2  0  5  600  150  241  103  

3  0  5  600  250  245  88  

4  0  5  800  50  308  135  

5  0  5  800  150  315  123  

6  0  5  800  250  303  105  

7  0  5  1000  50  283  163  

8  0  5  1000  150  288  149  

9  0  5  1000  250  290  127  

10  0  10  600  50  300  124  

11  0  10  600  150  313  113  

12  0  10  600  250  318  97  



34 
 

13  0  10  800  50  400  148  

14  0  10  800  150  410  135  

15  0  10  800  250  394  115  

16  0  10  1000  50  368  179  

17  0  10  1000  150  374  164  

18  0  10  1000  250  377  140  

19  0  15  600  50  346  136  

20  0  15  600  150  361  124  

21  0  15  600  250  368  106  

22  0  15  800  50  462  162  

23  0  15  800  150  473  148  

24  0  15  800  250  455  126  

25  0  15  1000  50  425  196  

26  0  15  1000  150  432  179  

27  0  15  1000  250  435  152  

28  0.2  5  600  50  254  90  

29  0.2  5  600  150  265  82  

30  0.2  5  600  250  270  70  

31  0.2  5  800  50  339  108  

32  0.2  5  800  150  347  98  

33  0.2  5  800  250  333  84  

34  0.2  5  1000  50  311  130  

35  0.2  5  1000  150  317  119  

36  0.2  5  1000  250  319  102  

37  0.2  10  600  50  330  99  

38  0.2  10  600  150  344  90  

39  0.2  10  600  250  350  78  

40  0.2  10  800  50  440  118  

41  0.2  10  800  150  451  108  

42  0.2  10  800  250  433  92  
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43  0.2  10  1000  50  405  143  

44  0.2  10  1000  150  411  131  

45  0.2  10  1000  250  415  112  

46  0.2  15  600  50  381  109  

47  0.2  15  600  150  397  99  

48  0.2  15  600  250  405  85  

49  0.2  15  800  50  508  130  

50  0.2  15  800  150  520  118  

51  0.2  15  800  250  500  101  

52  0.2  15  1000  50  468  157  

53  0.2  15  1000  150  475  143  

54  0.2  15  1000  250  479  122  

55  0.4  5  600  50  323  68  

56  0.4  5  600  150  337  62  

57  0.4  5  600  250  343  53  

58  0.4  5  800  50  431  81  

59  0.4  5  800  150  441  74  

60  0.4  5  800  250  424  63  

61  0.4  5  1000  50  396  98  

62  0.4  5  1000  150  403  89  

63  0.4  5  1000  250  406  76  

64  0.4  10  600  50  420  74  

65  0.4  10  600  150  438  68  

66  0.4  10  600  250  445  58  

67  0.4  10  800  50  560  89  

68  0.4  10  800  150  574  81  

69  0.4  10  800  250  552  69  

70  0.4  10  1000  50  515  107  

71  0.4  10  1000  150  524  98  

72  0.4  10  1000  250  528  84  
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73  0.4  15  600  50  484  82  

74  0.4  15  600  150  505  74  

75  0.4  15  600  250  515  84  

76  0.4  15  800  50  647  97  

77  0.4  15  800  150  662  89  

78  0.4  15  800  250  637  76  

79  0.4  15  1000  50  595  118  

80  0.4  15  1000  150  605  107  

81  0.4  15  1000  250  609  91  

4.1 Data sampling 

The application of any of the NN models starts with a set of training data. The efficiency 

and effectiveness of an NN model entirely depends on how well it has been trained with the 

appropriate dataset. The training dataset should be so selected that it would adequately highlight 

all the features of the design space under consideration. Therefore, there should be no bias in 

selecting a particular dataset. In this paper, among the 81 experimental runs of the EDT process, 

65 observations are considered for training and developing all the NN models, and the remaining 

observations are treated as testing data points to validate the prediction performance of the NN 

models. It is worthwhile to mention here that the same sets of training and testing data are 

considered for comparative analysis of the prediction performance of all the NN models.  

4.2 Model architecture 

For each NN model under consideration, the corresponding model architecture is built with 

different types and number of layers having varying number of nodes. Although it is quite obvious 

that a greater number of layers and more nodes in each layer would eventually increase the model 

accuracy, but every NN architecture is developed in this paper keeping in mind the optimal 

computational effort. For having an unbiased comparison among the NN models, their 

architectures are kept the same for both the responses (MRR and OC).  

