
- 1 - 
 

LOCAL PATH PLANNING OF A MOBILE ROBOT USING 
LASER RANGE SENSOR BASED ON MODIFIED POINT BUG 

ALGORITHM 
 

 
 

BY 
 

BISHWADEB SINGHA 
B. TECH (MEECHANICAL ENGINEERING),2019 

HALDIA INSTITUTE OF TECHNOLOGY 
 

EXAMINATION ROLL NO: M4PRD22007 
REGISTRATION NO: 154475 of 2020-2021 

 
 
 
 
 

THESIS 
 

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE 
AWARD OF THE DEGREE OF MASTER OF PRODUCTION ENGINEERING IN THE 

FACULTY OF ENGINEERING AND TECHNOLOGY 
JADAVPUR UNIVERSITY 

2022 
 
 
 
 
 
 
 

DEPARTMENT OF PRODUCTION ENGINEERING 
JADAVPUR UNIVERSITY 

KOLKATA-700032  



- 2 - 
 

JADAVPUR UNIVERSITY FACULTY OF ENGINEERING AND 

TECHNOLOGY 

 

CERTIFICATE OF RECOMMENDATION 

 

I HEREBY RECOMMEND THAT THE THESIS ENTITLED “LOCAL PATH PLANNING OF A 
MOBILE ROBOT USING LASER RANGE SENSOR BASED ON MODIFIED POINT BUG 
ALGORITHM” SUBMITTED BY BISHWADEB SINGHA CARRIED OUT UNDER MY 
SUPERVISION AND GUIDANCE BE ACCEPTED IN THE PARTIAL FULFILLMENT OF THE 
REQUIREMENTS FORTHE DEGREE OF “MASTER OF ENGINEERING IN PRODUCTION 

ENGINEERING” IN JADAVPUR UNIVERSITY. 
 

 
________________________________________ 

(Mr. Subir Kr. Debnath) 

Thesis Advisor 

Dept. of Production Engineering 

Jadavpur University 

Kolkata-700032 

 

____________________________________ 

HEAD, Dept. of Production Engineering 

Jadavpur University 

Kolkata-700032 

 

_________________________________________ 

DEAN, Faculty of Engineering and Technology 

Jadavpur University 

Kolkata-700 

 

 

 



- 3 - 
 

JADAVPUR UNIVERSITY 

FACULTY OF ENGINEERING AND TECHNOLOGY 

 

                                   CERTIFICATE OF APPROVAL 

The foregoing thesis is hereby approved as a creditable study of an engineering subject 
carried out and presented in a manner of satisfactory to warrant its acceptance as a 
prerequisite to the degree for which it has been submitted. It is understood that by this 
approval, the undersigned do not necessarily endorse or approve any statement made, opinion 
expressed and, conclusions drawn therein but approve the thesis only for the purpose for 
which it has been submitted. 

                                          

 

 

 

 

 

COMMITE OF FINAL EXAMINATION FOR  

EVALUATION OF THE PROJECT WORK                        …………………………………… 

                                                                                                   (External examiner) 

 

 

                                                                              

                                                                                           ……………………………………… 

                                                                                                   (Internal examiner) 

 

 

 

 

 
 



- 4 - 
 

 
                                                  ACKNOWLEDGEMENT 

 
It is my greatest fortune to perform the thesis work in the Production Engineering 
Department, Jadavpur University. I express my heartfelt gratitude to my respected teacher, 
mentor and thesis supervisor Mr. Subir Kr. Debnath, Associate Professor, Department of 
Production Engineering, Jadavpur University.  

Special thanks to Prof. Ajoy Kumar Dutta, Professor, Department of Production Engineering, 
Jadavpur University, for his encouragement and kind support. 

I also express my deep respect to all the faculties of the Production Engineering 
Department, Jadavpur University. I am greatly thankful to them for their constant 
motivation. 

I am also thankful to the librarian and technicians of our department for their cordial 
assistance. 

Finally, I am deeply indebted to my parents, for their moral support and continuous 
encouragement while carrying out this study. 

Any omission in this brief acknowledgment does not mean a lack of gratitude. 

 

 

 

                                                                                    ………………………….. 

                                                                                   (BISHWADEB SINGHA) 

                                                                               Class Roll No: 002011702008 

 
 

 
 
 
 
 
 
 



- 5 - 
 

 
TABLE OF CONTENTS 

 

TITLE SHEET ……………………………………………………………………………………………………………….……   1 

CERTIFICATE OF RECOMMENDATION ………………………………………………………………………………  2 

CERTIFICATE OF APPROVAL………………………………………………………………………………………….…… 3   

ACKNOWLEDGEMENTS ……………………………………………………………………………………………….….…4 

TABLE OF CONTENTS ……………………………………………………………………………………………………… 5-7 

CHAPTER – 1  ………………………………………………………………………………………………………….. 8 – 26 

1.0 INTRODUCTION     ………………………………………………………………………………………………………..8 

               1.1 Introduction to Mobile Robot  …………………………………………………………………………9 

               1.2 Path Planning Of Mobile Robot ……………………………………………………………………. 14 

               1.3 Literature Survey   ……………………………………………………….………………………………..15 

               1.4 Objective and Scope of Present Work ……………………………………………………………26 

CHAPTER – 2  ………………………………………………………………………………………………………….  28-39 

2.0 DIFFERENT PATH PLANNING TECHNIQUES FOR MOBILE ROBOT …………………………………28 

                2.1 Bug Algorithms   ……………………………………………………………………………………………29 

                              2.1.1 Bug-1 Algorithm …………………………………………………………………………… 30 

                              2.1.2 Bug-2 Algorithm …………………………………………………………………………… 31 

                              2.1.3 Dist-Bug Algorithm   ………………………………………………………………………31 

                              2.1.4 Intelligent Bug Algorithm (IBA)   …………………………………………………… 32 

                              2.1.5 Tangent Bug Algorithm ………………………………………………………………… 33 

                2.2 PointBug Algorithm   …………………………………………………………………………………… 35 

                              2.2.1 PointBug Algorithm Analysis   ………………………………………………………  38 

                              2.2.2 PointBug Algorithm Limitations  ……………………………………………………39 

CHAPTER-3    …………………………………………………………………………………………………………… 43 -61 

3.0 SYSTEM HARDWARE AND SOFTWARE OF ACTIVITYBOT AND LASER RANGE SENSOR……43 

                 3.1 System components used in the project  ……………………………………………………  44 

              

 

 



- 6 - 
 

    3.2 System Hardware   …………………………………………………………………………………..…………….. 44 

                              3.2.1 Propeller Activity Board  …………………..…………………………………………… 45                                                              

                              3.2.2 High Speed Continuous Rotation Servo  …………………………………………51                                                          

                              3.2.3 Encoder   ………………………………………………………………………..…………….  54                                                                                                                  

                              3.2.4 LASER Range Sensor System …………………………………………..………………55                                                                

                3.3 ActivityBot System Software  ………………………………………………………..……………… 58                                                                                                  

                              3.3.1 Simple IDE ……………………………………………………………………..……………..  58                                                                           

                              3.3.2 Propeller C ……………………………………………………………………..…………….. 58 

                              3.3.3 Description of main Commands used in the Project ………..……………..58 

                 3.4 ActivityBot Navigation System    ……..……………………………………………..……………. 60                   

                              3.4.1 Forward and Backward Movement of ActivityBot  …………..…………… 60             

                              3.4.2 Turning of the ActivityBot …..……………………………………………..…………..61           

      CHAPTER-4    ……………………………………………………………………………………………………… 65 -76 

      4.0 EXPERIMENTATION WITH MOBILE ROBOT AND LASER RANGE SENSOR FOR 

      PATH PLANNING BASED ON MODIFIED POINTBUG ALGORITHM………………………..…………65                                               

                 4.1 Modification of Point Bug algorithm for actual dimension of robot…..…………..66                                    

                 4.1.1 Modification of Angle for Getting Modified Sudden Point………………..…………66 

                 4.1.2 Modification of Distance for Getting Modified Sudden Point …………..…….….67                    

                 4.2 Program Development for Path Planning of Mobile Robot Based on  

                       Modified PointBug Algorithm  ……..……………………………………………..………….……. 68   

                 4.3 Flowchart Of Developed Program  ……………………………………………..…………………69 

                 4.4 Propeller C Program for Path Planning of ActivityBot Mobile Robot in  

                        Presence of Obstacles using LIDAR Range Sensor Based on Modified 

                        PointBug Algorithm  …………………………………………..………………………………………..70                                                                                           

                 4.5 EXPERIMENT RESULTS AND DISCUSSIONS …………………..……………………………..  76 

 

 

 

 

 

 



- 7 - 
 

CHAPTER-5  ……………………………………………………………………………………………………………77– 79  

5.0 CONCLUSIONS AND FUTURE SCOPE  ……………………..………………………………………………… 77 

        5.1 CONCLUSION………………………………..……………………………………………………………………..78 

        5.2 FUTURE SCOPE…………………………..……………………………………………………………………….79 

CHAPTER-6   ………………………………………………………………………………………………………….. 80 – 84 

6.0 REFERENCES   ……………………..…………………………………………………………………………………     81 

 

 

 

 

 

 

 

 



8 
 

 

 

 

 

 

 

 

 

CHAPTER-1 

1.0  INTRODUCTION 

  



9 
 

1.1 INTRODUCTION TO MOBILE ROBOT 

Mobile robots can move autonomously (in an industrial plant, laboratory, planetary surface, 

etc.), that is, without assistance from external human operators. A robot is autonomous when 

the robot itself has the ability to determine the actions to be taken to perform a task, using a 

perception system that helps it. It also needs a cognition unit or a control system to coordinate 

all the subsystems that comprise the robot. The basics of mobile robotics consist of the fields of 

locomotion, perception, cognition, and navigation. 

The term “robot” generally implies some anthropomorphic (human-like) appearance. The 

tendency to think about robots as having a human-like appearance may stem from the origins 

of term “robot”. The word “robot” came into the popular consciousness on January 25, 1921, in 

Prague with the first performance of karel capek’s play, R.U.R (Rossum’s Universal robots). In 

R.U.R, an unseen inventor, Rossum, has created a race of workers made from a vat of biological 

parts, smart enough to replace human in any job. The term “robot” (robota) was used for the 

first time capek’s play R.U.R and means slave servant or forced labour. 

Mobile robots are robots that can move from one place to another autonomously, that is 

without assistance of external human operators. Unlike the majority of industrial robots that 

can move only in a specific workspace, basically they operate from a stationary and fixed 

position and have a bounded operating range. Industrial robots are automated, programmable 

and capable of movement about three or more axes. Typical applications of robots 

include welding, painting, assembly, pick and place for printed circuit boards, packaging and 

labeling, palletizing, product inspection, and testing; all accomplished with high endurance, 

speed, and precision. They can assist in material handling. 

CLASSIFICATION OF MOBILE ROBOTS 

 Based on mechanical configuration: 

Stationary robot (arm/manipulator) 

Manipulators and industrial robots are examples of this type. The robot’s base is fixed and they 



10 
 

consist of an open kinematic chain, mainly with an end-effector with specials tools which not 

only handle objects but can also perform tasks such as welding, painting, assembling, 

machining, and so on. Robots of this type include Abb, Kuka, Fanuc, Staubli, Kawasaki, Comau, 

Wittman, and so on. Other important stationary robotic systems are grasping devices. Grasping 

is an important part of handling and from the beginning grasping devices were conceived 

mainly to help humans with handling tasks, providing solutions that can be classified into two 

categories: tools and prostheses. Over time, grasping devices have come to be used in many 

sectors, such as industry; agriculture, and so on, and a variety of robotic hand and finger 

mechanics have been developed. A broad overview can be found in Carlos et al 

 Land-based robots 

a) Wheeled mobile robots 

Wheels are one of the most important systems for robot locomotion, and autonomous 

intelligent vehicles (AIVs) are part of a challenging research field in mobile robotics, which relies 

on principles such as pattern recognition and signal–image processing. They will play an 

important role in transport, logistics, and distribution. The use of wheels is simpler than using 

treads or legs and is easier to design, build, and program when the robot is moving on flat, 

nonrugged terrain. They also tend to be much cheaper than their legged counterparts. Wheel 

control is less complex and they cause less wear and tear on the surface where they move in 

comparison with other solutions. Another advantage is that they do not present any great 

difficulty in terms of balance issues, since the robot is usually in contact with a surface. The 

main disadvantage of wheels is that they are not very good at navigating over obstacles, such as 

rocky terrain, sharp surfaces, or areas with low friction. 

 

 

 

b) Walking or legged mobile robots 

Legs are another common form of locomotion, giving rise to walking robots. Although they are 

usually more expensive than wheels, legs have several advantages over wheels. The greatest 



11 
 

advantage is their transversality and efficiency and the fact that they can also move on soft and 

uneven terrain, better mobility, better energy efficiency, better stability, and a smaller impact 

on the ground. Walking robots also have the advantage of easily coping with obstacles or cracks 

found in the environment; in short, adaptability and maneuverability on rough terrain. There 

are many types of walking robots depending on the number of legs. Among the most important 

are biped (humanoids), four-legged (quadruped), six-legged, and so on. 

 

Air-based robots 

An unmanned aerial robot commonly known as “drone” is a machine that performs a Pre 

programmed task with or without human interaction and it is inspired by an airplane’s 

operation. The most advanced ones can now take off and land completely independently of the 

actions of their operators. Initially they were mostly used in military applications but they 

expanded rapidly to other applications such as scientific, agricultural, commercial, recreational, 

policing, and surveillance, product deliveries, distribution and logistics, aerial photography, and 

so on . 

Water-based robots: 

One of man’s oldest goals has been to explore the oceans and underwater areas that are 

inaccessible to him. As an important branch of mobile robots, the underwater vehicle 

manipulator system is one the hottest research topics nowadays. Many devices have been built 

for this, including robotic systems. Ocean One is an example of a submarine robot. It is a 

humanoid robot that explores the seabed. It takes advantage of the best of remotely operated 

vehicles and the advantages of humanoid robots, such as having a robotic hand with which to 

rescue objects as if it were a human being. 

