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1.1 INTRODUCTION TO MOBILE ROBOTS   

A mobile robot can be defined as an automatic machine that is capable of locomotion. Mobile 

robotics is usually considered to be a subfield of robotics and information engineering.   

Mobile robots have the capability to move around in their environment and are not fixed to one 

physical location. Mobile robots can be "autonomous" (AMR - autonomous mobile robot) 

which means they are capable of navigating an uncontrolled environment without the need for 

physical or electro-mechanical guidance devices. Alternatively, mobile robots can rely on 

guidance devices that allow them to travel a pre-defined navigation route in relatively 

controlled space. By contrast, industrial robots are usually more-or-less stationary, consisting 

of a jointed arm (multi-linked manipulator) and gripper assembly (or end effector), attached to 

a fixed surface.  

Mobile robots have become more commonplace in commercial and industrial settings. 

Hospitals have been using autonomous mobile robots to move materials for many years. 

Warehouses have installed mobile robotic systems to efficiently move materials from stocking 

shelves to order fulfillment zones. Mobile robots are also a major focus of current research and 

almost every major university has one or more labs that focus on mobile robot research. Mobile 

robots are also found in industrial, military and security settings.  

The components of a mobile robot are a controller, sensors, actuators and power system. The 

controller is generally a microprocessor, embedded microcontroller or a personal computer 

(PC). The sensors used are dependent upon the requirements of the robot. The requirements 

could be dead reckoning, tactile and proximity sensing, triangulation ranging, collision 

avoidance, position location and other specific applications. Actuators usually refer to the 

motors that move the robot can be wheeled or legged. To power a mobile robot usually we use 

DC power supply (which is battery) instead of AC. A robot can be defined as ‘a mechanical 

device which performs automated tasks, either according to direct human supervision, a pre-

defined program or, a set of general guidelines, using artificial intelligence techniques’. The 

first commercial robot was developed in1961 and used in the automotive industry by Ford. The 

robots were principally intended to replace humans in monotonous, heavy and hazardous 

processes. Nowadays, simulated by economic reasons, industrial robots are intensively used in 

a very wide variety of applications. Most of the industrial robots are stationary. They operate 

from a fixed position and have limited operation range. The surrounding area of the robot is 

usually designed in function of the task of the robot and then secured from external influences. 
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These robots efficiently complete tasks such as welding, drilling, assembling, painting and 

packaging.  

Mobile robots have different characteristics like some are operated from fixed based and some 

aren’t. Most stationary robots like industrial robots fixed at a stationary position and have a 

bounded operating range. They are programmable, automated but capable of movement three 

or more axes. They are used in painting, pick and place operation, assembly of automobiles, 

packaging and labeling, product inspection and testing all are done with high endurance, 

precision and speed. But instead of performing on a fixed location there are need to develop 

some awareness like environment interactions through sensors, on board intelligence for 

determination the best action to take and development of intelligent navigation system which 

ensures collision free movement.  

Generally mobile robots are such types of robots which can autonomously move around 

environment. In mobile robots, mobility gives a much greater flexibility for performing 

versatile application field. Robots with mobility can complete a task easily even if it is not 

designed for environments. In mobile robots, there are locomotive mechanisms that help to 

move throughout its environment. There are large varies of approach to move and so that the 

robot’s approach to locomotion is a very important aspect of mobile robot. In this approach a 

mobile robot can walk, jump, skate, swim, fly etc.  

The mobile robots operate their operations using a combination of artificial intelligence (AI) 

and physical elements. Tracks, legs and wheels are the physical elements of the mobile robots. 

The usages of mobile robot are versatile in business sectors. The mobile robots are even 

accomplished such works which are dangerous or impossible for human workers.  
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1.2 OVERVIEW OF PATH PLANNING OF MOBILE ROBOTS  

Path planning is one of the most crucial research problems in robotics from the perspective of 

the control engineer. Many problems in various fields are solved by proposing path planning. 