4.2.1 FNN 

For developing a predictive FNN model, a sequence of one input layer, two dense layers 

and one output layer is taken. Dense layers are the hidden layers with 100 and 30 nodes 

respectively.  Each layer is activated by the rectified linear activation unit (ReLU) function, which 

can be mathematically expressed using Eq. (4.1) where y is the output of ReLU and x is the input 
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to that function. During compilation, adaptive moment estimation (AdaM) optimization process 

is considered with mean square error (MSE) as the loss function. Adam optimizer involves a 

combination of two gradient descent methodologies, one is momentum, which takes into 

consideration the 'exponentially weighted average' and accelerates the gradient descent, and 

another one is root mean square propagation, which implement the concept of decaying or 

exponential moving average of partial gradients . The FNN model is run over 5000 epochs. Figure 

4.1 shows the architectural diagram of the developed FNN model. 
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Figure 4.1 Developed FNN architecture for training 

 

4.2.2 CNN 

The CNN architecture also consists of one input layer, two hidden layers and one output 

layer. Between the two hidden layers, one is convolutional one-dimensional (Conv-1D) layer 

with 100 nodes. The Conv-1D layer is activated using ReLU function. Another hidden layer is a 

flattened layer, which converts the 100 output arrays coming from the nodes of Conv-1D layer 

into a single one-dimensional array. The AdaM optimizer is adopted with MSE as the loss 

function during the compilation process. This model is run over 5000 epochs. Figure 4.2 depicts 

the architectural diagram of the CNN model. 
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Figure 4.2 Developed CNN architecture  

 

4.2.3 RNN 

The RNN architecture is built with one input layer, one hidden layer and one output layer. 

The hidden layer is a simple RNN layer with 100 nodes. The RNN layer is activated by sigmoid 

activation function which can be represented using Eq. (4.2) where 𝑆(𝑥) denotes the sigmoid 

function and x is the input to that function. During model training, MSE is treated as the loss 

function and AdaM as the optimizer. This model is also trained over 5000 epochs. The 

architectural diagram of RNN model is portrayed in Figure 4.3. 
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Figure 4.3 RNN architecture for model training 

 

4.2.4 LSTM 
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For developing the corresponding LSTM model, a sequence of one input, one hidden and 

one output layers is considered in this paper. The hidden layer is an LSTM layer with 100 nodes. 

Figure 4.4 shows the developed LSTM architecture. The hidden layer is activated by tanh 

function. During compilation, AdaM optimization process is taken into account along with mean 

square error (MSE) as the loss function. This model is also run over 5000 epochs. 

 

Figure 4.4 Developed LSTM architecture  

 

4.2.5 GRNN 

The developed GRNN model consists of four layers, i.e. one input layer, one pattern layer 

and one summation layer which is treated as an output layer also. In the pattern layer, which is 

based on RBF kernel, 100 nodes are taken. The bandwidth standard deviation parameter for the 

kernel is treated as 5. Summation layer has 100 neurons. Gradient search approach is employed 

to minimize the loss function and to find out the local minimum of the cost function, limited-

memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS-B) algorithm is adopted. In Figure 4.5, 

the developed GRNN architecture is presented.  
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Figure 4.5 GRNN architecture for training 

4.3 Prediction performance analysis  

4.3.1 Performance using the experimental dataset  

 

All the developed NN models with the specific architectures and parameters, mentioned in 

Sub-section 4.2, are now trained on the past experimental dataset over the pre-defined epochs. 

After training, the corresponding predicted values of MRR and OC responses are obtained, as 

shown in Tables 4.2-4.3 respectively. In Figure 4.6, the corresponding scatter plots between the 

target and predicted MRR values for both the training and testing datasets are provided. This 

figure reveals that for MRR, there are excellent agreements between the target and predicted 

values for both the training and testing data. Based on Figure 11, it can be unveiled that for 

prediction of MRR, LSTM has the best results as all the target versus predicted data points are 

nearly positioned along the diagonal identity line. Almost all the MRR values predicted by 

different NN models are within the ±20% error bounds with respect to the actual. To further 

analyze the prediction pattern of various NNs, the normality of residuals is analyzed in Figure 

4.7. The residuals of FNN, CNN and LSTM appear to follow normality assumption better than 

the other two NN models. The residuals of RNN are left skewed indicating that it is more likely 

to overpredict the response. This is also evident from the comparison of the mean (µ) of the 

residuals. The GRNN has unusually higher number of residuals in the near zero zone indicating 

that it has most probably ‘memorized’ some of the data. This has led to extremely high residuals 

in the ‘non-memorized’ data points causing extreme deviation of the residuals from normality. 
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Nevertheless, for MRR, FNN appears to have the worst prediction performance among all the 

considered NN models. 