 Based on control system: 

Non autonomous guided mobile robots: 

Guided mobile robots or non-autonomous mobile robots require some sort of guidance system 

or instruction to make a movement that allows them to travel pre-defined navigation maps in a 



12 
 

controlled environment. The pre-defined navigation map such as magnetic tape, bar codes, 

wire or sensors installed on the environment’s floor that creating an inflexible environment. 

These are the following types: 

1. Autonomous Guided Vehicle (AGV): This AGV requires the external guidance system in the 

form of magnetic strips to travel. These follow a rigid form of the preset route. Typical AGV 

applications incorporate transportation of raw materials, work-in-progress, and finished goods 

in support of manufacturing production lines, and storage/retrieval or other movements in 

support of picking in warehousing and distribution applications. AGVs provide automated 

materialmovement for a variety of industries including Automotive, Food & Beverage, 

Chemical, Hospitals, Manufacturing, Pharmaceutical, Paper. 

2. Rail Guided Vehicle/Cart (RGV/RGC): RGV/RGC is a fast, flexible and easily installed 

material transport system that travels at a predefined path guided by rails or tracks. RGC has 

separate input/output stations that allow it to perform multiple operations at once. These 

mobile robots are an efficient, cost-effective and fast option for complex sorting applications. 

3. Guided Fork-lifts: This specific AGV type is inspired by the conventional human manned 

forklifts. These forklifts are becoming increasingly complex and intelligent full of autonomy for 

some applications. These could manned/unmanned traveling with the help of external devices 

such as tablets, human, etc. The forklift AGV is designed to provide both horizontal and vertical 

movement of the load. 

 Autonomous guided mobile robots: 

Autonomous mobile robots (AMR) are just like humans; can make their own decisions and then 

perform tasks accordingly. Autonomous robots can perceive their environment and remember 

it.Based on this info they navigate in a controlled environment without any predefined path or 

electro-magnetic guidance map, that way they offer flexibility to a large extent. AMRs also 

optimize the travel distance by calculating the shortest path for every mission & drive efficiency 

in the warehouse. 



13 
 

Let’s look into a few of its applications: 

1.AMR for Good-to-picking: This includes robots bringing mobile shelf units filled with items to 

a workstation. In this case, pickers remain at their workstations while software-driven AMRs 

deliver shelves with different materials directly to the order pickers’ workstation. 

2. Picking Assist Autonomous Mobile Robots: In this case, the robots travel to pick locations, 

where operators deliver (“pick”) goods based on the robot’s needs. They are an AMR base with 

an 

operator interface that provides information about picking order. The robot tells the operator “I 

want this item and here is where you can find it”. The user interface is also interactive, being 

possible to provide further info about the product or receiving info from the operator such as 

“picking accomplished”. 

3.Unmanned Aerial Vehicles (UAVs): These are basically drones moving large products through 

the air in distribution centers with the help of RFID-scanning technology to offer real-time 

inventory visibility in the warehouse. Guided autonomously by remote control, UAVs can sense 

their environment and navigate on their own. 

4.Sorting Robots: These robots play an important role in high speed sorting esp in fulfilment 

centres. These robots work on a mezzanine with chutes/rabbit holes for location or order 

positions. Sortation is easily achieved by utilizing a fleet of sorting robots that sort the orders by 

dumping them through chutes/rabbit holes. The dropped orders or parcels are collected in 

sacks, gaylords or containers, which will be shipped directly to us. 

 

 

 

 

 

 



14 
 

1.2 PATH PLANNING FOR MOBILE ROBOT 

The major emphasis in the field of autonomous control is the need for path planning. There is 

increased attention in the scientific community to enhance the knowledge of automation 

systems for different applications, such as chemically polluted or harmful locations. Robotic 

path planning is an appealing research study in the field of robotics . Since mobile robotics are 

used in a vast array of applications, numerous researchers have been working on various 

approaches in order to conquer a few of the significant challenges faced in autonomous 

navigation. These challenges restrict its usage in many applications, including industrial and 

military fields robot path planning is the process of finding an enhanced collision-free path from 

a start to a predefined goal point through a certain given cluttered real world environment 

within the shortest possible time. Mobile robot path planning has a few main properties 

according to type of environment, algorithm and completeness. The properties are whether it is 

static or dynamic, local or global and complete or heuristic. The static path planning refers to 

environment which contains no moving objects or obstacles other than a navigating robot and 

dynamic path planning refers to environment which contains dynamic moving and changing 

objects or obstacles. If the path planning is global (off-line) , information about the 

environment is already known based of map, cells, grid or etc and if the path planning is local 

(on-line), the robot has no information about the environment and robot has to sense the 

environment before it decides to move for obstacle avoidance and generate trajectory planning 

toward target [1]. Local path planning methods use ultrasonic sensors, laser range finders, and 

on-board vision systems to perceive the environment to perform an on-line planning. In our 

paper, the workspace for the navigation of the mobile robot is assumed to be unknown and it 

has stationary obstacles only[2]. 

In this present work, determination of optimal path from initial to target point by considering 

online local path planning for a mobile robot system has been consider. The robot has the task 

to reach goal avoiding collision between robot and obstacle based on the modified PointBug 

algorithm using LASER range sensor.



15 
 

1.3 LITERATURE SURVEY: 

There are many work and researches have been done in the field of mobile robot path planning 

in last many years. Some of these research and works have been reported below. 

Navid Toufan· Aliakbar Niknafs [1] proposes a new algorithm Robot path planning based on 

laser range finder and novel objective functions in grey wolf optimizer. In their research, the 

distributed multi-robot path planning problem is mainly done in three stages. All stages which 

are introduced here, operate for each robot individually. Firstly, the laser range finder (LRF) 

sensor, which is mounted on the top of robots, attempts to sense the environment based on 

sensing range limitation. The sensing is operated one time in each step before the robot starts 

to move. In the second stage, the current position of the robot and the sensor output are 

considered as the inputs for the procedure of the IGWO (IPSO) algorithms. Further, the multi-

objective function is proposed in IGWO (IPSO) algorithms to evaluate the candidate solutions 

and enable them to converge to the optimal solution. The last stage directs the robot to the 

best position that has been founded in the second stage and updates the robot’s current 

position. 

Aisha Muhammad  , Mohammed A. H. Ali ,* , Sherzod Turaev  , Rawad Abdulghafor , 

Ibrahim Haruna Shanono  , Zaid Alzaid , Abdulrahman Alruban , Rana Alabdan  , Ashit Kumar 

Dutta  and Sultan Almotairi ,* [2]  develop a new mobile robot path planning algorithm, called 

generalized laser simulator (GLS), for navigating autonomously mobile robots in the presence of 

static and dynamic obstacles. This algorithm enables a mobile robot to identify a feasible path 

while finding the target and avoiding obstacles while moving in complex regions. An optimal 

path between the start and target point is found by forming a wave of points in all directions 

towards the target position considering target minimum and border maximum distance 

principles. The algorithm will select the minimum path from the candidate points to target 

while avoiding obstacles. The obstacle borders are regarded as the environment’s borders for 

static obstacle avoidance. However, once dynamic obstacles appear in front of the GLS waves, 

the system detects them as new dynamic obstacle borders 



16 
 

James Ng & Thomas Braunl [3] explained that the Bug algorithm family is well-known robot 

navigation algorithms with proven termination conditions for unknown environments. Eleven 

variations of Bug algorithm have been implemented and compared against each other on the 

Eye Simsimulation platform and discussed their relative performance for a number of different 

environment types as well as practical implementation issues. 

 

Zohaib, M., Pasha, M., Riaz, R.A., Javaid, N., Ilahi, M., & Khan, R.D [4] explained Obstacle 

avoidance is an important task in the field of robotics, since the goal of autonomous robot is to 

reach the destination without collision. Several algorithms have been proposed for obstacle 

avoidance, having drawbacks and benefits. In this survey paper, they mainly discussed different 

algorithms for robot navigation with obstacle avoidance. They also compared all provided 

algorithms and mentioned their characteristics; advantages and disadvantages, so that they can 

select final efficient algorithm by fusing discussed algorithms. Comparison table is provided for 

justifying the area of interest. 

 

Muhammad Zohaib, Syed Mustafa Pasha, Nadeem Javaid, Jamshed Iqbal [5] proposed an 

intelligent obstacle avoidance algorithm to navigate an autonomous mobile robot. The 

presented Intelligent Bug Algorithm (IBA) over performs and reaches the goal in relatively less 

time as compared to existing Bug algorithms. The improved algorithm offers a goal oriented 

strategy by following smooth and short trajectory. This has been achieved by continuously 

considering the goal position during obstacle avoidance. The proposed algorithm is 

computationally inexpensive and easy to tune. The paper also presents the performance 

comparison of IBA and reported Bug algorithms. Simulation results of robot navigation in an 

environment with obstacles demonstrate the performance of the improved algorithm. 

 

Lee, Donghyun, et al [6] presented in a modified path planning method based on the APF 

(artificial potential field) is proposed for the mobile robot navigation system. The path planning 

method is very important to the robot navigation system. The APF is a commonly used path 

planning method because of its advantages of simple processing and online realization in the 



17 
 

unknown environment. However, the T-APF (traditional-APF) has shortcomings such as local 

minima and path inefficiency problems. To overcome these drawbacks, the NP-APF (new point-

APF) is proposed. NP-APF is a specialized method for using the LiDAR. The key idea of the NP-

APF is that it creates the new point of the attractive force what can improve performance of the 

APF by solving its drawbacks. The new point is created when the obstacles block a path which 

makes straight-line from the mobile robot to the goal, and it helps the mobile robot overcome 

local minima and path inefficiency problems. The new point is created at the most reasonable 

place where no obstacle is detected by the LiDAR. The simulation results show the 

improvement of performance compared with the T-APF 

 

Dib, Lynda [7] presented a novel sensor-based path-planning algorithm called "E-Bug" 

(Euclidian Bug); since it uses the Euclidian distance to choose the shortest path. In addition, 

they expose and discuss many deficiencies in the searching process of almost Bug path-planning 

algorithms, as well as many routing algorithms in wireless networks and others. These 

deficiencies are illustrated by cons examples. To overcome and solve these limits we propose a 

new formalism, based on sudden point concept, on which the new proposed algorithm E-Bug is 

based. The validity and the performance of our algorithm are demonstrated by a huge amount 

of simulations results on randomly generated environments. The robustness of E-Bug is proved 

comparing it, using the same conditions, with other powerful Bug's algorithms (PointBug, 

TangentBug, K-Bug and other). Moreover, they compare E-Bug with some algorithms that have 

a full prior knowledge of the robot's environment. 

Mohamad, Z [8] proposed the Bug algorithm is a local path planning methodology which 

detects the nearest obstacle as a mobile robot moves towards a target with limited information 

about the environment. It uses obstacle border as guidance toward the target. In Bug 

algorithm, the robot circumnavigates the obstacle till it finds certain condition to fulfill 

algorithm criteria to leave the obstacle toward target point. This paper introduces an approach 

utilizing a new algorithm called PointBug that attempts to minimize the use of outer perimeter 

of an obstacle (obstacle border) by looking for a few important points on the outer perimeter of 



18 
 

obstacle area as a turning point to target and finally generates a complete path from source to 

target. The less use of outer perimeter of obstacle area produces shorter total path length 

taken by a mobile robot. This approach is then compared with other existing selected local path 

planning algorithm for total distance and a guarantee to reach the target. 

Leena.N , K.K.Saju [9] reviewed and investigated the different path planning algorithms and 

techniques for mobile robot navigation. It describes the various developments and techniques 

that have been applied for navigation of robots in static and dynamic environments with special 

focus on the soft computing approaches. 

Jun-Hao Liang, Ching-Hung Lee [10] proposed a novel design approach for on-line path 

planning of the multiple mobile robots system with free collision. Based on the artificial bee 

colony (ABC) algorithm, we propose an efficient artificial bee colony (EABC) algorithm for 

solving the on-line path planning of multiple mobile robots by choosing the proper objective 

function for target, obstacles, and robots collision avoidance. The proposed EABC algorithm 15 

| P a g e enhances the performance by using elite individuals for preserving good evolution, the 

solution sharing provides a proper direction for searching, and the instant update strategy 

provides the newest information of solution. By the proposed approach, the next positions of 

each robot are designed. Thus, the mobiles robots can travel to the designed targets without 

collision. Finally, simulation results of illustration examples are introduced to show the 

effectiveness and performance of the proposed approach. 

C. Balaguer, A. Martí [11] presents a new collision-free path planning algorithm for mobile 

sensor-based robot which moves in unknown static environment. The 3D environment is a 

closed room formed by its borders and by the obstacles of straight prismatic type. The 

knowledge of the environment is augmented using real-time data from on-board robot's 

sensors: stereo vision and distance. The free-space is represented by the triangular corridors, 

which formed a map of the environment. The collision-free path planning algorithm searches 

the optimum trajectory in the map tree. The optimization criteria are: length of the trajectory 

and number of high consumption stereo image processing operations. The results of the 

algorithm's simulation make it able for implementation in real robot.. 



19 
 

Farouk MEDDAH, Lynda DIB [12] presents P* “P-Star” which is a new algorithm for sensor 

based path planning. The algorithm is based on Point-Bug algorithm where some improvements 

and modifications to overcome some important problems (like infinite loops and the bypass of 

some sub-paths). Moreover, some simulation and comparisons with PointBug are done to 

evaluate and to verify the performance and the power of the proposed algorithm. 