It has been applied in guiding the robot to reach a particular objective from very simple 

trajectory planning to the selection of a suitable sequence of action. Path planning cannot 

always be designed in advance as the global environment information is not always available 

a priori. By proposing a proper algorithm, path planning can be widely applied in partially and 

unknown structured environments.  

An appropriate trajectory is generated as a sequence of actions to maintain the robot movement 

from the start state to the target point through several intermediate states. Every decision in 

path planning algorithms is selected according to the available information in the current state 

and used criteria such as the shortest distance measures to the target point using Euclidean 

distance computation. There may be more than one path from the start state to the target point. 

However, in several situations, there is no possible path to reach the goal states. In terms of 

optimization, the ideal path must be the shortest distance and far from obstacles/collision-free, 

and spend the shortest time to reach the goal state. Also, the selected trajectory must be smooth 

without extreme turns as a robot may have several motion constraints, such as the no holonomic 

condition in under actuated systems.  

The nature of an obstacle is described via its configuration which may be convex shaped or 

concave shaped or both. The status of an obstacle may be static (when its position and 

orientation relative to a known fixed coordinate frame is invariant in time), or dynamic or 

orientation or both change relative to the fixed coordinate frame change.   

Mobile robot path planning is an important research field of robotics. It refers to that, the 

mobile robot in a work environment with obstacles, based on one or some optimization 

criterion, search for a motion path from the initial state to target, state and the path is the 

optimal, near optimal, safe, obstacle avoidance. Robot planning is concerned with the general 

problem of figuring out how to move to get from one place to another and how to perform a 

desired task. As a whole it is a wide research in itself. Actually the term path planning means 

different things to different scientific communities. Planning represents a class of problem 

solving which is an interdisciplinary area of system theory and artificial intelligence. The 

objective of path planning for mobile robots to find a collision free path from a starting point 
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to target point and to optimize it with respect to certain criteria.  Thus determining an optimal 

path is more difficult within the environments containing a number of obstacles.    

Various methods of path planning will be discussed in details in chapter 2.   
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1.3 LITERATURE SURVEY          

Many research work have been carried out in the field of mobile robot path planning. Some of 

those researches have been reported below:   

 

Sariff et al. [1] presented an overview of autonomous mobile robot path planning focusing on 

algorithms that produce an optimal path for a robot to navigate in an environment. To complete 

the navigation task, the algorithms will read the map of the environment or workspace and 

subsequently attempts to create free paths for the robot to traverse in the workspace without 

colliding with objects and obstacles. Appropriate or correct and suitable algorithms will fulfill 

its function fast enough, that is, to find an optimal path for the robot to traverse in, even if there 

are a large number of obstacles cluttered in a complex environment. To achieve this, various 

approaches in the design of algorithms used to develop an ideal path planning system for 

autonomous mobile robots have been proposed by many researchers. In this paper they give a 

overview and discusses the strength and weakness of path planning algorithms developed and 

used by previous and current researchers.   

 

Alajlan et al. [2] concentrated the matter on the collaboration of efficient multi-sensor systems 

for developing the optimal motion planning for mobile robots. The algorithm introduced 

produces the shortest and most energy efficient path from a reference point to its goal point. 

The distance travelled at the time taken in addition to the consumed energy have the asymptotic 

complexity of O (n log n) when is defined as the number of obstacles. Realtime experiments 

are conducted for the testing of its efficiency and accuracy.   