In Figure 4.8, the target versus predicted values of OC are presented for both the training 

and testing data. Here too, except GRNN, the OC values predicted by all other NN models are 

found to be within the ±20% error bounds. Further, analysis of the NN models is carried out by 

inspecting the normality of residuals plots in Figure 4.9. Although presence of outliers is detected 

in all the NN models, RNN is the most left-skewed. The GRNN model is found to have extreme 

deviation from the normality assumption. On the other hand, although, the residual pattern for 

LSTM is observed to be non-normal, it is interesting to note that by removing only one outlier, 

the model can achieve normality. It is worth mentioning here that the classical texts [47], [49] on 

normality of residuals of prediction models state that 5% extreme outliers can be removed from 

the data to evaluate approximate adherence to normality assumption. However, just by visualizing 

these scatter plots and normal probability plots of residuals, it is quite unjustifiable to single out 

the best NN model for predicting the EDT responses. For this reason, values of the corresponding 

statistical error metrics are computed and analyzed.    

Table 4.2 Target and predicted MRR values  

 

Target FNN CNN RNN GRNN LSTM 

1 231 241.5835 256.1749 243.1462 231.0001 240.6476 

2 241 243.2697 255.6496 250.2661 241 245.4606 

3 245 241.2878 251.8766 258.6545 245.0002 243.8911 

4 308 261.4585 301.3728 315.7292 308.0002 304.009 

5* 315 263.0573 301.5704 324.214 315.0002 302.8106 

6 303 289.2599 307.0701 321.3434 303.0002 303.0361 

7 283 282.3422 289.3399 292.0892 283.0002 282.7749 

8 288 282.9322 289.632 300.4781 288.0002 284.9379 

9 290 297.2757 289.9241 301.8713 290.0002 286.7987 

10* 300 315.8103 329.5225 307.056 300 301.5501 

11 313 325.6764 328.9971 320.1007 315.5171 315.037 

12 318 308.837 325.2262 329.1774 318 323.7809 

13 400 350.7343 379.6528 426.1958 399.9999 395.796 

14 410 352.3331 379.9449 431.6697 409.9999 407.1128 

15* 394 365.5308 389.6679 416.9841 394 404.1015 
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16 368 370.6091 371.1419 406.6893 368 364.8444 

17 374 372.2079 371.434 418.5018 374 375.2183 

18 377 373.8069 371.7261 412.6671 377 371.9635 

19 346 337.5731 350.2021 342.6192 346 345.3936 

20* 361 334.0365 349.6768 359.1476 361 359.4715 

21 368 362.1772 345.9062 367.8444 367.9999 361.6707 

22 462 440.0101 444.9847 469.2689 462 451.8853 

23 473 441.6089 445.2768 472.1294 473 465.158 

24 455 443.2077 454.0099 458.4851 455 462.3222 

25* 425 459.8849 440.5154 434.6253 425 422.8334 

26 432 461.4838 440.8075 443.1791 432 432.9521 

27 435 463.0826 441.0996 438.8657 434.9999 434.8688 

28 254 289.4057 298.6721 278.1001 277 256.4423 

29 265 291.0046 298.1467 290.4476 265.0002 266.3912 

30* 270 272.2703 294.377 300.5333 270.0001 268.824 

31 339 309.2806 346.4592 377.103 339.0001 337.0804 

32 347 310.8795 346.4688 385.7106 315.0007 341.7346 

33 333 328.4267 350.8888 373.2826 333.0003 338.134 

34 311 329.1555 334.6184 331.4263 311.0003 312.8942 

35* 317 330.7544 335.3602 342.7874 367.0552 319.8819 

36 319 332.3532 336.1021 337.1532 319.0001 317.415 

37 330 377.9568 372.0195 332.7023 340.1118 329.098 

38 344 386.0287 371.4942 348.2987 344 343.7427 

39 350 356.5101 367.9689 357.0338 344.8068 349.3522 

40* 440 398.5565 425.6302 456.0275 452.0208 430.1285 

41 451 400.1553 426.372 459.2618 501.2143 443.736 

42 433 403.8371 435.0461 444.7231 433.0001 440.165 

43 405 418.4314 419.5776 427.6633 404.9999 396.7093 

44 411 420.0302 420.3194 436.9309 411.0003 407.1244 

45* 415 421.629 421.0613 431.9099 415 405.2103 
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46 381 396.0037 393.2519 382.4686 381.0001 378.2838 