Hoc Thai Nguyen, Hai Xuan Le [13] developed and implemented a new path planning method 

for mobile robots (MR). On the other hand based on the shortest path from the start to goal 

point, this path planner can choose the best moving directions to reach the target point as soon 

as possible. On the other hand, with intelligent obstacles avoidance, the method can find the 

target with near shortest path length while avoiding some infinite loop traps of several 

obstacles in unknown environments. The combination of two approaches helps the mobile 

robot to reach the target with very reliable algorithm. Effectiveness of the algorithm is justified 

using simulation software in both static and dynamic environments. 

N. Nirmal Singh, Avishek Chatterjee, Amitava Chatterjee, Anjan Rakshit [14] describes the 

real-life implementation of a mobile robot navigation scheme where vision sensing is employed 

as primary sensor for path planning and IR sensors are employed as secondary sensors for 

actual navigation of the mobile robot with obstacle avoidance capability in a static or dynamic 

indoor environment. This two-layer based, goal-driven architecture utilizes a wireless camera in 

the first layer to acquire image and perform image processing, online, to determine sub-goal, 

employing a shortest path algorithm, online. The sub-goal information is then utilized in the 

second layer to navigate the robot utilizing IR sensors. Once the sub-goal is reached, vision 

based path planning and IR guided navigation is reactivated. This sequential process is 

continued in an iterative fashion until the robot reaches the goal. The algorithm has been 

effectively tested for several real-life environments created in our laboratory and the results 

are found to be satisfactory. 

Zi-Xing CAI, Zhi-Qiang WEN, Xiao-bing ZOU, Bai-fan CHEN [15] presents an inverse D* 

algorithm for path-planning under unknown environments. In this inverse D* algorithm, the 

local potential energy around the current position is created firstly by defining the robot 



20 
 

distance, then the leave point is searched to be regarded as the local goal position satisfying 

requirement of the rolling optimization. The leave point is searched locally and iteratively until 

the robot reaches the goal finally. The experimental results show the validity of the algorithm. 

Yang-Ge Wu, Jing-Yu Yang, Ke Liu [16] presents a multi-sensor integrated vision system and 

sensor fusion algorithm for the navigation of an autonomous mobile robot equipped with laser 

range finder radar (LRFR) and a color CCD camera to acquire information about the 

environment. The 2D model of the environment is constructed and the obstacles on the road 

are detected by fusing knowledge included in the range of images obtained by the LRFR and the 

color camera. 

James Ng [17] compares and analyses the practical aspects of path-planning and navigation 

algorithms for autonomous robots. The algorithms bug1, bug2, alg1, alg2, distbug, tangentbug 

and D* were implemented and simulated on simulation software. 

Jang Gyu Lee, Hakyoung Chung [18] presents a new methodology for global path planning for 

an autonomous mobile robot in a grid-type world model. The value of a certainty grid 

representing the existence of an obstacle in the grid is calculated from readings of sonar 

sensors. In the calculation, a way of utilizing three sonar sensors readings at a time is 

introduced, resulting in more accurate world model. Once the world model is obtained, a 

network for path planning is built by using the model. The global paths, defined as the shortest 

paths between all pairs of nodes in the network, are calculated. A fast algorithm using a 

decomposition technique is proposed for real-time calculation. The new methodology has been 

implemented on the mobile robot whose role is to transport materials in flexible manufacturing 

system. The results show that the proposed method of certainty grids satisfactorily represents a 

precise environment, including the location of obstacles. Thus, the robot successfully 

comprehends its surroundings, and navigates to its destinations along optimal paths. 

Takanori Shibata, Toshio Fukuda, Kazuhiro Kosuge, Fumihito Arai [19] proposed a new 

hierarchical strategy for path-planning of multiple mobile robots using Genetic Algorithms 

(GAs). When a mobile robot moves from a point to a goal point, it is necessary to plan an 

optimal or feasible path avoiding obstructions and minimizing a cost such as time, energy, and 



21 
 

distance. This planning is referred to as the selfish-planning. When many robots move in a same 

space, it is necessary for each robot to select the most reasonable path so as to avoid collisions 

with other robots and to minimize the cost. This planning is referred to as the coordinative-

planning. The GAs are applied hierarchically to both planning’s of multiple mobile robots. 

Zhao-Qing Ma, Zeng Ren Yuan [20] developed and implemented a real—time navigation and 

obstacle avoidance method based on grids on the mobile robot THMR-2. This method permits 

the detection of unknown obstacles and avoidance collision based on the information of 

ultrasonic sensors while autonomously steering the mobile robot toward the given target in 

smooth and continuous motion. Experimental results are given in some typical environment. 

The strong power of the method has been demonstrated. 

B. Margaret Devi, Prabakar S [21] proposed an algorithm named dynamic point bug which can 

be included in bug algorithm family. The main task of a robot is to search a collision free path in 

order to reach the target specified. The main problem in robot navigation is localization i.e. the 

robot should know its present location. Here in this algorithm the localization problem is solved 

by using graphical method. Dynamic point bug algorithm has been implemented for robot 

navigation system. This proposed algorithm provides a solution to identify the present location 

of the robot while moving towards target based on coordinates estimation. 

Lei Cai, Juanjuan Yang, Li Zhao, Lan wu [22] shows The quadratic programming problem has 

broad applications in mobile robot path planning. This article presents an efficient optimization 

algorithm for globally solving the quadratic programming problem. By utilizing the convexity of 

univariate quadratic functions, we construct the linear relaxation programming problem of the 

quadratic programming problem, which can be embedded within a branch-and-bound structure 

without introducing new variables and constraints. In addition, a new pruning technique is 

inserted into the branch-and-bound framework for improving the speed of the algorithm. The 

global convergence of the proposed algorithm is proved. Compared with some known 

algorithms, numerical experiment not only demonstrates the higher computational efficiency of 

the proposed algorithm but also proves that the proposed algorithm is an efficient approach to 

solve the problems of path planning for the mobile robot 



22 
 

Lei Cai, Juanjuan Yang, Li Zhao, Lan wu [23] represented a novel detection algorithm for vision 

systems has been proposed based on combined fuzzy image processing and bacterial algorithm. 

This combination aims to increase the detection efficiency and reduce the computational time. 

In addition, the proposed algorithm has been tested through real-time robot navigation system, 

where it has been applied to detect the robot and obstacles in unstructured environment and 

generate 2D maps. These maps contain the starting and destination points in addition to 

current positions of the robot and obstacles. Moreover, the genetic algorithm (GA) has been 

modified and applied to produce time-based trajectory for the optimal path. It is based on 

proposing and enhancing the searching ability of the robot to move towards the optimal path 

solution. Many scenarios have been adopted in indoor environment to verify the capability of 

the new algorithm in terms of detection efficiency and computational time. 

Valencia R., Andrade-Cetto J. [24] proposed in this Chapter that Pose SLAM graphs can be 

directly used as belief roadmaps and thus used for path planning under uncertainty. The 

method they present in this Chapter devises optimal navigation strategies by searching for the 

path in the pose graph with the lowest accumulated robot pose uncertainty, i.e., the most 

reliable path to the goal. 

Li G, Chou W [25] described as a challenging optimization problem, path planning for mobile 

robot refers to searching an optimal or near-optimal path under different types of constrains in 

complex environments. In this paper, a self-adaptive learning particle swarm optimization 

(SLPSO) with different learning strategies is proposed to address this problem. First, we 

transform the path planning problem into a minimisation multi-objective optimization problem 

and formulate the objective function by considering three objectives: path length, collision risk 

degree and smoothness. Then, a novel self-adaptive learning mechanism is developed to 

adaptively select the most suitable search strategies at different stages of the optimization 

process, which can improve the search ability of particle swarm optimization (PSO). Moreover, 

in order to enhance the feasibility of the generated paths, we further apply the new bound 

violation handling schemes to restrict the velocity and position of each particle. Finally, 

experiments respectively with a simulated robot and a real robot are conducted and the results 



23 
 

demonstrate the feasibility and effectiveness of SLPSO in solving mobile robot path planning 

problem 

Haj Darwish, Ahmed, Abdulkader Joukhadar, and Mariam Kashkash [26] presents a solution to 

plan a path using a new form of the Bees Algorithm for a 2-Wheeled Differential Drive mobile 

robot. This robot is used in an indoor environment. The environment consists of static and 

dynamic obstacles which are represented by a continuous configuration space as an occupancy 

map-based. The proposed method is run in two respective stages. Firstly, the optimal path is 

obtained in the static environment using either the basic form or the new form of the Bees 

Algorithm. The initial population in the new form of the Bees Algorithm consists only of feasible 

paths. Secondly, this optimal path is updated online to avoid collision with dynamic obstacles. A 

modified form of the local search is used to avoid collision with dynamic obstacles and to 

maintain optimality of sub-paths. A set of benchmark maps were used to simulate and evaluate 

the proposed algorithm. The results obtained were compared with those of the other 

algorithms for different sets of continuous maps. This comparison shows the superiority of the 

new form of the Bees Algorithm in solving this type of the problems. The proposed method was 

also tested using AmigoBot robot. In this experiment, the proposed method was implemented 

using multi-threading techniques to guarantee real time performance at the dynamic stage. The 

results of this experiment prove the efficiency of the proposed method in a real time. 

Akka, Khaled, and Farid Khaber [27] expressed Ant colony algorithm is an intelligent 

optimization algorithm that is widely used in path planning for mobile robot due to its 

advantages, such as good feedback information, strong robustness and better distributed 

computing. However, it has some problems such as the slow convergence and the prematurity. 

This article introduces an improved ant colony algorithm that uses a stimulating probability to 

help the ant in its selection of the next grid and employs new heuristic information based on 

the principle of unlimited step length to expand the vision field and to increase the visibility 

accuracy; and also the improved algorithm adopts new pheromone updating rule and dynamic 

adjustment of the evaporation rate to accelerate the convergence speed and to enlarge the 



24 
 

search space. Simulation results prove that the proposed algorithm overcomes the 

shortcomings of the conventional algorithms. 

Roy, Nirmalya, et al [28] proposed Development and path planning in mobile robots is an 

exigent field of robotics. The objective of this paper is to show the use of Q-learning for 

navigation in indoor environments. Planning the shortest path from current state to the goal 

state using images captured from ceiling of the indoor environment. Captured image is tried to 

processed through different image processing and machine learning techniques. Obstacles in 

the path of the robot is also tried to processed by calculating Adaptive Gaussian Thresholding of 

the image captured. Position of the robot is tried to be tracked using template matching of CV. 

Q-learning techniques are applied to plan path of the mobile robot from current start to the 

goal state. 

Kuisong Zheng , Feng Wu  and Xiaoping Chen [29] proposed a paper describes the 

development of a laser-based people detection and obstacle avoidance algorithm for a 

differential-drive robot, which is used for transporting materials along a reference path in 

hospital domains. Detecting humans from laser data is an important functionality for the safety 

of navigation in the shared workspace with people. Nevertheless, traditional methods normally 

utilize machine learning techniques on hand-crafted geometrical features extracted from 

individual clusters. Moreover, the datasets used to train the models are usually small and need 

to manually label every laser scan, increasing the difficulty and cost of deploying people 

detection algorithms in new environments. To tackle these problems, (1) they propose a novel 

deep learning-based method, which uses the deep neural network in a sliding window fashion 

to effectively classify every single point of a laser scan. (2) To increase the speed of inference 

without losing performance, we use a jump distance clustering method to decrease the number 

of points needed to be evaluated. (3) To reduce the workload of labeling data, we also propose 

an approach to automatically annotate datasets collected in real scenarios. In general, the 

proposed approach runs in real-time and performs much better than traditional methods. 

Secondly, conventional pure reactive obstacle avoidance algorithms can produce inefficient and 

oscillatory behaviors in dynamic environments, making pedestrians confused and possibly 



25 
 

leading to dangerous reactions. To improve the legibility and naturalness of obstacle avoidance 

in human crowded environments, we introduce a sampling-based local path planner, similar to 

the method used in autonomous driving cars. The key idea is to avoid obstacles by switching 

lanes. We also adopt a simple rule to decrease the number of unnecessary deviations from the 

reference path. Experiments carried out in real-world environments confirmed the 

effectiveness of the proposed algorithms 

 

 

 

 

 

 

 



26 
 

 

1.4 OBJECT AND SCOPE OF PRESENT RESEARCH WORK 

 

Aim of the present work is to develop necessary algorithm to navigate a mobile robot in presence of 

obstacles from a starting point to a destination point using sensory feedback. A Parallax mobile robot 

(ActivityBot), purchased in the Robotics laboratory of Production Engineering Department of 

Jadavpur University, has been used for the present project. It is then necessary to obtain a path for 

avoiding obstacles present in static environments in the workspace. After location of obstacles is 

determined by LASER range sensor, the ActivityBot has moved towards the destination from the 

starting position following the path using Modified PointBug algorithm, a simple local path planning 

algorithm. 

The algorithm determines the next point to move for the robot forward target from any current 

point, which is the starting point at the beginning. Then next point is always determined on the basis 

of the output of an LASER range sensor fitted to the mobile robot that gives the distance of nearest 

obstacle from the sensor. 

Hence the main objectives of the present work are as follows: 

 To set up an arrangement for the workspace consisting of an Activity-Bot mobile robot with 

LASER range sensor and obstacles on a suitable worktable, having a marked boundary. 

 

 To mount the LASER range sensor on the Activity-Bot mobile robot system, and make 

necessary hardware connection to connect it to the Propeller Chip microcontroller through its 

input-output port (pins). Arrangement has been made for rotation of the LASER range sensor 

through 180o by a servo motor with reduction gear drive fitted to the ActivityBot. 

 

 To develop a simplified algorithm based on Point-Bug algorithm and to modify it for the 

purpose of moving a mobile robot of particular dimensions towards the goal avoiding static 

obstacles. 

 

 

 

 

  



27 
 

 

 To develop a program in Propeller-C language for producing necessary movements of the 

Activity-Bot mobile robot in presence of static obstacles for moving from a starting point to a 

target point using Modified PointBug Algorithm. 

 

 To run the program for different layout of workspace for testing the algorithm. 