   

Ng et al. [3] concluded that the bug algorithm family are well known for robotic navigation 

algorithms with proven termination condition for unknown environments. Eleven such 

variation has been implemented and compared on the Eyesim simulation platform. Bug 

algorithm performance depends greatly based on a given environment. Tangent bug produces 

the shortest trajectory with spaces that allows it to utilize its range sensors (environment a, c 

and d). Tangent bug was able to drive directly towards a vertex whereas other programs relied 

on parameters such as wall. The second shortest environment A path was achieved by Distbug 

as it is utilized the range sensors for immediate detection of the visible target. In environment 

B, Rev 2 produced the shortest path because the wall following strategy minimized the wall 

following paths, in environment C Distbug what's the shortest path user because its range 

sensor allows the robot to abandon an obstacle earlier. In environment D Leave bug and Bug 
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1 ranked equivalently for the second shortest path. As for implementation complexity 

subjective enrankment of bug algorithms from simple to complex as: Class 1, Bug2, Bug1, 

One bug, Alg2, Rev2, Alg1, Rev1 and ultimately tangent bug. Besides, simulations were 

conducted both in a perfect noise free environment as well as noisy spot aclcompanied by small 

errors in sensors.   

 

Belkhous et al. [4] proposed a new phenomenon for trajectory optimisation of a mobile robot 

in a General dynamic environment. The new technique is the integration of the static and 

dynamic modes of trajectory planning to provide an algorithm that yields fast an optimal 

solution for static environment and produces a new path when an undesirable situation comes 

in. The particularity of this new technique is a representation of the static environment in a 

judicious manner facilitating the path planning and the reduction of processing period. 

Moreover, when an Unexpected obstacle blocks the robot trajectory the method uses the robot 

sensors to detect the presence of the obstacle and finds a best way to tackle it up and circumvent 

it and then proceeds towards final point. Experimental results are a source of evidence of its 

effectivity.   

 

Zi-Xing et al. [5] involves the delineation of an inverse D* algorithm for the path planning in 

unknown circumstances. In this inverse D* algorithm the local potential energy around the 

current position is created for sleep by defining the robotic distance, then the leave point is 

searched to be regarded as the local goal position satisfies the requirement of the Rolling 

Optimization. The leave Point is searched locally and iteratively until the robot gets to its 

destination. Experimental evidences support the validity of the algorithm.   

 

Langer et al. [6] improved the performance of the existing methods of path planning that 

utilise local information or as an entirely new method, if global information is available. It is 

also presented with a short comparison of methods found in Literature this giving a brief 

evidence of its efficiency, low computational cost and effective service even in Complex 

circumstances.   

 

Roy et al. [7] presented the use of Q-learning for navigation in indoor environments. Planning 

the shortest path from current state to the goal state using images captured from ceiling of the 

indoor environment. Captured image is tried to process through different image processing and 

machine learning techniques. Obstacles in the path of the robot is also tried to process by 
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calculating Adaptive Gaussian Thresholding of the image captured. Position of the robot is 

tried to be tracked using template matching of CV. Q-learning techniques are applied to plan 

path of the mobile robot from current start to the goal state.   

 

Nguyen et al. [8] adopted and implemented a new path planning strategy for mobile robots On 

the other hand based on the shortest path from the initial point to the goal point This path 

planner can opt the best direction of the MR which helps to reach the destination as soon as 

possible. On the other hand, with an intelligent obstacle avoidance system this method could 

sort out the target point with the nearest and shortest path length while avoiding some infinite 

loop traps of various obstacle in undesirable circumstances. Diffusion of two approaches 

enables that an hour to reach the final point with a very reliable algorithm. Move by 

spontaneous improvements of the onboard sensor's information, this approach can generate the 

MR 's trajectory both in static and dynamic circumstances. A large number of simulation in 

some similar circumstances frankly illustrates the efficiency of the proposed path planning 

algorithm.  

 

Ganeshmurthy et al. [9] proposed a heuristic based method to search the feasible initial path 

efficiently. The heuristic based method is then combined into the simulated annealing 

algorithm based approach for dynamic robot path planning. Therefore, the quality of the 

solution is characterized by the length of the planned path and it is improved with the combined 

heuristic method in the simulated annealing based approach for both runtime and offline path 

planning.  