47 397 402.6884 392.7401 399.4798 403.7114 388.0857 

48 405 408.2534 389.2522 403.3632 368.0001 392.5266 

49 508 506.5971 496.1371 514.2295 508.0002 497.24 

50* 520 504.0511 496.4657 518.168 519.9999 514.4553 

51 500 501.5051 510.0148 507.356 500.0001 506.8848 

52 468 507.7071 492.6698 486.2296 468 464.4308 

53 475 509.306 493.0873 490.7864 475 476.0628 

54 479 510.9048 493.5048 488.2872 486.7877 480.8539 

55* 323 408.3556 378.6997 329.9644 323 331.9796 

56 337 405.8097 378.2998 345.209 337.0001 337.9277 

57 343 366.3757 336.2568 352.0139 343.0001 341.9521 

58 431 409.1899 421.2308 448.0037 431.0001 420.8405 

59 441 406.6441 421.5127 451.2734 574 435.2151 

60* 424 408.406 426.3244 436.1522 424.0001 442.2969 

61 396 410.0244 411.8985 426.0116 395.9998 387.9447 

62 403 407.4785 412.6403 434.9962 403.0002 399.2752 

63 406 404.9326 413.3821 429.1181 422.4982 404.8684 

64 420 463.0616 490.8338 433.0352 403.5 415.0911 

65* 438 471.1336 490.4475 451.2133 437.9998 426.8229 

66 445 453.5775 437.8876 447.585 444.9998 434.9218 

67 560 517.6382 545.4392 560.531 559.9999 554.272 

68 574 515.0923 545.8732 569.3662 574 571.9506 

69 552 514.7343 559.6365 559.3177 551.9997 556.8716 

70* 515 518.4727 527.3013 541.0726 464.9464 505.5234 

71 524 515.9268 527.7189 546.7112 523.9997 524.5939 

72 528 513.3809 528.1364 542.8898 527.9999 521.7757 

73 484 479.7213 505.6108 498.6324 483.9998 479.0403 

74 505 487.7932 505.2244 519.2001 504.9999 502.5916 

75* 515 484.2672 458.06 511.4446 445 509.8736 
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76 647 599.0868 622.4588 649.5006 646.9996 627.1984 

77 662 607.1587 622.9064 656.4434 546.7412 629.381 

78 637 614.5477 635.8134 638.0488 636.9996 620.2736 

79 595 626.921 618.8296 603.0941 594.9998 603.1805 

80* 605 624.3751 619.2471 610.6132 604.9996 615.7647 

81 596.5643 621.8291 619.6647 600.5006 591.342 604.7985 

 

Table 4.3 Target and predicted OC values  

  Target FNN CNN RNN GRNN LSTM 

1 113 119.1732 117.1817 118.7687 113 113.3572 

2 103 105.4071 102.9344 103.5098 103 103.6932 

3 88 91.64101 93.2215 94.12621 87.99996 88.23135 

4 135 139.1878 136.5541 142.8677 134.9999 134.5466 

5* 123 125.4217 123.9434 127.6086 123 123.2369 

6 105 111.6556 108.8373 112.4053 105 104.6459 

7 163 159.2023 155.9231 166.9667 162.9999 163.1688 

8 149 145.4362 144.7093 151.7076 149 147.9738 

9 127 131.6701 128.7576 136.4485 126.9999 126.6402 

10* 124 129.0418 128.8575 130.5592 124 124.2958 

11 113 115.2757 114.6102 115.3001 90 114.0981 

12 97 101.5096 104.8973 101.7745 97 96.91842 

13 148 149.0564 149.4253 154.6581 148 148.2501 

14 135 135.2902 136.8145 139.3991 135 135.4655 

15* 115 121.5241 121.7084 124.14 115 116.2149 

16 179 169.0709 168.9024 178.7593 178.9999 175.2614 

17 164 155.3048 157.6887 163.498 163.9999 164.646 

18 140 141.5387 141.737 148.2388 139.9999 139.8717 

19 136 138.9104 138.9019 142.3496 135.9999 136.4606 

20* 124 125.1443 124.6546 127.0905 124 124.7663 
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21 106 111.3782 114.9416 111.8516 106 106.9143 