 

Scope 

The design, analysis, algorithm, techniques described in the present thesis will be applicable to any 

mobile robot with two wheels driven by separate motors. However the program and the 

experimental results will be applicable only for the specific mobile robot used in the present project. 



28 
 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER-2 

2.0  DIFFERENT PATH PLANNING TECHNIQUES 

FOR MOBILE ROBOT  



29 
 

 

2.1 BUG ALGORITHMS 

Bug algorithms are fundamental and complete algorithms with provable guarantees, since they let 

the robot to reach its destination if it lies in given space. Bug algorithms solve the navigation problem 

by storing only a minimal number of way points, but without generating a full map of the 

environment. In these algorithms the robot takes an action on the basis of current percept of sensor 

without taking into account the previous path and actions. It has two behaviours, one is ‘‘move 

towards goal’’ and another is ‘’obstacle avoidance’’. In obstacle avoidance, it just avoids obstacle by 

following its edges and then restarts to move toward goal without considering any other parameter 

Navigation in an unknown 2D environment is one of the standard problems in robotics. A mobile 

robot is being placed at a starting position (S) and has to find its way to a goal position (G) that is 

specified by distance and direction relative to the starting position; no other information about the 

environment is known to the robot. The robot only has to reach the target position or terminate if 

the target is unreachable if it does not have to map its environment. Therefore, a particular 

navigation algorithm can have a statistically better performance than another, but may not be better 

for any possible environment setting [3]. 

The Bug model makes following assumptions about the robot.  

1. The robot is a point object.  

2. Navigation plane will be two-dimensional. 

3. No of obstacle is finite and have placed within a boundary region. 

4. location and shape about obstacle is completely unknown to robot. 

5. Robot can sense its position and can measure its travelled distance. 

6. Robot has computation power and memory to direct towards goal and can memorise the distance 

between two points. 

The following algorithms from the Bug family have been implemented and evaluated: Bug1, Bug2, 

Alg1, Alg2, DistBug, IBA, Class1, Rev1, Rev2, OneBug, LeaveBug  and  TangentBug. It is to be noted 

that this is not a complete list of Bug algorithms in existence.  There are more, e.g. VisBug-21, VisBug-

22, HD-1, Ave, RoverBug, WedgeBug and CautiousBug. Those were not included for brevity and  

 



30 
 

 

because they are quite similar to some of the included algorithms. For instance, RoverBug, 

WedgeBug and CautiousBug are similar to TangentBug.In this paper we have discussed  few of 

important and fundamental Bug algorithm like Bug1, Bug2, DistBug, IBA, Tangent Bug algorithm. 

 

2.1.1 Bug-1  Algorithm : 

In this algorithm [4] when robot detects an obstacle it starts moving around it until reaches to 

starting point from where it has started moving around the obstacle. During its movement around an 

obstacle, it calculates a leaving point with minimum distance to destination and generates new path 

from calculated leaving point to destination. After its one complete revolution around obstacle, it 

restarts its motion around obstacles until reaches to leaving point and starts moving on new 

generated path to reach the destination. Fig-2.1 shows the trajectory of robot under Bug-1 algorithm. 

Here, leaving point is (x1,y1) after detecting and avoiding the obstacle, so robot calculate new path 

from leaving to destination(x2,y2) using straight line equation. So the line equation is  y1=m*x+c ; 

where ‘c’ is the y axis intercept and ‘m’ [ m=tan-1{(y2-y1)/(x2-x1)} ] is the slope [4].  

 

                                                        

Fig-2.1 : Obstacle avoidance with Bug algorithms (Trajectory of Bug-1 algorithm) 

 

Robot follow this line and move toward goal untill a new obstacle is detected. One disadvantage of 

Bug-1 algorithm is, when the robot is following the edge of obstacle 1, it may collide with a 

neighbouring obstacle 2 in case when the later is in very close proximity to the first obstacle or the 

gap between them is less than the width of the robot. 

 

 



31 
 

 

2.1.2 Bug-2 Algorithm: 

Bug-2 algorithm [4] generates slope [m; m=tan-1{(y2-y1)/(x2-x1)}] from an initial position S (x1,y1) to 

destination G (x2,y2) and robot starts following it until it interrupted by obstacle. When it interrupted, 

it follows the edge of obstacle and calculates new slope from every new position until the new slope 

becomes equal to the original slope. After reaching on point having same slope as previous, it starts 

moving to destination by following pervious generated path. Bug-2 algorithm is shown below in fig-

2.2.  

                                                 

                          Fig-2.2: Obstacle avoidance with Bug algorithms (Trajectory of Bug-2 algorithm) 

 

2.1.3 Dist-Bug Algorithm: 

This algorithm is based on distance, in which robot moves from source to  destination on path having 

minimum distance. When robot faces an obstacle in path, it starts following the edge of obstacle 

simultaneously; it calculates the distance of destination from each point. The point with the 

minimum distance is known as leaving point. When it finds the leaving point during its motion around 

an obstacle, it generates a new path and starts following it until reaches to destination [4]. as shown 

in the fig-2.3. 

 

 

 

 



32 
 

 

                                                           

Fig-2.3: Obstacle avoidance with Bug algorithms (Trajectory of Dist-Bug algorithm) 

 

2.1.4 Intelligent Bug Algorithm (IBA): 

In the category of Bug algorithms [5], Dist-Bug algorithm is most efficient as path cost is considered 

throughout the decision making process. However, it is not goal oriented and thus can take the robot 

far away from its goal position while avoiding obstacles. This is due to its leaving point decision 

during edge detection in obstacle avoidance behaviour since the goal information is not taken into 

account. This gives the clue to improve Dist-Bug algorithm by creating an approach to make it goal 

oriented and to take time to destination into consideration. Based on this, the proposed IBA offers an 

intelligent control to navigate the robot in maze environment. 

The IBA algorithm has two fundamental steps one is ‘’move to goal’’ and another ‘’obstacle 

avoidance’’. The behaviours in IBA also depend on the present sensorial information of environment 

just as similar to the Dist-Bug  i.e. whether obstacles are sensed or not. Initially, in move to goal 

behaviour, a reference path is generated from source to goal position and the robot is forced to 

follow it until an obstacle is encountered or destination is reached. The behaviour of the robot is 

changed to obstacle avoidance when an obstacle is sensed and the robot is commanded to follow the 

edges of the obstacle until leaving point is reached. In IBA, leaving point by taking the goal position 

into account is selected on the basis of free path toward the destination. The robot monitors the 

obstacles in the path towards destination while detecting edge in obstacle avoidance behaviour. 

Trajectory of IBA is shown in the fig-2.4 where ‘S’ is the start point and ‘G’ is the goal point.This 

condition, not introduced in Dist-Bug algorithm, offers goal orientation.  

 

S = Start point 

G = Goal point 



33 
 

 

 

                                                            

                                                                             Fig-2.4: Trajectory of IBA 

The condition dictates that in IBA, the leaving point is not taken on the basis of minimum distance to 

destination. The obstacle-free path towards goal is also considered. This ensures that the robot does 

not have to wait for the point having minimum distance to goal. The robot changes its behaviour to 

move to goal in order to generate new reference path, in case an obstacles-free path is sensed. 

 

2.1.5 Tangent Bug Algorithm: 

The TangentBug [6] algorithm was developed by Kamon, Rivlin and Rimon .Tangent Bug algorithm 

finds tangents to the obstacle and calculates distances of robot from points where they touch the 

obstacle. These points are denoted by pi, where i denote index number. In this approach robot takes 

path of the tangent which maximally decreases heuristic distance i.e. d(robot position, pi)+d( pi, 

goal). At times it has to act as bug algorithm by following the edge of the obstacle if heuristic distance 

starts increasing while moving towards pi. It is a memory type algorithm which exhibits motion to-

goal and boundary following behavior. A value dmin which is the shortest distance observed so far 

between the sensed boundary of the obstacle and the goal and dleave which is the shortest distance 

between any point in the currently sensed environment and the goal are continuously updated. It 

terminates boundary following behavior when dleave < dmin. The figure 2.5 shows the path 

generated by tangent bug algorithm. 

 

 

 

 

 



34 
 

 

 

                                            

Fig- 2.5: Obstacle avoidance with Tangent Bug algorithms (Trajectory of  Tangent-Bugalgorithm)



35 
 

 

2.2 POINTBUG ALGORITHM: 

PointBug, [7] recently developed navigates a point of robot in a 2D plane of unknown environment 

which is filled with stationary obstacles of any shape. This new algorithm introduces a new notion 

called ‘sudden point’. Sudden point is a point where a sudden change in distance of sensor’s range is 

detected. This algorithm determines where the next point to move toward target from a starting 

point. The next point is determined by output of range sensor which detects the sudden change in 

distance from sensor to the nearest obstacle. The sudden change of range sensor output is 

considered inconsistent reading of distance either it is increasing or decreasing. There are three 

possible changes (a) It can be from infinity to certain value (b) from certain value to infinity (c) from 

certain value to a certain value. The initial position of robot is facing straight to the target point and 

then the robot rotates left or right searching for sudden point. After the first sudden point is found, 

the rotation direction of the robot is according to position of straight line between current sudden 

point and target point or dmin line (The line that connects the current point to the target point). The 

rotation direction of robot is always toward position of dmin line. The value of dmin is the shortest 

distance in one straight line between sudden point and target point and its value is always recorded 

every time the robot reaches new sudden point. The robot always ignores the sensor reading at 

rotation of 1800 and its beyond to avoid detection of previous sudden point making the robot return 

to previous sudden point from its current point. If there is no sudden point found within a single 3600 

rotation, the target is considered unavailable and the robot stops immediately. 

This algorithm can also perform in dynamic environment by obtaining information from range sensor 

then Robot advances and adjusts its direction continuously to the target. 

PointBug algorithm is suitable for an environment where there are not many obstacles and no spiral. 

The performance of the algorithm depends on total sudden points detected, less the sudden points 

detected better the performance. 

Figure-2.6 shows a range sensor scanning a pentagon shaped obstacle from A to E with a graph 

showing the distance produced from range sensor in cm from A to E. The C line is perpendicular to 

the surface of obstacle which is the shortest distance detected to the obstacle. The value of distance 

increases constantly from C to B and from C to D. From point B to A from the graph, the value of 

distance is suddenly increased almost twice and from point D to E the value of distance is suddenly 

increased from a few centimetres to infinity. The point A and E are the sudden points and considered  

 



36 
 

 

the points where the robot will move for the next point. Figure-2.7 shows the sudden points are 

detected on different shape of obstacles [8]. 

      

                                             

              Fig-2.6: Range sensor is detecting an obstacle               Fig-2.7: sudden point on different 

               from left to right and right to left                                     obstacle detecting by range sensor. 

 

Figure-2.8 shows how the algorithm is working in an environment to solve local minima problem by 

detecting sudden points from a starting point to target point. The robot first faces the target point at 

the starting point and then rotates from point A until it finds a sudden point at point B. Robot then 

move to point B and at point B; it rotates to the right direction to find next sudden point because the 

dmin line is located right side of current robot direction and finds new sudden point at C. Robot 

rotates to the right again at point C and finds new sudden point at D. At point D, the robot still 

rotates to the right and finds last sudden point and stop at target point. 

 

 



37 
 

 

 

                             
Fig.-2.8 : Trajectory generated by the PointBug           Table 1: Explanation on how sudden point 

 to solve local minimal problem and                             are found from starting point to Target from 

shadowed area is scanned area.                                   The fig.-2.8. 

 

 

 

 

 

 

 

 

 

 

 



38 
 

2.2.1 PointBug Algorithm Analysis: 

The objective of PointBug algorithm [7] is to generate a continuous path from start point(S) to target 

point(T) where S,T are given. In this algorithm the distance between two point A and B is denoted by 

d(A,B) so d(S,T) indicate the distance between S to T which is constant; d(S,T)=D(constant). D(An, B) 

indicates that point A which is located at yth sudden point on the way to ‘T’ and ‘P’ is total length of 

connected sudden points from ‘S’ to ‘T’. The line (S,T) is called the main line or m-line. 

The path generated by connecting two consecutive sudden points will be straight line and total 

distance covered by the robot is calculated by summing all the straight line created with sudden 

points; so  

                                                                𝑃 = ∑ (A௡ିଵ, 𝐴௡)௦ାଵ
௡ୀଵ …………. (1) 

In PointBug algorithm, every sudden point found will produce a logical triangle which is formed from 

three points namely target point, current sudden point and previous sudden point. The line between 

target point and current sudden point is dmin line and its values are accumulated in an array starting 

from 0 which is distance from starting point and target point up to last sudden point before meeting 

target point. Value dmin[0] is assigned manually and it is the initial value required to run the 

algorithm. The values of dmin[1] to dmin[n] are obtained from cosines rule except dmin[0]. 

                                                             a2 = b2 + c2 – 2bc cos A ………….. (2) 

If a is dmin then;                              dmin = √𝑏ଶ +  𝑐ଶ –  2𝑏𝑐 cos 𝐴............. (3) 

Here b is the distance between current sudden point to previous sudden point obtained from range 

sensor and c is the previous value of dmin. So the value of dmin[n] is 

                                                             Dmin=ඥ𝑏ଶ +  dmin[n − 1]ଶ – 2𝑏dmin[n − 1] cos 𝐴............ (4) 

Here angle A is rotation between current direction to next direction if the robot located at starting 

position, otherwise; 

                                                              Angle A = 180 –  Angle Adj –  Angle Rot if Angle A ≤ 90 ………….. (5) 

       

 

 



39 
 

                                                              Angle A = Angle Adj + Angle Rot if Angle A > 90  …………… (6) 

In equation (5) and (6) Adj = Adjacent angle of triangle. Rot is rotational angle  and angle Adj is 

calculated from sine rule; if sin B is Adj the 

                                                             Angle Adj = sin-1 
ୠ ୱ୧୬ ୅

ୟ
 …………… (7) 

where the b is previous dmin value and a is current dmin value. 
 