 

Alpaslan YU et al. [10] implemented on a Pioneer mobile robot on the simulation environment 

(Mobile sim). sensing elements involve the utilization of Sonar range sensors. This study 

demonstrates the mobile robots build a new motion planning using the bug algorithm only if 

their meeting is with an undesirable obstacle during in journey to the destination. Each of the 

bug algorithm is examined separately for a similar configuration space point. The study ends 

with the performance comparison of the burg algorithm.    

  

Devi et al. [11] proposed that the principal objective of the robot is to search for collision Free 

environment in order to reach the specified point. The main challenge in the robotic navigation 

is the localization i.e the robot should know its current position. In this case the localization 

problem is sorted out by using graphical method. This algorithm could be included in the bug 
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algorithm family. Dynamic point bug algorithm has been implemented for robot navigation 

system in NI - sbRIO 9631. The proposed work offers solution to identify the current position 

of the robot while proceeding towards the target.   

 

Al-Jarrah et al. [12] presented a noval detection algorithm for vision system which is the 

combination of fuzzy image processing and bacterial algorithm. Main target is to increase the 

detection efficiency and reduce the computational time. The proposed algorithm has been 

tested through real-time robot navigation system, where it has been applied to detect the robot 

and obstacles in unstructured environment and generate 2D maps. These maps contain the 

starting and destination points in addition to current positions of the robot and obstacles. The 

genetic algorithm (GA) has been modified and applied to produce time-based trajectory for the 

optimal path. It is based on proposing and enhancing the searching ability of the robot to move 

towards the optimal path solution. Many scenarios have been adopted in indoor environment 

to verify the capability of the new algorithm in terms of detection efficiency and computational 

time.   

 

Han et al. [13] generate a collision-free path from a starting position to a target position with 

respect to a certain fitness function, such as distance. They propose a new methodology to 

solve the path planning problem in two steps. First, the surrounding point set (SPS) is 

determined where the obstacles are circumscribed by these points. After the initial feasible 

path is generated based on the SPS, they apply a path improvement algorithm depending upon 

the former and latter points (PI FLP), in which each point in the path is repositioned according 

to two points on either side. Through the SPS, it is able to identify the necessary points for 

solving path planning problems. PI FLP can reduce the overall distance of the path, as well as 

achieve path smoothness. The SPS and PI FLP algorithms were tested on several maps with 

obstacles and then compared with other path planning methods As a result, collision-free paths 

were efficiently and consistently generated, even for maps with narrow geometry and high 

complexity.   

 

Zohaib et al. [14] proposed an intelligent obstacle avoidance algorithm to navigate an 

autonomous mobile robot. The presented Intelligent Bug Algorithm (IBA) over performs and 

reaches the goal in relatively less time as compared to existing Bug algorithms. The improved 

algorithm offers a goal oriented strategy by following smooth and short trajectory. This has 

been achieved by continuously considering the goal position during obstacle avoidance. The 
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proposed algorithm is computationally inexpensive and easy to tune. Simulation results of 

robot navigation in an environment with obstacles demonstrate the performance of the 

improved algorithm.   

 

Borenstein et al. [15] introduced and implemented a new real-time obstacle avoidance system 

for mobile robots. This system permits the detection of unknown obstacle simultaneously with 

the navigation of the mobile robot to avoid collision and proceed towards the target.  The 

upgradation of the system which is entitled as virtual force field lies in the integration of two 

know concepts: the uncertainty grids for the obstacle representation and the potential field for 

the robotic navigation. The combination is especially suitable and proves to be utilitarian for 

the accommodation of inaccurate sensor data (such as produced by LASER sensors) as well as 

for sensor fusion and this enables continuity of the robot without letting it stop its motion in 

front of obstacles. This navigation also never fails to take under consideration the dynamic 

Behavior for fast mobile robot and solves a local minimal trap problem. Conclusion from 

experimental results from a mobile robot running at a maximum speed of 0.78 m/s clearly 

demonstrates the power of the proposed algorithm.   