22 162 158.9249 159.375 166.4484 161.9999 162.7376 

23 148 145.1588 146.7642 151.1895 147.9999 147.8719 

24 126 131.3927 131.6581 135.9305 125.9999 127.0482 

25* 196 178.9395 180.0246 190.5519 195.9999 179.142 

26 179 165.1734 168.8108 175.2884 178.9999 175.6008 

27 152 151.4073 152.8592 160.0293 152 152.4515 

28 90 92.16597 89.01103 88.83662 90.5 89.6367 

29 82 78.39986 74.76373 73.57761 82 83.08086 

30* 70 64.63374 65.05081 68.69128 70 72.38254 

31 108 112.1805 108.3834 112.9356 108 107.5831 

32 98 98.4144 95.77267 97.67657 123 98.93671 

33 84 84.64829 80.66657 83.15662 84 84.47815 

34 130 132.1951 127.7524 137.0354 130 129.0288 

35* 119 118.429 116.5387 121.7754 119 118.8686 

36 102 104.6628 100.587 106.5164 102.0001 100.5181 

37 99 102.0345 100.5881 100.627 124 98.36054 

38 90 88.26843 86.34076 85.36806 89.99996 90.67656 

39 78 74.50232 76.62785 76.33949 77.5 78.28259 

40* 118 122.0491 121.1558 124.726 118.5 117.8336 

41 108 108.283 108.545 109.4669 108 108.085 

42 92 94.51688 93.43893 94.20787 92 91.58872 

43 143 142.0636 140.6329 148.8281 143.0001 141.5845 

44 131 128.2975 129.4192 133.5659 131 129.6714 

45* 112 114.5314 113.4675 118.3068 112 110.5894 

46 109 111.9031 110.6315 112.4175 109 108.7342 

47 99 98.13701 96.38415 97.15841 99 99.78037 

48 85 84.3709 86.67123 83.98773 106 84.92549 

49 130 131.9177 131.1046 136.5165 130 129.5996 

50* 118 118.1516 118.4938 121.2573 118.0001 118.6681 
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51 101 104.3855 103.3877 105.9983 101 100.6499 

52 157 151.9322 151.7542 160.6207 157 157.5365 

53 143 138.1661 140.5404 145.3563 143 142.584 

54 122 124.4 124.5888 130.0972 121.5 122.0401 

55* 68 65.1587 64.97232 63.2821 68 68.77152 

56 62 51.39259 50.72502 55.3672 62.00004 64.75293 

57 53 37.62647 41.0121 51.83048 53.00003 56.00575 

58 81 85.17326 84.3447 83.00337 81.00005 81.20598 

59 74 71.40714 71.73396 74.88757 83.84985 75.80059 

60* 63 57.64103 56.62787 68.40468 63.00004 65.40933 

61 98 105.1878 103.7137 107.1042 98.00006 98.43254 

62 89 91.42169 92.49994 94.40794 89 90.66702 

63 76 77.65557 76.54825 86.49302 102 77.99039 

64 74 75.02728 72.74953 70.69492 76.72082 73.79083 

65* 68 61.26116 58.50222 60.12483 68.00004 69.19202 

66 58 47.49505 48.7893 55.12465 58 59.20315 

67 89 95.04182 93.31722 94.79379 89 88.2756 

68 81 81.27572 80.70649 79.6452 81 81.74551 

69 69 67.5096 65.6004 71.82796 69.00005 70.6964 

70* 107 115.0564 112.7944 118.8968 143 107.473 

71 98 101.2903 101.5807 103.6338 98.00007 98.45018 

72 84 87.52415 85.629 91.25066 84.00006 83.30798 

73 82 84.89585 82.36105 82.48532 82.00005 81.37911 

74 74 71.12974 68.11375 67.22626 74 75.45749 

75* 84 57.36362 58.40083 58.55273 61.25697 64.85317 

76 97 104.9104 102.8342 106.5853 97.00007 96.9202 

77 89 91.14429 90.22343 91.32515 118 89.96214 

78 76 77.37817 75.11734 76.48792 76.00005 77.01233 

79 118 124.925 123.4838 130.6894 118.0001 117.432 

80* 107 111.1588 112.27 115.4242 107.0001 108.1045 
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81 91 97.39272 96.31836 100.1652 91 90.71896 