Say If dmin[n]=0 then  the robot is currently on target point. Now dmin[n] is the minimum distance 

between sudden point and target point. If its value is zero means the sudden point is on the target 

point, the value of angle A is zero and the value of previous dmin[n]is equal to distance between  

current sudden point and previous sudden point or c. Let’s say value of previous dmin[n] is b, and 

from equation (3), the value of dmin[n] is; 

                                                         dmin[n] = √𝑏ଶ + 𝑏ଶ –  2𝑏𝑏 cos 𝐴 

                                                          dmin[n]= √2𝑏ଶ +  2𝑏ଶ   

                                                           dmin[n]= 0 

                                                         

2.2.2 PointBug Algorithm Limitations 

Problem Of Continuous Follow Of Advancing Direction : 

The path generated by PointBug is not always optimum [7]. The continuous follow of the travel’s 

direction leads robot to move far away from the optimal path. This PointBug limitation is illustrated 

by Figure -2.9 when the robot arrives to point (B), PointBug algorithm starts searching for the next 

sudden point. As this research starts from the current direction, the next sudden point will be the 

point (C) instead of the point (D) which is the best choice. 

 

 

 

 

 

 

 

 



40 
 

                                                              

                              Fig-2.9: Problem still followed the direction of travel by PointBug algorithm. 
 
 
Problem Of The Bypass Of Sub-Paths : 
 
The searching strategy used by PointBug can produce another problem. Not only losing the optimal 

path, moreover the robot may never reach the target. An example illustrating this case is given by the 

Fig-2.10. 

 

                                                                   

                                           Figure-2.10: Example where PointBug algorithm can’t reach the target. 
 
 
In this example (Fig-2.10) PointBug algorithm can’t reach the target in spite of its existence, 

furthermore, the robot continues moving in infinite loops. 

 

 

 

 

 

 

 



41 
 

The Choice of the Point Which Minimize the Angular Deviation Relative to Target Direction does 
not Produce the Optimal Path : 
  
Many algorithms choose the next points to minimize the deviation angle from target direction. In this 

section we will demonstrate that even this principle is false: 

PointBug algorithm uses this principle when searching the first sudden point. It starts from angle zero 

and increase it until finding the first sudden point, see Figure-3.1. 

 

                                                                   

       Fig-2.11: Example where minimizing the angular deviation does not produce the shortest path. 
 
In this example (Figure 8) the deviation angle formed by the point (A) [SD, SA] is 24.4° and the path 

length (S)-(A)-(D) = 9cm, and the deviation angle formed by (B) [SD, SB] is 6° and the path length (S)-

(B)-(D) = 9.246cm 

 Optimal path 9 cm ; SA =√𝟒𝟐 + 𝟑𝟐 =5   and AD = 4 so S-A-D = 9 

 PointBug (or other algorithm with the same principle)= SB= √𝟖𝟐 + 𝟐𝟐 = √𝟔𝟖 = 8.246 and 

BD=1 so  

S-B-D = 9.246 

Although the greater deviation angle formed by the point (A) [SD, SA] this path is shorter. 
 

 

 

 

 

 

 



42 
 

In the present work, the basic concept of considering the angle with minimum deviation is used in 

PointBug algorithm has been used with the following modifications: 

a) Instead of considering the mobile robot as a ‘point’, the actual dimension of the mobile 

robot has been considered. 

b) Whenever an obstacle is encountered in its path of the mobile robot, only increase in 

distance of sensor’s range by an amount which is sufficient for the mobile robot to ‘go 

through’ considering its dimensions has been considered as a ‘sudden point’ for finding 

the angle deviation. 

Several changes in the algorithm (and also in the program) have been made for incorporating these 

modification, and used will be described in chapter-4. 



43 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER-3 

3.0  SYSTEM HARDWARE AND SOFTWARE OF ACTIVITYBOT AND 
LASER RANGE SENSOR                                                                                                         



44 
 

 

3.1 SYSTEM COMPONENTS USED IN THE PROJECT 

 

The system hardware and software used in the present project are: 

1. Parallax Activity-Bot mobile robot kit installed in the Robotics laboratory of Production 

Engineering department of Jadavpur University as shown in fig-3.1. 

2. LASER range sensor (LIDAR lite V3) for providing the distance of an obstacle from the sensor. 

3. Simple IDE software (Version 1-1-0) & Propeller C language to run the mobile robot 

 

3.2  SYSTEM HARDWARE 
 
This compact, zippy robot matches a multi-core Propeller microcontroller brain with great hardware.  

This robot’s microcontroller contains free C language programming with SimpleIDE software for 

Windows and Mac. ActivityBot provides feedback of 360° High-speed servo motors with built-in 

encoders make fast, consistent maneuvers. In this robot we can Plug common electronic parts right 

into the breadboard or 3-pin headers and for that no soldering or special connectors needed. For 

navigation purpose the sensor is used with it is LASER range sensor (LIDAR lite V3). It’s hardware 

contain built-in SD card slot and included microSD card are ready for data-logging and file storage.  

 

             

                 Fig-3.1: Parallax Activity-Bot mobile robot kit with LASER range sensor.                      

 



45 
 

 
The detailed component list is given below.  
 

 Propeller Activity Board 
 High speed servo 

 ActivityBot encoder wheel with O-Ring tire 

 LASER range sensor (LIDAR lite V3)  

 Robot chassis 

 Battery holder 

 1" tail wheel ball 

 USB A to mini-B cable 

 MicroSD card 

 

 3.2.1 Propeller Activity Board  

 

     Features: 

 Built-in 8-core Propeller P8X32A microcontroller, 64 KB EEPROM, and 5 MHz crystal 

oscillator[30]. 

 Solder-free prototyping with breadboard and header sockets for power and I/O  

 Six servo/sensor ports with power-select jumpers  

 Automatically selects between USB and external power sources and provides USB over-

current protection  

 6–15 V center-positive 2.1 mm barrel jack for external power supplies 

 Convenient reset button and 3-position power switch  

 Onboard mini stereo-audio jack with microphone/video pass-through 

 Built-in micro SD card slot for data logging or storing WAV files  

 Wireless Module socket accepts RF modules to simplify remote management 

 Dedicated analog header sockets provide four A/D 12-bit inputs and two buffered 

variable resolutions D/A outputs  

 Indicator lights show the status of system power, servo power, programming source, 

DAC output levels, wireless communication activity, and USB communication activity  

 3.3 V and 5 V switching voltage regulators with independent 1.8 amp outputs  

 

 



46 
 

 

Key Specifications:  

 Power requirements: 6 to 15 VDC from an external power supply, or 5 V from a USB port 

 Communication: USB mini-B (onboard serial over USB) 

 Dimensions: 4.0 x 3.05 x 0.625 in (10.16 x 7.75 x 1.59 cm)  

 Operating temp range: +32 to +158 °F (0 to +70 °C) 

 

BOARD FEATURES 

        

                                                                       Fig-3.2: Propeller Activity Board. 

 

I. Power Jack  

The 2.1 mm centre-positive power jack is one of the two power input options. The board accepts 

6–9 V from this connector. This option is useful for robots and other remote applications where 

the board is not powered from a computer’s USB port. Parallax’s 7.5 V, 1 A supply (#750-00009) 

works well with this board. 



47 
 

 

II. Propeller 8-core Microcontroller System 

 64 Kilobyte I2C EEPROM for program and data storage 

 8 core Propeller P8X32A microcontroller 

 5 MHz crystal oscillator 

The P8X32A microcontroller has 8 cores, so it can do many different things at the same time. It 

uses I/O pins P28 and P29 to communicate with the I2C EEPROM for program and data storage. 

The crystal oscillator connected to the Propeller provides a clock signal for the system. The 

Propeller can multiply its 5 MHz oscillator signal by up to 16 for a system clock frequency of 80 

MHz. 

 

III. 3.3V & 5 V Regulators 

 The linear 5 V regulator can deliver up to 1.5 A with a 6 V power supply, or 750 mA with a 9 V 

power supply, for circuits built on the breadboard and devices connected to the servo ports. The 

3.3 V regulator can deliver up to 500 mA for breadboard circuits, and it also powers the Propeller 

microcontroller system. 

 

IV. Servo Ports  

These ports are for connecting servos and other 3-pin devices to Propeller I/O pins, labelled 

above each port. Labels indicating the GND (ground) and PWR (power) pins for each port are 

along the right. Each pair of servo ports has a jumper on power-select pins to its immediate left. 

Each pair can be set to 5 V by placing the jumper over the pair of pins closer to the 5V label, or to 

unregulated input voltage from an external power input by placing it over the pair of pins closer 

to the VIN label. If the jumper for a pair of ports set to 5 V, they will receive regulated 5 V power 

whenever the power switch is set to 2. If the jumper for a pair of servo ports is set to VIN, they 

will receive unregulated power from the source connected to the 2.1 mm barrel jack, so long as 

the power switch is set to 2. 

 

V. 3.3 V & 5 V Power Access 

The positive 3.3 V and 5 V supply sockets are positioned along the top of the breadboard. Use 

jumper wires to connect these sockets to circuits you build on the breadboard.  

 

 

 



48 
 

 

VI. Breadboard 

 This breadboard has 34 5-socket rows arranged in 2 columns. The columns are separated by a 

valley in the middle. Any two wires plugged into the same 5-socket row become electrically 

connected. The socket spacing is 0.1”. 

 

VII. GND, D/A, and A/D Access 

 GND access sockets — use jumper wires to connect these sockets to circuits on the 

breadboard. 

 Digital to Analog access sockets — D/A 0, 1 

o Output voltage range: 0 to 3.3 V.  

o D/A 0 is the digital to analog voltage from P26 after it has passed through a low-pass 

filter and buffer amplifier (but before it has passed through the coupling capacitor 

to the stereo output jack’s right speaker channel).  

o D/A 1 is the same as D/A 0, but the duty modulated signal is provided by P27. 

 Analog to Digital access sockets — A/D 0, 1, 1, 2, 3 

 Input voltage range: 0 to 5 V.  

 

VIII. D/A Activity Lights  

These yellow LEDs give a visual indicator of the output voltage at D/A sockets 0 and 1. They also 

indicate activity on the stereo output jack. The LEDs will vary in brightness with duty modulated 

digital to analog signals. 

 

IX. Analog to Digital Converter 

Use the Analog to Digital Converter to monitor the voltage at analog inputs labeled A/D 0, 1, 2, 

and 3. It will give a number from 0 to 4095, which tells what the voltage is in a range from 0 to 5 

volts. The converter used here is a 12-bit, 200 ksps SPI ADC, with a 5 V reference. 

 

X. Propeller I/O Pin  

Access to Propeller I/O pins P0..P15. Use jumper wires to connect these I/O pins to circuits on the 

breadboard, or to the XBee access header. 

 

 

 



49 
 

 

XI. XBee Access  

The XBee access header is to the left of the Propeller I/O pin access header. Use jumper wires 

between the two headers to connect Propeller I/O pins to XBee DO (data out), DI (data in), RTS 

(ready to send) and CTS (clear to send) pins. 

 

XII. Reset Button  

Use this button to restart the Propeller microcontroller’s program. Press and hold to keep the 

microcontroller in reset, press and release to reset and allow the Propeller to load the program in 

EEPROM. 

 

XIII. Power Switch The power switch has 3 settings: 

 0 — off 

 1 — power to the microcontroller system, including the P0-P15 via the I/O pin 

access socket 

 2 — power to the microcontroller system and servo ports; see 5) Servo Ports for 

details. 

  

XIV. USB Port 

 The USB port is used:  

 to load programs from your computer into the Propeller microcontroller 

 to provide serial-over-USB communication with a terminal program on your computer.  

 to supply 5 V power to the Propeller Activity Board from your computer’s USB port. For 

power, the USB Port is input current limited to between 450 mA and 500 mA. This 

prevents any unexpected responses from USB 2.0 ports to current draws from motors, 

wiring mistakes, etc. If you are using this board with an external USB hub, be sure to use a 

powered hub if you are not providing power from the power jack. 

 

XV. XBee DO/DI Activity Lights  

These LEDs give a visual indicator of communication happening between the XBee module and 

the Propeller microcontroller. The XBee DO line activity is indicated with a blue LED. The XBee DI 

line activity is indicated with a red LED. 

 

 



50 
 

Propeller I/O Pin Assignments 

 

I/0 Pin 

 

Function 

 

P0–P15 General-purpose I/O access alongside the breadboard 

P12–P17 3-pin header signal pins — this is the servo port header above the 

breadboard 

P18–P21 Analog to digital converter 

P22 microSD card DO (data out) 

P23 microSD card CLK (clock) 

P24 microSD card DI (data in) 

P25 microSD card /CS (active-low chip select) 

P26–P27 P26–P27: Duty modulated D/A converter signals go to: 

 – Logic buffered yellow LED circuits sockets for brightness control  

– Low-pass filter + op amp buffer with outputs ranging from 0 to 3.3 V: 

 To DA0 and DA1 analog outputs on J1  

 Through coupling capacitor to stereo outputs 

P28–P29 64 KB I2C EEPROM for program and data storage. P28 = CLOCK, P29 = 

DATA 

P30 Propeller programming Rx (transmits signal received by USB-to-serial 

converter’s Rx line) 

P31 Propeller programming/debugging Tx (receives signal transmitted by 

USB-to-serial converter’s Tx line) 

 

 

 

 

 

 

 

 



51 
 

 

3.2.2 High Speed Continuous Rotation Servo  

The high speed servo motor is shown in the figure 3.3. 