 

Harshini et al. [16] implemented a diverse approaches and techniques to solve a path planning 

problem by considering certain factors like obstacle shape, its orientation, type of environment 

etc. Based on the surrounding environment the robot navigates globally or locally. This paper 

focuses on the navigation of mobile robot operating in a static environment consisting of 

elliptical and polygonal obstacles. A mathematical formulation has been developed to obtain 

these paths and also to find the shortest path among them using Centre of Gravity Approach 

(CGA) and Coordinate Reference Frame (CRF) technique. The simulation results prove the 

proposed approach to be effective as the robot navigates to the defined target point without 

colliding with the obstacles in the environment.   

 

Sankaranarayanan et al. [17] considered amidst unknown obstacles in a two dimensional 

plane. Using only the local information like MA’s current position and whether it is in contact 

with an obstacle. The two algorithms which solve this problem are due to Lumelsky and 

Stepanov. They proposed a new path planning algorithm to solve this problem. The motivation 

for the new algorithm is to realize the smallest worst case path length possible in its category. 

The procedure for the new algorithm is presented with explanations. Its various characteristics 
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like, local cycle creation, worst case path length, target reach ability conditions, etc, are dealt 

with. Its performance is compared with those of the existing algorithms.   

 

N Buniyamin et al [18] presented a path planning algorithm for an autonomous robot. They 

mainly focused on the bug algorithm family which is a local path planning algorithm. Bug 

algorithms use LASER sensors to detect the nearest obstacle as a mobile robot moves towards 

goal with limited information. The algorithm uses obstacle border as guidance toward the target 

as the robot circumnavigates the obstacle till it finds certain condition to fulfill the algorithm 

criteria to leave the obstacle toward target point. introduces an approach utilizing a new 

algorithm called PointBug. This algorithm attempts to minimize the use of outer perimeter of 

an obstacle (obstacle border) by looking for a few important points on the outer perimeter of 

obstacle area as a turning point to target and finally generate a complete path from source to 

target. The less use of outer perimeter of obstacle area produces shorter total path length taken 

by a mobile robot.   

 

MandaI et al. [19] presented an algorithm for path planning to a target for mobile robot in 

unknown environment. The proposed algorithm allows a mobile robot to navigate through 

static obstacles and finding the path in order to reach the target without collision. This 

algorithm provides the robot the possibility to move from the initial position to the final 

position (target). The proposed path finding strategy is designed in a grid-map form of an 

unknown environment with static unknown obstacles. The robot moves within the unknown 

environment by sensing and avoiding the obstacles coming across its wcry towards the target. 

When the mission is executed, it is necessary to plan an optimal or feasible path for itself 

avoiding obstructions in its way and minimizing a cost such as time, energy and distance. The 

proposed path planning must make the robot able to achieve these tasks: to avoid obstacles and 

to make ones wcry toward its target. The algorithms are implemented in Matlab, afterwards 

tested with Matlab GUI; whereby the environment is studied in a two dimensional coordinate 

system.   

 

Hachour et al. [20] presented an algorithm for path planning to targeted point for mobile robot 

in unknown environment. The proposed algorithm enables robot to circumnavigate through 

static obstacles and finding the path in order to approach the destination avoiding collisions. 

This algorithm provides the robot the probability to move from the initial to the target. The 

introduced path finding strategy is developed in a grid map form of an unknown environment 
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with static unknown obstruction. The robot displaces itself within the unknown environment 

by sensing and avoiding the obstructions coming across its path towards the target. When the 

set is executed it is vital to plan and optimal of feasible path for itself avoiding obstacles in its 

way and minimising factors such as cost, time, energy as well as distance. The proposed path 

planning must ensure that the robot is able to achieve this tasks: to avoid obstacles, and to make 

its way toward its target. The algorithms are implemented in Borland C++, afterwards tested 

with Visual Basic and DELPHI programming language, whereby the environment is studiied 

in a 2D coordinate system. The simulation part is a very nice approach to the actual expected 

result. This part is done using C++ to recognise all objects within the environment and since it 

is suitable for graphical problems. Combining the segmented environment issued from C++ 

development, the algorithm allows the robot to get displaced to the desired location following 

an estimated trajectory using Visual Basic and DELPHI language.   