 

 

 

Figure 4.6 Scatter plots between target and predicted MRR values  

 

 

Figure 4.7 Normal probability plots of residuals for MRR  
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Figure 4.8 Scatter plots the target and predicted OC values  

 

Figure 4.9 Normal probability plots of residuals for OC  

 

4.3.2 Performance analysis based on statistical error metrics 

In order to further validate the prediction performance of the five NN models, R2, R2
adj, 

RMSE and RRMSE values for the training, testing and overall datasets are computed, as provided 
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in Table 4.4 and Figure 4.10. It is worthwhile to mention here that for the best NN model, 

maximum R2 and R2
adj, and minimum RMSE and RRMSE values are always recommended.  

Table 4.4 Calculated values of different statistical error metrics for MRR and OC 

Response Model Dataset R2 R2
adj RMSE RRMSE 

MRR 

FNN 

Test 0.86652 0.817982 5.781077 0.059413545 

Train 0.923498 0.918397 5.324524 0.05442662 

Overall 0.914158 0.90964 5.424152 0.055849182 

CNN 

Test 0.905718 0.871433 5.299829 0.060108586 

Train 0.960906 0.9583 4.501822 0.046077734 

Overall 0.95186 0.949326 4.693894 0.049220299 

RNN 

Test 0.970145 0.959289 3.975655 0.04343048 

Train 0.969533 0.967501 4.229813 0.042370989 

Overall 0.969633 0.968035 4.18319 0.042819783 

GRNN 

Test 0.924896 0.897586 5.00691 0.058453518 

Train 0.945483 0.941849 4.892095 0.047865163 

Overall 0.942109 0.939062 4.915418 0.049818196 

LSTM 

Test 0.990544 0.987105 2.98253 0.031526761 

Train 0.994819 0.994474 2.716194 0.026974513 

Overall 0.994118 0.993809 2.775115 0.028046963 

OC 

FNN 

Test 0.919772 0.890598 2.997723 0.087378542 

Train 0.973504 0.971738 2.225383 0.073491219 

Overall 0.962171 0.96018 2.443214 0.079003216 

CNN 

Test 0.923956 0.896304 2.957849 0.085732075 

Train 0.977724 0.976239 2.130928 0.069605591 

Overall 0.966382 0.964613 2.372183 0.075974076 

RNN 

Test 0.921414 0.892837 2.982266 0.083574451 

Train 0.96744 0.96527 2.343048 0.072460485 

Overall 0.957736 0.955511 2.511881 0.076549424 

GRNN 
Test 0.887396 0.846448 3.262865 0.091782641 

Train 0.936141 0.931884 2.772783 0.092196109 
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Overall 0.925873 0.921971 2.890678 0.093227675 

LSTM 

Test 0.958372 0.943234 2.544235 0.082863211 

Train 0.99863 0.998538 1.061218 0.035312806 

Overall 0.990132 0.989613 1.746054 0.058172876 

 

 

Figure 4.10 Prediction performance of the neural networks for (a) MRR (b) OC [Color and size 

of the bubbles represent R2 and RRMSE respectively] 

As observed from Table 4.4 and Figure 4.10, for MRR, LSTM has the best prediction 

performance with the highest R2 and R2
adj values of 0.9948 and 0.9945 respectively based on the 

training dataset. The corresponding lowest values of RMSE and RRMSE as 2.7161 and 0.028 

respectively also reassure the same observation. The LSTM is also proven to be the best for 

prediction of MRR using the testing dataset with R2, R2
adj, RMSE and RRMSE values as 0.9905, 

0.9871, 2.9825 and 0.0315 respectively. When both the training and testing data sets are 

considered together, LSTM again emerges outs as the best performing NN model with the 

corresponding R2, R2
adj, RMSE and RRMSE values as 0.9941, 0.9938, 2.7751 and 0.0280 

respectively. Thus, it performs excellently for all the datasets. Based on R2 for prediction of MRR, 

RNN occupies the second position having a value of 0.9701 for the testing dataset, followed by 

GRNN, CNN and FNN. This same ranking of the NN models can also be validated with respect 

to R2
adj and RMSE values. .But when RRMSE values are considered, FNN performs marginally 

better that CNN, although the prediction performance of RNN and GRNN remains unaltered. 