Features 

 Bi-directional continuous rotation  

 Up to 150 RPM @ 6 VDC, or 180 RPM @ 7.4 VDC  

 Linear response to pulse-width modification for easy ramping 

 3-pin ground-power-signal cable and female header with 0.1” spacing for quick connection 

 Easy to interface with any Parallax microcontroller 

 Very easy to control; examples available for many programming languages 

 

Key Specifications 

 Power requirements:6.0 to 8.0 VDC;  

Maximum current draw  

130 +/- 50 mA @ 7.4 VDC  

when operating in no 

 load conditions, 15 mA @ 7.4 VDC 

 when in static state 

 Communication: pulse-width modulation 

 Speed: 0.30 +/- 0.06 sec/360°  

 Torque: 22 +/-11 oz-in (1.6 +/- 0.8 kg-cm) @ 7.4 V  

 Weight: 1.5 oz (42 g) 

 Dimensions: approx- 2.2 x 0.8 x 1.6                                   fig-3.3: High Speed Servo Motor 

 in (56 x 19 x 41 mm) excluding servo horn                                                                   

 Operating temperature range: 14 to 113 °F (-10 to +45 °C) 

 

 

 

 

 

 

 

 

 



52 
 

 

 

Quick-Start Circuit: 

Connection of the servo to the microcontroller as shown in the figure-3.4. 

 

Vµ = microcontroller voltage supply 

Vservo = 6 to 7.5 VDC, regulated or battery 

 I/O = PWM TTL or CMOS output signal, 3.3 to 5 V; 

<Vservo + 0.2 V 

 

 

 Fig-3.4: Circuit Diagram between servo with microcontroller 

 

Servo Control 

The Parallax Continuous Rotation Servo is controlled through pulse width modulation. Rotational 

speed and direction are determined by the duration of a high pulse, in the 1.3– -1.7 ms range. In 

order for smooth rotation, the servo needs a 20 ms pause between pulses. Fig-3.5 below is a sample 

timing diagram for a centered servo at 1.5 ms control pulse makes the servo stand still. 

                   

                                                                                       Fig-3.5 

 

 

 

 

 

 



53 
 

 

As the length of the pulse decreases from 1.5 ms, the servo will gradually rotate faster in the 

clockwise direction, as can be seen in the figure below: 3.6. 

 

                

                                                                                      Fig-3.6. 

Likewise, as the length of the pulse increases from 1.5 ms, the servo will gradually rotate faster in the  

counter-clockwise direction, as can be seen in the figure below: 3.7 

 

                 

                                                                                       Fig-3.7 

Relation between Velocity vs. Pulse Width : 

The graph (fig-3.8) below shows that while the velocity response curve is consistent for each servo, 

the positive velocity response near 1.4 ms has a much sharper curve than the negative velocity 

response near 1.6 ms. 

The net effect is that when two servos are mounted on a robot, pulse widths equidistant from the 

centre value of 1.52 ms will not result in the same rotational speed, and the robot will switch slightly 

to one side. 

For robotics navigation applications that do not incorporate frequent course adjustment from object 

sensors, this can be compensated for in software, or with the use of encoders. 

 



54 
 

 

 

                    Fig-3.8: Graph between rotational velocity vs control pulse width for both servo 

 

3.2.3 Encoder 

Encoder Ticks 

Each ActivityBot encoder shines infrared light at the ring of 32 spokes in the wheel next to it. If the 

light passes between the spokes, the encoder sends the Propeller a high signal. If it bounces off a 

spoke and reflects back to the encoder’s light sensor, it sends a low signal to the Propeller. Each time 

the signal changes from high to low, or low to high, the Propeller chip counts it as an encoder tick. 

Each encoder tick makes the wheel travel 3.25 mm forward. Remember, an encoder tick is counted 

when the encoder sensor detects a transition from spoke to hole or hole to spoke. Since there are 32 

spokes and 32 holes, there are a total of 64 encoder ticks per wheel turn. Fig-3.9 shows a Cross 

section view of encoder wheel. 

 

                                                        Fig-3.9: Cross Section View of Encoder Wheel 



55 
 

Sensing Direction 

The Propeller chip knows what direction the servos turn based on the signal it uses to make the 

servo move. All it needs from the encoder is to know how fast it’s turning. It does this by counting 

encoder ticks over a period of time. The libraries keep track of all this for you, so your programs just 

need to tell the robot how far or how fast to go. 

 

3.2.4 LASER Range Sensor System:                                                                              

LASER Range sensor system, also called LIDAR range sensor, which means Light Detection and 

Ranging,  shown in the figure-3.10, provides an easy method of distance measurement. This sensor is 

perfect for any number of applications that require to perform distance measurements between the 

sensor and a stationary or moving objects. 

 

       

 

 

 

 

 

 

 

Fig-3.10: LIDAR Range Sensor 

 

Working Principle 

This device measures distance by calculating the time delay between the transmission of a near-

infrared laser signal and its reception after being reflected from a target using the known speed of 

light. It’s unique signal processing approach transmits a coded signature and looks for that 

signature in the return, which allows for highly effective detection with eye-safe laser power levels. 

This sensor can measure up to Range 40m , with resolution ± 1cm and accuracy is ±2.5cm( for <5m) 

, ±10cm ( for ≥ 5 m). 

To take a measurement, this device first performs a receiver bias correction routine, correcting for 

changing ambient light levels and allowing maximum sensitivity. Then the device sends a reference 

signal directly from the transmitter to the receiver. It stores the transmit signature, sets the time 

delay for “zero”distance, and recalculates this delay periodically after several measurements. Next, 

the device initiates a measurement by performing a series of acquisitions. Each acquisition is a 

 



56 
 

transmission of the main laser signal while recording the return signal at the receiver. If there is a 

signal match, the result is stored in memory as a correlation record. The next acquisition is summed 

with the previous result. When an object at a certain distance reflects the laser signal back to the 

device, these repeated acquisitions cause a peak to emerge, out of the noise, at the corresponding 

distance location in the correlation record. The device integrates acquisitions until the signal peak in 

the correlation record reaches a maximum value. If the returned signal is not strong enough for this 

to occur, the device stops at a predetermined maximum acquisition count. Signal strength is 

calculated from the magnitude of the signal record peak and a valid signal threshold is calculated 

from the noise floor. If the peak is above this threshold the measurement is considered valid and the 

device will calculate the distance, otherwise it will report 1 cm. When beginning the next 

measurement, the device clears the signal record and starts the sequence again. 

 

 

 

 

 

Fig-3.11: Working principle of LIDAR range sensor with PWM Arduino interfacing 

 

Key Features: 

 Range: 0-40m Laser Emitter 

 Resolution: +/- 1 cm (0.4 in.) 

 Accuracy: ±2.5cm( for <5m) , ±10cm ( for ≥ 5 m) 

 Power: 5 Vdc nominal 4.5 Vdc min., 5.5 Vdc max. 

 Current Consumption: 105mA idle; 130mA continuous 

 Rep Rate: 50 Hz default 500 Hz max 

 Laser Wave Length/Peak Power: 905nm/1.3 watts 

 Beam Divergence: 4m Radian x 2m Radian 

 Optical Aperture: 12 × 2 mm (0.47 × 0.08 in.) 

 Interface: I2C or PWM 



57 
 

Physical Specifications 

 Operating temperature: -20 to 60°C (-4 to 140°F)0 – 70° C.  

 Size (LxWxH) : 20 × 48 × 40 mm (0.8 × 1.9 × 1.6 in.) 

 Weight: 22 g (0.78 oz.) 

 

LASER Specifications 

 Wavelength: 905 nm (nominal) 

 Total laser power (peak): 1.3 W 

 Mode of operation: Pulsed (256 pulse max. pulse train) 

 Pulse width: 0.5 μs (50% duty Cycle) 

 Pulse train repetition frequency: 10-20 KHz nominal 

 Energy per pulse: <280 nJ 

 Beam diameter at laser aperture: 12 × 2 mm (0.47 × 0.08 in.) 

 Divergence: 8 m Radian 

Connections 

                               

 

Wire Color Function 
Red 5 Vdc (+) 
Orange Power enable (internal pull-up) 
Yellow Mode control 
Green I2C SCL 
Blue I2C SDA 
Black Ground (-) 

 

 

 

 

 

 

 

 



58 
 

 

3.3  ACTIVITYBOT SYSTEM SOFTWARE 

The system software used to run the PROPELLER microcontroller is called Simple IDE software and 

the programming language used for controlling the ActivityBot this is called Propeller C. 

3.3.1  Simple IDE 

A USA based company Parallax Inc. has developed this Simple IDE software to control the ActivityBot 

(name of the mobile robot).  It is available for Windows and Mac and even Linux.  It's an open-source 

C programming environment for the multi-core Propeller microcontroller. This software helps in 

writing the simple C program in Propeller C and downloads the program into the Propeller 

microcontroller. The program can be downloaded through USB cable and then the loaded program is 

used to run the mobile robot either by loading the program into RAM or EEPROM. The program can 

be saved with a project file name and can be edited anytime as and when needed. The Simple IDE 

terminal shows the messages on screen for print source code and inputs can be entered for C input 

code. 

3.3.2 Propeller C 

This is a c-language version developed for 8-core propeller micro controller. There is some Header 

and Source files in this Propeller C which collects different functions and codes which are used in 

programming and fulfill the different tasks performed by the Simple IDE and Activity Bot. 

3.3.3 Description of main Commands used in the Project 

i) drive_setMaxSpeed (int speed) 

Modifies the default maximum top speed for use with encoders. The default is 128 ticks/second = 2 

revolutions per second (RPS). This is the full speed that drive_distance and drive_goto use. This value 

can currently be reduced, but not increased. Speeds faster than 128 ticks per second are "open loop" 

meaning the control system does not use the encoders to correct distance/speed. 

Parameter :  

             Speed    Maximum cruising speed for drive_distance and drive_goto 

 ii) servo_angle (int pin, int degree Tenths)  

For Parallax Standard Servo rotation angle can be set from 0 to 180 in tenths of a degree. 



59 
 

Examples: 

               servo_angle(pin, θ); //  for θ degrees 

               servo_angle(pin, 900); //  for 90 degrees 

               servo_angle(pin, 1800); //  for 180 degrees  

Parameters:  

  pin Number of the I/O pin connected 
toservo. 

  degreeTenths (θ)   Tenths of a degree from 0 to 1800. 
 

iii) drive_goto (int distleft, int distright) 

This command make each wheel  go a particular distance. Recommended for straight forward, 

backward, turns, pivots, and curves/arcs. This function ramps up to full speed if the distance is long 

enough. It holds that speed until it needs to ramp down. After ramping down it applies 

compensation. By default, this function does not return until the manoeuvre has completed. 

Parameters:  
              distLeft              Left wheel distance in ticks (spoke to space and space to spoke transitions). 

             Each "tick" transition is 1/64th of a wheel revolution, causing the wheel to 
             roll approximately 3.25 mm 

 
             distRight            Right wheel distance in ticks 
 

iv) Laser_cm 

This commands gives measured distance of the nearest obstacle sensed by the LASER range sensor in 

centimetre. 

Example: laser_cm() 

v) pause (int time)  

Delay cog from moving on to the next statement for a certain length of time. The default time 

increment is 1 ms, so pause(100) would delay for 100 ms = 1/10th of a second. This time increment 

can be changed with a call to the set_pause_dt function. 

Parameters : 
time    The number of time increments to delay. 
  

. 



60 
 

 

3.4  ACTIVITYBOT NAVIGATION SYSTEM 

In this section we will see how ActivityBot move forward direction, backward direction, and can 

rotate in left or right side. Before we have seen that the Parallax High Speed Continuous Rotation 

Servo is controlled through pulse width which decides the direction of rotation of servo motor. It also 

covers the LIDAR range sensor rotation attached at the front side of mobile robot which is used to 

sense the obstacle position during navigation. For movement purpose, first change the distance in 

terms of “ticks” for each wheel rotation. Positive ticks number for clockwise direction and negative 

ticks for counter clockwise direction. 

The term “tick” indicates a transition from either spoke detected to hole detected. Activity Bot has 32 

spokes, separated by 32 spaces, total 64 tics. If wheel rotates 1/64 th turn it will move 1tick means 

3.25mm [fig-..] 

Our programme needs the ticks value to tell the Activity Bot to move. Any distance can be converted 

into ticks value. ticks = distance mm ÷ 3.25 mm. 

 

3.4.1 Forward and Backward movement of ActivityBot 

For forward and backward movement of the activity Bot, the left and right both wheel will rotate in 

clockwise and anti-clockwise direction respectively. The abdrive library has a function named 

drive_goto. It is used to tell the Activity-Bot how far each wheel should turn in terms of 3.25 mm  

increments. The details of straight line navigation of Activity-bot in forward and backward direction 

are described in figure-3.12 

For forward movement 

drive_goto( int distleft, int distright)    // distance value in ticks and both value is +ve. 

For Backward movement 

drive_goto(-int distleft,- int distright)    // distance  value in ticks and both value is –ve. 

 



61 
 

                    

                                               Fig-3.12 : Drive distance block to make the ActivityBot move. 

                     

3.4.2 Turning the ActivityBot 

We can turn the activity Bot in two ways. One, robot can rotate in clockwise and anti-clockwise by 

holding  one wheel still which is shown in the fig-3.13, and making other wheel turn about holding 

wheel. Two, by rotating the both wheel is opposite direction at same speed or at same ticks value 

which is shown in the figure-3.16. 

Say for right wheel turn, the left wheel is to be held fixed, the right wheel will have to turn by 

2*π*turning radius(R) which is equal to 664.76 mm where R= 105.8 mm. For turning activity-bot by n 

number of turn that would be 664.76 * n. To calculate the number of ticks for corresponding turning 

angle, no of ticks (t) = 664.76 * n / 3.25. 



62 
 

            

                         Fig-3.13: Rotation (clockwise) of mobile robot by holding right wheel still. 

 

The command used for this turning is  

drive_goto ( left wheel ticks (t), 0)      // for left turning (cw rotation) 

drive_goto ( 0, right wheel ticks (t) )  // for right turning (ccw rotation). 