 

Iijima et al. [21] introduced an efficient approach that beholds the geometric world map of the 

unknown 2-D environment where the mobile robot gets displaced by searching it using range 

sensors included in the mobile robot. In this searching method the robot observes and decides 

the observation points and acquires the information of its surrounding VIT the range sensors. 

According to this information the range sensors will specify the boundary between the floor 

and walls around it. Then the surrounding model could be generated by acquiring 

spontaneously the extracted boundary information at each observation spot meanwhile 

applying a suitable adjustment algorithm on them. In order to illustrate the process of the map 

construction using the proposed algorithm a simulator based on the actual mobile robot is 

presented. The simulation results clearly show the effectiveness of the proposed algorithm in 

the real circumstances considering the sensory and control errors.   

 

Contreras-Cruz et al. [22] approached to sort out the mobile robot path planning problem is 

introduced.This section combines the artificial Bee Colony algorithm as a local search 

procedure and the evolutionary programming algorithm to find the feasible path found by a set 

of local procedures. The proposed process is compared to classical probabilistic road map 

method (PRM) with relative to their planning performances on a set of benchmark problems 

and it exhibits a better performance. Criteria that is implied to measure planning efficiency 

involves the path length, the smoothness of path, the computation period and the success rate 

of planning. Experimental results including statistical data illustrates the significance of the 

proposed model.   
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Kuric et al. [23] presents the methods of navigation and mapping of mobile robots in an indoor 

environment, for instance laboratories, buildings, corridors and so on. It delineates the 

proposed solution of global navigation in more detail through the implication of potential field 

method and its transformation into the topological Map. Two separate software tools were 

designed for simulation of wheeled mobile robot behaviour in the authors workplace. The first 

software involves the utilisation of the metric form of space representation and it can simulate 

tactic level of global navigation while, the second one deals with its transformation into the 

topological map and could be utilised for strategic level of global circumnavigation. This is 

how it is possible to get the so-called multilayer mat system suitable for various tasks of robot 

navigation and path planning.   

 

Cai et al. [24] presents an efficient optimization algorithm for globally solving the quadratic 

programming problem. By utilizing the convexity of univariate quadratic functions, we 

construct the linear relaxation programming problem of the quadratic programming problem, 

which can be embedded within a branch-and-bound structure without introducing new 

variables and constraints. In addition, a new pruning technique is inserted into the branchand-

bound framework for improving the speed of the algorithm. The global convergence of the 

proposed algorithm is proved. Compared with some known algorithms, numerical experiment 

not only demonstrates the higher computational efficiency of the proposed algorithm but also 

proves that the proposed algorithm is an efficient approach to solve the problems of path 

planning for the mobile robot.    

 

Jin et al. [25] proposed an algorithm for planning an optimal path to capture a moving object 

by a mobile robot in real-time. The direction and rotational angular velocity of the moving 

object are estimated using the Kalman filter, a state estimator. It is demonstrated that the 

moving object is tracked by using a 2-DOF active camera mounted on the mobile robot and 

then captured by a mobile manipulator. The optimal path to capture the moving object is 

dependent on the initial conditions of the mobile robot, and the real-time planning of the robot 

trajectory is definitely required for the successful capturing of the moving object. Therefore, 

the algorithm that determines the optimal path to capture a moving object depending on the 

initial conditions of the mobile robot and the conditions of a moving object is proposed in this 

paper. For real-time implementation, the optimal representative blocks have been utilized for 

the experiments to show the effectiveness of the proposed algorithm.    
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Pandey et al. [26] introduced a singleton type-1 fuzzy logic system (T1-SFLS) controller and 