Thus, the NN models can be ranked as LSTM-RNN-CNN-GRNN-FNN with respect to their 

overall prediction performance of MRR, as clearly noticed from Figure 4.10(a). 
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For prediction of OC, similar results are also observed. The LSTM has the best prediction 

accuracy on training data having the maximum R2 (0.9986), R2
adj (0.9985), and minimum RMSE 

(1.0612) and RRMSE (0.0353) values. On testing data, LSTM also shows the best prediction 

performance having R2, R2
adj, RMSE and RRMSE values as 0.9584, 0.9432, 2.5442 and 0.0829 

respectively. With respect to the overall data, its perfomance is also the best with R2, R2
adj, RMSE 

and RRMSE values as 0.9901, 0.9896, 1.7460 and 0.0582 respectively. However, the ranking 

order of the other NN models is differenet from that obtained for MRR. On the basis of R2 values 

for prediction of OC on the testing data, CNN occupies the second position with a R2 value of 

0.9239, followed by RNN, FNN and GRNN having R2 values as 0.9214, 0.9198 and 0.8874 

respectively. The values of R2
adj and RMSE also validate the same results. But, based on RRMSE, 

RNN occupies the second position with a value of 0.0835, followed by CNN, FNN and GRNN 

having RRMSE values as 0.0857, 0.0874 and 0.0918 respectively. However, when the prediction 

performance of all the five NN models is evaluated using the overall data, their ranking order can 

be derived as LSTM-CNN-RNN-FNN_GRNN. For both MRR and OC responses, LSTM thus 

has the best prediction performance based on the considered EDT experimental dataset.   
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Conclusion: 

This thesis attempts to develop four metamodels (PR, RBF, kriging and GEP) and five 

neural networks (FNN, CNN, RNN, RNN-LSTM, GRNN) for accurately predicting different 

responses values of EDM and EDT processes respectively. For the first EDM process, pulse 

current, pulse rate, duty cycle and voltage are treated as the input parameters. On the other hand, 

magnetic field, pulse current, pulse duration and angular velocity are the EDT parameters for the 

second analysis. Based on these experimental datasets, the prediction performance of the four 

developed metamodels and five neural network architectures are contrasted, i.e. R2, R2
adj, RMSE 

and RRMSE. The detailed comparative analysis on overall performance of the metamodels draws 

the following conclusions:  

a) For metamodeling of EDM processes, GEP emerges out as the best metamodel with 

maximum R2 and R2
adj, and minimum RMSE and RRMSE values in almost accurately 

envisaging all the responses under consideration. GEP provides consistent results for 

prediction on both the training and testing datasets. Furthermore, although RBF has 

excellent prediction performance on training datasets, but it has poor accuracy on the 

test data, leading to overfitting of the model.  

b) Among the neural network models of EDT for both MRR and OC, LSTM emerges out 

as the best performing NN model with the maximum R2 and R2
adj, and minimum RMSE 

and RRMSE values. LSTM incorporates both long term and short term memory to 

store most repetitive characteristics during training. This adds more value to 

backpropagation and can provide more accurate result than simple RNN process. 

LSTM helps the model to overcome vanishing and exploding gradient problems during 

training, thus it provides the most reliable prediction results. Furthermore, the 

prediction performances of CNN and RNN are almost comparable. The FNN, being a 

basic and random learning NN model, provides a moderately satisfactory result. 

However, although GRNN provides average prediction result, it is noticed that during 

training, based in its architecture, GRNN learns the data pattern very quickly. Thus, 

for achieving quicker prediction results, GRNN may be recommended. 

As a future scope, the application potentiality of other metamodels, including random forest 

regressor, support vector regressor, Naïve Bias regressor etc. and other NN models, like, RNN 

with gated recurrent unit (GRU), RBFN, modular neural network (MNN) or CNN with LSTM 

etc. may be explored and their prediction performance may be compared for accurately 

envisaging the response values of EDM processes. In the two illustrative examples, small datasets 

consisting of only 30 and 81 experimental observations are respectively considered for validating 

the prediction performance of all the metamodels. To achieve a better picture, a data repository 
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containing large set of experimental data may be developed for training and testing of those 

metamodels. 
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