 

 

 

For rotation about centre of mobile robot, ticks will be divided into equal number of ticks for both 

wheel movement, but each wheel to be turned in opposite direction in respect of right or left turning. 

 



63 
 

                                       

                                        Fig- 3.14: Rotation about centre of mobile robot    

 

The command uses for turning about mobile robot centre is 

drive_goto (- t/2, t/2 )         // for right turning or ccw rotation. 

drive_goto ( t/2, - t/2 )       // for left turning or cw rotation. 

  

 

 

 

 

 

 



65 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER-4 

4.0 EXPERIMENTATION WITH PARALLAX ACTIVITYBOT AND LASER 
RANGE SENSOR  FOR PATH PLANNING & NAVIGATION BASED ON 

MODIFIED POINTBUG ALGORITHM  



66 
 

 

4.1 MODIFICATION OF POINT BUG ALGORITHM FOR ACTUAL DIMENSION OF ROBOT. 

In Point Bug and all other algorithm of Bug family the mobile robot is assumed as a point.  But in real 

case when the algorithm is used for navigation of mobile robot avoiding obstacles and to reach the 

goal, one has to consider the real dimension of the mobile robot which is actually not a point . That’s 

why some modifications have been done in point Bug algorithm considering the actual dimension of 

the mobile robot used in present object. When a sudden point is obtained after detecting an obstacle 

, the robot will have to move to a modified point which is slightly away from the actual sudden point. 

4.1.1 Modification of Angle for Getting Modified Sudden Point 

In the way to move towards goal if any obstacle is detected by range sensor, it starts scanning the 

obstacle to get sudden points. Now if it moves to the sudden point with minimum angle considering 

mobile robot as a point, then  the  robot  will  collide with  obstacle for  not  considering actual robot 

dimensions. So a vital modification is carried out to avoid the collision with obstacle. An angle ‘angext’ 

is added with both right and left side sudden point angle.  The fig-4.1 is shown for right side angle 

only. LASER range sensor rotates about point ‘Q’ and robot rotates about point ‘P’. 

          

                    Fig-4.1: The geometry of angle and distance modification to avoid collision. 

db 



67 
 

Q = Location of sensor at which point obstacle is detected. 

P = Location of robot wheel axle centre at which point obstacle is detected. 

Angr = Sudden point angle(right). 

Angw = Angle of rotation  required about wheel axle centre. 

dr = Sudden point distance from sensor. 

dw = Sudden point distance from wheel line center. 

S = Distance between the wheel axle center (= 5 cm for activity Bot). 

dext = Distance between sensor and wheel center along the line of movement of the robot (=7 cm). 

Angrext = Minimum addition angle rotation required to avoid collision considering robot dimension. 

db = Distance between the wheel axle centre and rear end of the robot (= 8cm). 

If we know the values of dr, angr and dext then we can easily find out the value of dw and Angw from 
the figure-4.1 

 

4.1.2 Modification of Distance for Getting Modified Sudden Point 

After detecting sudden point, the mobile robot moves forward and reaches sudden point according 

to the LASER range sensor detected source point and in this situation if robot rotates towards goal 

and moves to the target, it will collide with obstacle. To avoid collision, distance modification is also 

important along with angle modification. So, after reaching sudden point with modified angle it will 

have to move some distance db( as shown in the fig-4.1) to reach at the modified sudden point for 

collision free movement from current position to target position.   

 

 

 

 

 

 

 



68 
 

4.2 PROGRAMMING DEVELOPED FOR PATH PLANNING OF MOBILE ROBOT  
BASED ON MODIFIED POINTBUG ALGORITHM 

 

In this project path planning for ActivityBot mobile robot using LASER range sensor is developed using 

propeller-C language with the help of Simple IDE software. The Propeller-C program has been 

developed to guide the mobile robot from start point to goal point by considering modified PointBug 

algorithm in static environment where the obstacle position and size is unknown. Robot first orients 

itself at start point towards goal point direction and then starts moving towards goal step by step 

(one step = 3*3.25 mm). After each step, the distance of obstacle, if any, is measured by the range 

sensor. If any obstacle is detected by LASER range sensor within a specified range (taken as 30 cm), it 

will stop moving and the LASER range sensor will start searching for the sudden point by rotating 

itself both sides. In this present work sudden point is taken as a point from which the next obstacle 

distance measured by range sensor is more than a specific distance which enough for the mobile 

robot to go through. At the same time the angular rotation of the sudden point is being determined 

by recording the angular rotation of sensor during scanning. After scanning the first obstacle, it is 

rotated further in the same direction for searching the presence of any other obstacle within 

specified angle (taken as 30o at 30cm distance) such that there is enough gap for the robot to go 

through. 

Within this range of angle, if any obstacle is detected then this process will be repeated and sudden 

point will be modified. If no sudden point is found within 90o rotation of range sensor then a 

message will be shown to reply that is not possible to move that direction. And this process is 

repeated for the both sides of the robot. 

After detecting sudden point on both sides by, the direction that makes minimum angle to rotate 

based on PointBug algorithm will be selected and the modified sudden point is determined by 

considering actual dimension of robot based on modified point Bug algorithm which is discussed in 

the section 4.1.1 and 4.1.2. 

After rotating to the direction of modified sudden point from the current direction the robot moves 

to that point and after reaching that point it rotates towards the goal point. Then again the robot 

starts moving towards the goal point step by step as it did from start point. The whole process is 

repeated until the robot reaches the goal point or a situation arrives when there is no path. The 

simplified flowchart of the process is shown in figure 4.2 and the computer program in propeller-C is 

given in section 4.4. 



69 
 

4.3 FLOWCHART OF DEVELOPED PROGRAM 

 

Fig 4.2 Flowchart of Developed Program 



70 
 

 

4.4 PROPELLER C PROGRAM FOR PATH PLANNING OF ACTIVITYBOT 
MOBILE ROBOT IN PRESENCE OF OBSTACLES USING LASER RANGE  
SENSOR BASED ON MODIFIED POINTBUG ALGORITHM 

The complete C program developed for the project is given below: 

 

 

/* 
PATH PLANNING OF ACTIVITY ROBOT USING A LASER RANGE SENSOR BASED ON   MODIFIED 
POINT-BUG ALGORITHM 
/* 
 
#include "simpletools.h"   // Include simple tools 
#include "abdrive.h"       // Include ActivityBot files     
#include "servo.h"         // Include servo motor files           
#include "fdserial.h"      // Include files for serial communication 
 //                           required for LASER range sensor 
 
int main()              // Main function 
{ 
 float X1, X2, Y1, Y2,ang,angrad, n, tt ,delx,dely, d, pi=3.1415926;                    
 int nticks=3,t; 
 drive_setMaxSpeed(4); 
  
 print("Enter start point(x,y) in mm”); 
 scan("%f%f\n",&X1,&Y1); 
 print("Enter goal point(x,y) in mm”); 
 scan("%f%f\n",&X2,&Y2); 
  
 delx=X2-X1; 
 dely=Y2-Y1; 
 d=sqrt((X2-X1)*(X2-X1)+(Y2-Y1)*(Y2-Y1)); 
 print("total distance = %f mm \n",d); 
 angrad=atan2(dely,delx); 
 ang=angrad*180/pi;      // in degree 
 print("angle=%f\n",ang); 
  
 n=ang/360;                                                                                            
 tt=(664.76*n)/3.25; 
 t=tt/2; 
 int i,m; 
 float dis, D; 
 servo_angle(16,900); 
 pause(1000);  
 drive_goto(-t,t); 
 pause(500); 
   
 L1: 
  i=0; 
  m=d/(nticks*3.25); 
  print("m=%d\n",m); 
 
 



71 
 

   
           if (i<m )    
             {     
                  drive_goto(nticks,nticks); 
                  dis= 10*laser_cm(); 
                  print("dis=%f\n",dis); 
                  i=i+1;                   
                   if (dis>300)                                  
                        goto L1;                      
             }           
           else            
             {    
                   goto L0; 
             }   
  D=i*(nticks*3.25); 
  print("Distance Moved=%f\n",D); 
   
  X1=X1+D*cos(angrad); 
  Y1=Y1+D*sin(angrad); 
     
  d=sqrt((X2-X1)*(X2-X1)+(Y2-Y1)*(Y2-Y1)); 
  print("d=%f\n",d); 
   
  float j,k,a,a0,b,b0,angr,angl,angt,dr,dl; 
  a=b=a0=b0=dis;     
   
  j=900; 
  L3:  
     while((a-a0)<=200)  
     {  
       servo_angle(16,j); 
       pause(500); 
       a0=a; 
       a=10*laser_cm(); 
        
       angr=(900-j)/10; 
       print("%d  %d\n",angr,a); 
       j=j-10; 
       if (j<=0) 
       { 
        print("no sudden point is found on right side  \n"); 
        angr=100; 
        goto L4;     
       }        
     }  
     
    angr=angr-1;   
        
    while ((a-a0)>=200) 
    {  
       servo_angle(16,j); 
       pause(500); 
       a=10*laser_cm(); 
       angt=(900-j)/10; 
       print("%d  %d\n",angt,a); 
       j=j-10; 
       if ((angt-angr)>30) 
       { 
       print("angr=%d dist=%d\n", angr,a0);   
       goto L4;     
       }           
    }        
     goto L3;          



72 
 

       
       
   L4: 
       pause(500); 
       servo_angle(16,900); 
 
           a=a0+120;   
    angr=angr+15;            
           print("angr=%f\n",angr); 
           print("a=%f\n",a); 
 
  k=900;  
  L5: 
   while((b-b0)<=200)  
     {  
       servo_angle(16,k); 
       pause(500); 
       b0=b; 
       b=10*laser_cm();        
       angl=(k-900)/10; 
       print("%d  %d\n",angl,b); 
       k=k+10; 
       if (k>=1800) 
       { 
        print("no sudden point is found on left side  \n"); 
        angl=100; 
        goto L6;     
       }        
     }  
    angl=angl-1;   
        
    while ((b-b0)>=200) 
    {  
       servo_angle(16,k); 
       pause(500); 
       b=10*laser_cm(); 
       angt=(k-900)/10; 
       print("%d  %d\n",angt,b); 
       k=k+10; 
       if ((angt-angl)>30) 
       { 
       print("angl=%d dist=%d\n", angl,b0); 
       goto L6;    
       }         
    }        
    goto L5;   
          
   L6:      
       pause(500); 
       servo_angle(16,900);         
  
           b=b0+120;   
  angl=angl+15;              
           print("ang2=%f\n",angl); 
           print("b=%f\n",b); 
     
   
 
 
 
 
   
 



73 
 

 
 
 
 if(angr<angl) 
            {         
            int t1,tto,tt1,ta ; 
            float n1,no,to,p1,angturned;         
            n1= angr/360; 
            t1= (664.76*n1)/3.25; 
            tt1=t1/2; 
            ta=a/3.25; 
                                
            drive_goto(tt1,-tt1); 
            pause(100); 
            drive_goto(ta,ta); 
            pause(20); 
                     
            p1=ang-angr; 
            X1=X1+(a*cos(p1*pi/180)); 
            Y1=Y1+(a*sin(p1*pi/180)); 
            print("%f\n %f\n",X1,Y1); 
            print("p1=%f\n",p1); 
         
            d=sqrt((X2-X1)*(X2-X1)+(Y2-Y1)*(Y2-Y1)); 
            delx=X2-X1; 
            dely=Y2-Y1; 
            angrad=atan2(dely,delx); 
            ang=angrad*180/pi; 
            angturned=ang-p1; 
                 
            print("d=%f\n ang=%f\n angtur=%f\n", d,ang,angturned); 
            
            no=angturned/360; 
            to=(664.76*no)/3.25; 
            tto=to/2; 
         
           drive_goto(-tto,tto); 
           pause(100);                       
 
           if (d>0)       
                goto L1;  
       
            }       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



74 
 

        
 
    else     
            {     
            int t2,tto,tt2,tb ; 
            float n2,u,no,to,p2,angturned; 
         
            n2= angl/360; 
            t2= (664.76*n2)/3.25; 
            tt2=t2/2; 
            tb=b/3.25;                   
              
            drive_goto(-tt2,tt2); 
            pause(100); 
            drive_goto(tb,tb); 
            pause(20);  
             
            p2= ang+angl; 
            X1=X1+(b*cos(p2*pi/180)); 
            Y1=Y1+(b*sin(p2*pi/180)); 
            print("%f\n %f\n",X1,Y1); 
            print("p2=%f\n",p2); 
         
            d=sqrt((X2-X1)*(X2-X1)+(Y2-Y1)*(Y2-Y1)); 
            delx=X2-X1; 
            dely=Y2-Y1; 
            angrad=atan2(dely,delx); 
            ang=angrad*180/pi; 
            angturned=p2-ang; 
         
            print("d=%f\n ang=%f\n angtur=%f", d,ang,angturned); 
         
            no=angturned/360; 
            to=(664.76*no)/3.25; 
            tto=to/2; 
        
            drive_goto(tto,-tto); 
            pause(100); 
                
    if (d>0)       
             goto L1;               
         
            }  
      
  L0:  
  print ("goal reached \n"); 
  pause(1000); 
             
} 
 
 
 

 

 

 

 



75 
 

Different variables used in the program: 

X1, Y1: Co-ordinates of starting or current position (initially the start position). 
X2, Y2: Co-ordinates of goal position. 
ang: goal orientation angle with respect to current orientation in angle.  
angrad: goal orientation angle with respect to current orientation in radian. 
n: no of turns corresponding to angle (ang). 
tt: no of encoder ticks for rotating “n” no of turn. 
t: half value of ticks (tt) for both wheel rotation in opposite direction about centre of robot wheel 
axis. 
delx, dely: incremental value of x and y co-ordinates from current and goal position. 
d: Euclidean distance between current (initially the start position) and goal position. 
nticks: no of encoder ticks for straight line movement. 
i: counter variable to store the number of ticks travelled so far.  
m: no of ticks for travelling d distance. 
dis: obstacle distance obtained from range sensor.  
D: distance moved till it detects obstacle. 
j: counter variable for scanning sudden point angle on right. 
k: counter variable for scanning sudden point angle on left. 
a: right sudden point distance.  
a0: previous value of right sudden point distance. 
b: left sudden point distance  
b0: previous value of left sudden point distance. 
angr: right sudden point angle measured from normal direction. 
angl: left sudden point angle measured from normal direction. 
dr: summed distance of current to right sudden and from right sudden to target point.  
dl: summed distance of current to left sudden and from left sudden to target point.   
n1: no of turns corresponding to angle (ang1). 
n2: no of turns corresponding to angle (ang2).  
t1: no of encoder ticks for rotating “n1” no of turn. 
t2: no of encoder ticks for rotating “n2” no of turn. 
tt1: half value of ticks (t1) for both wheel rotation in opposite direction about centre of robot wheel 
axis. 
tt2: half value of ticks (t2) for both wheel rotation in opposite direction about centre of robot wheel 
axis. 
ta: no of ticks for travelling a distance. 
tb: no of ticks for travelling b distance. 
p1: angle of robot rotation after moving to right sudden point measured from X-axis. 
p2: angle of robot rotation after moving to left sudden point measured from X-axis. 
angturned: angle of rotation of robot from sudden point to the target point calculated from X-axis. 
no: no of turn corresponding to angle (angturned) . 
to: no of encoder ticks for rotating “no” no of turn. 
tto: half value of ticks (to) for both wheel rotation in opposite direction about centre of robot wheel 
axis. 
 



76 
 

 
4.5 EXPERIMENT RESULTS AND DISCUSSIONS  
 
 
The experiment and its related all modifications have been done in the Robotics lab of Production 
Engineering department, Jadavpur University. After developing the program, it has been run 
successfully and the ActivityBot is guided  to follow a collision free path from start point to goal point 
based on modified pointBug algorithm in different layout. At the end we have achieved our aim. 
 
The developed C program has been run for moving the ActivityBot robot from its starting point to the 
goal point by detecting any obstacle using LASER range sensor. The angular position of the sudden 
point is obtained from servo motor rotation on which the LASER sensor is mounted. Initially, the 
robot orientation is parallel to the x-axis and it rotates towards goal by turning through required 
angle, and calculating the numbers of ticks and using drive_goto command for rotating cw or ccw 
direction accordingly. The forward movement is executed using drive_goto command. While 
advancing towards goal the range sensor continuously senses the distance to detect any obstacle 
within a specified distance. On detection of obstacle, scanning operation is carried out by simply 
rotating the servo motor attached to the sensor for determining the sudden points on both sides. 
Sudden point angle and distance as retrieved from the sensor are modified, as described in sections 
4.1.1 and 4.1.2 The robot then takes decision about its next point to move based on the calculation of 
lengths of sub-paths of current to target point through one modified sudden point and will move 
towards that sudden point following the selected path.  
On reaching the sudden point, the program again calculates the angle and distance of goal from 
current point, then rotates and starts moving towards goal. The program will continue till the robot 
reaches its target. In this way the robot moves in an unknown environment by avoiding obstacle in 
near optimal path. The developed program has been run successfully for different layouts of the 
workspace with different positions of the obstacles and goal point. 



77 
 

 

 

 

 

 

 

 

 

 

 

                                             CHAPTER-5 

5.0 CONCLUSION AND FUTURE SCOPE 

 

 

 

 

 

 

 

 

 

 

 



78 
 

5.1 CONCLUSION 

Based on the foregoing analysis, study of the algorithm, program development, 

experimentations and results on “LOCAL PATH PLANNING OF A MOBILE ROBOT USING 

LASER RANGE SENSOR BASED ON MODIFIED POINT BUG ALGORITHM” for the present 

project, the following conclusions may be drawn. 

 

1. Various algorithms of different path planning techniques have been studied thoroughly 

including bug algorithms, where point bug has been found suitable in most cases and has 

the capability of robot navigation methods for local path planning with using minimum 

number of sensors. 

 

2. Point bug algorithm has some limitations in finding optimal path because minimizing the 

angular deviation does not always guarantee shortest path. But in various cases, this 

algorithm may give the optimal path depending upon the layout of obstacles. 

 

3. Modified PointBug algorithm is used in the present project. In most of the path planning 

algorithms the mobile robot is consider as a point but here in modified Point Bug algorithm 

robot actual dimensions are considered. 

 

4. Because of considering robot dimension, modification of angle of rotation of robot along 

sudden point and modification of distance move along sudden point have been done to 

avoid collision. 

 

5. An arrangement has been made for setting up the workspace consisting of the mobile 

robot (ActivityBot) and multiple obstacles for various layout of workspace. 

 

6. A program in C, based on Modified PointBug algorithm for navigating the robot from start 

to goal position in presence of static obstacle has been developed using Simple IDE 

software. 

 

7. The developed program has been run successfully for different workspace layout. 



79 
 

 

5.2  FUTURE SCOPE 

 

The design, analysis, algorithm, techniques described in the present thesis is applicable to 

any mobile robot with two wheels driven by separate motors. However, the program and 

the experimental results described in the present thesis is applicable only for the specific 

mobile robot used in the present project. But with hardware based modification of the 

present program, any type of wheeled mobile robot may be navigated in the presence of 

obstacles. Further scope of the present project includes use vision system to solve the 

problems associated dynamic obstacles. 



80 
 

 

 

 

 

 

 

 

 

 

                                                     CHAPTER-6 

                                          6.0  REFERENCES  



81 
 

References : 

[1] Navid Toufan, Aliakbar Niknafs, “Robot path planning based on laser range finder and 
novel objective functions in grey wolf optimizer”, SN Applied Sciences volume 2, Article 
number: 1324 (2020). 
 
[2] Aisha Muhammad  , Mohammed A. H. Ali ,* , Sherzod Turaev  , Rawad Abdulghafor , 

Ibrahim Haruna Shanono  , Zaid Alzaid , Abdulrahman Alruban , Rana Alabdan  , Ashit Kumar 
Dutta  and Sultan Almotairi , “A Generalized Laser Simulator Algorithm for Mobile Robot 
Path Planning with Obstacle Avoidance” Sensors 2022, 22, 8177. 
https://doi.org/10.3390/s22218177 
[3] James Ng & Thomas Bräun, “Performance Comparison of Bug Navigation Algorithms”, 

Received: 22 January 2007 / Accepted: 11 March 2007 /Published online: 25 April 2007. 

 

[4] Zohaib, M., Pasha, M., Riaz, R.A., Javaid, N., Ilahi, M., & Khan, R.D, “Control Strategies for 
Mobile Robot With Obstacle Avoidance” COMSATS Institute of Information Technology, 
Islamabad, Pakistan. CoRR, abs/1306.1144, 2013. 

 

[5] Muhammad Zohaib, Syed Mustafa Pasha, Nadeem Javaid, Jamshed Iqbal, “Intelligent 
Bug Algorithm (IBA): A Novel Strategy to Navigate Mobile Robots Autonomously,” 
International Multi Topic Conference (IMTIC 2013), Communication Technologies, 
Information Security and Sustainable Development, Pages 291-299. 

 

[6] Donghyun Lee, Jongmin Jeong, Yong Hwi Kim, Jin Bae Park, "An improved artificial 
potential field method with a new point of attractive force for a mobile robot", Robotics and 
Automation Engineering (ICRAE) 2017 2nd International Conference on, pp. 63-67, 2017 

 

[7] Dib, Lynda, “E-Bug: New Bug Path-planning algorithm for autonomous robot in unknown 
environment” University of Badji-Mokhtar, Annaba, 2015; 
https://www.researchgate.net/publication/289335757 

 

[8] Mohamad, Z, “Point to Point Sensor Based Path Planning Algorithm for Autonomous 
Mobile Robots” Fac. of Elec. Engineering, Fac. of Mech. Engineering, University Teknologi 
MARA, MALAYSIA, 2010. 

 



82 
 

[9] Leena.N , K.K.Saju , “A survey on path planning techniques for autonomous mobile robots 
,” IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-ISSN: 22781684, p-ISSN: 
2320-334X PP 76-79, www.iosrjournals.org. 

 

[10] Jun-Hao Liang, Ching-Hung Lee, “Efficient Collision-Free Path-Planning Of Multiple 
Mobile Robots System Using Efficient Artificial Bee Colony Algorithm,” Advances In 
Engineering Software 79 (2015), Pages 47–56. 

 

[11] C. Balaguer, A. Martí, “Collision-Free Path Planning Algorithm For Mobile Robot Which 
Moves Among Unknown Environment,” Robot Control 1988 (Syroco '88), Selected Papers 
From The 2nd IFAC Symposium, Karlsruhe, FRG, 5–7 October 1988, A Volume In IFAC 
Symposia Series 1989, Pages 261–266. 

 

[12] Farouk MEDDAH, Lynda DIB, “P*: A New Path Planning Algorithm for Autonomous 
Robot in an Unknown Environment”, International Journal of Advances in Computer Science 
& Its Applications– IJCSIA Volume 5: Issue 1 [ISSN: 2250-3765], April 2015, Pages 15-18. 

 

[13] Hoc Thai Nguyen, Hai Xuan Le, “ Path planning and Obstacle avoidance approaches for 
Mobile robot,” IJCSI International Journal of Computer Science Issues, Volume 13, Issue 4, 
july 2016, ISSN (Print); 1694-0814, ISSN (Online): 1694-0784. 

 

[14] Muhammad Zohaib, Syed Mustafa Pasha, Nadeem Javaid, Jamshed Iqbal, “Intelligent 
Bug Algorithm (IBA): A Novel Strategy to Navigate Mobile Robots Autonomously,” 
International Multi Topic Conference (IMTIC 2013), Communication Technologies, 
Information Security and Sustainable Development, Pages 291-299. 

 

[15] Zi-Xing Cai, Zhi-Qiang Wen, Xiao-Bing Zou, Bai-Fan Chen, “A Mobile Robot Path Planning 
Approach Under Unknown Environments,” Proceedings Of The 17th World Congress The 
International Federation Of Automatic Control, Seoul, Korea, July 6-11, 2008. 

 

[16] Yang-Ge Wu, Jing-Yu Yang, Ke Liu, “Obstacle Detection And Environment Modeling 
Based On Multi Sensor Fusion For Robot Navigation,” Artificial Intelligence In Engineering 10 
(1996), Pages 323-333. 



83 
 

 

[17] James Ng, “A Practical Comparison of Robot Path Planning Algorithms given only Local 
Information”, available at: robotics.ee.uwa.edu.au/theses/2005-Navigation-Ng.pdf 

 

[18] Jang Gyu Lee, Hakyoung Chung, “Global Path Planning For Mobile Robot With GridType 
World Model,” Robotics And Computer-Integrated Manufacturing, Volume11, Issue1, March 
1994, Pages 13-21. 

 

[19] Takanori Shibata, Toshio Fukuda, Kazuhiro Kosuge, Fumihito Arai, “Path-Planning For 
Multiple Mobile Robots By Using Genetic Algorithms, Robotics,” Mechatronics And 
Manufacturing Systems 1993, Pages 409–414. 

 

[20] Zhao-Qing Ma, Zeng Ren Yuan, “Real-Time Navigation And Obstacle Avoidance BasedOn 
Grids Method For Fast Mobile Robot,” Algorithms And Architectures For Real-Time Control 
1992, Preprints Of The IFAC Workshop, Seoul, Korea, 31 August – 2 September 1992, A 
Volume In IFAC Postprint Volume 1992, Pages 205–210. 

 

[21] B. Margaret Devi, Prabakar S, “Dynamic Point Bug Algorithm For Robot Navigation”, 
International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013, 
Pages  1276-1279. 

 

[22] Lei Cai, Juanjuan Yang, Li Zhao, Lan wu, “An efficient optimization algorithm for 
quadratic programming problem and its applications to mobile robot path planning”, 
International Journal of Advanced Robotic Systems, January-February 2018, 
http://journals.sagepub.com/home/arx. 

 

[23] Rami Al-Jarrah, Mohammad Al-Jarrah, and Hubert Roth, “A Novel Edge Detection 
Algorithm for Mobile Robot Path Planning”, Hindawi Journal of Robotics Volume 2018, 
Article ID 1969834, 12 pages https://doi.org/10.1155/2018/1969834. 

 



84 
 

[24] Valencia R., Andrade-Cetto J. “Path Planning in Belief Space with Pose SLAM. In: 
Mapping, Planning and Exploration with Pose SLAM”, Springer Tracts in Advanced Robotics, 
volume 119, springer, cham, 2018. 

 

[25] Li G, Chou W. “Path planning for mobile robot using self-adaptive learning particle 
swarm optimization”, Science China Information Sciences May 2018, 1;61(5):052204. 

 

[26] Haj Darwish, Ahmed, Abdulkader Joukhadar, and Mariam Kashkash. "Using the bees 
algorithm for wheeled mobile robot path planning in an indoor dynamic 
environment." Cogent Engineering just accepted (2018): 1426539. 

 

[27] Akka, Khaled, and Farid Khaber. "Mobile robot path planning using an improved ant 
colony optimization." International Journal of Advanced Robotic Systems 15.3 ( May 2018): 
1729881418774673. 

 

[28] Roy, Nirmalya, et al. "Implementation of Image Processing and Reinforcement Learning 
in Path Planning of Mobile Robots." International Journal of Engineering Science 15211, Oct 
2017. 

 

[29] Kuisong Zheng , Feng Wu  and Xiaoping Chen. " Laser-Based People Detection and 
Obstacle Avoidance for a Hospital Transport Robot " Sensors 2021, 21(3), 961; 
https://doi.org/10.3390/s21030961. 

 

[30] Parallax Activity Bot reference manual and simple IDE software details and syntax of the 
commands and their functions are available at https://learn.parallax.com. 

 