Fuzzy-WDO hybrid for the autonomous mobile robot navigation and collision avoidance in an 

unknown static and dynamic environment. The WDO (Wind Driven Optimization) algorithm 

is used to optimize and tune the input/output membership function parameters of the fuzzy 

controller. The WDO algorithm is working based on the atmospheric motion of infinitesimal 

small air parcels navigates over an N-dimensional search domain. The performance of this 

proposed technique has compared through many computer simulations and real-time 

experiments by using Khepera-III mobile robot. As compared to the T1-SFLS controller the 

Fuzzy-WDO algorithm is found good agreement for mobile robot navigation   

   

Leena et al. [27] Autonomous navigation of mobile robots is an area that has witnessed a lot 

of research activity in the recent years due to its increasing applications. Several approaches 

have been proposed for the navigation of mobile robots. This review paper describes the 

various developments and techniques that have been applied for navigation of robots in 

dynamic environments with special focus on the soft computing approaches.   

 

Sahu et al. [28] intended to obtain safe near-optimal path for single and multiple mobile robots 

in static global environment. The computational mobile robot path planning is done by Genetic 

algorithm with enhanced fitness function. The fitness function considered safety along with 

collision free and shortest path. Results obtained for different safety parameter coefficients are 

compared. It is observed that increase in safety achieves in expense of extra path length. In any 

application safety is major and prime factor to be considered; in this paper safety parameter is 

used and shows the effect of safety parameter on optimality and path length.   

 

Akka et al. [29] introduced an improved ant colony algorithm that uses a stimulating 

probability to help the ant in its selection of the next grid and employs new heuristic 

information based on the principle of unlimited step length to expand the vision field and to 

increase the visibility accuracy; and also the improved algorithm adopts new pheromone 

updating rule and dynamic adjustment of the evaporation rate to accelerate the convergence 

speed and to enlarge the search space. Simulation results prove that the proposed algorithm 

overcomes the shortcomings of the conventional algorithms.   

 

Haj Darwish et al. [30] presented a solution to plan a path using a new form of the Bees 

Algorithm for a 2-Wheeled Differential Drive mobile robot. This robot is used in an indoor 
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environment. The environment consists of static and dynamic obstacles which are represented 

by a continuous configuration space as an occupancy map based. The proposed method is run 

in two respective stages. Firstly, the optimal path is obtained in the static environment using 

either the basic form or the new form of the Bees Algorithm. The initial population in the new 

form of the Bees Algorithm consists only of feasible paths. Secondly, this optimal path is 

updated online to avoid collision with dynamic obstacles. A modified form of the local search 

is used to avoid collision with dynamic obstacles and to maintain optimality of subpaths. A set 

of benchmark maps were used to simulate and evaluate the proposed algorithm. The results 

obtained were compared with those of the other algorithms for different sets of continuous 

maps. This comparison shows the superiority of the new form of the Bees Algorithm in solving 

this type of the problems. The proposed method was also tested using ActivityBot robot. In 

this experiment, the proposed method was implemented using multi-threading techniques to 

guarantee real time performance at the dynamic stage. The results of this experiment prove the 

efficiency of the proposed method in a real time.   

 

Li et al. [31] proposed a self-adaptive learning particle swarm optimization (SLPSO) with 

different learning strategies. First the path planning problem has been transformed into a 

minimization multi-objective optimization problem and formulate the objective function by 

considering three objectives: path length, collision risk degree and smoothness. Then, a novel 

self-adaptive learning mechanism is developed to adaptively select the most suitable search 

strategies at different stages of the optimization process, which can improve the search ability 

of particle swarm optimization (PSO). Finally, experiments respectively with a simulated robot 

and a real robot are conducted and the results demonstrate the feasibility and effectiveness of 

SLPSO in solving mobile robot path planning problem.     

 

In the present work, online path planning of a mobile robot system has been considered in 

which a near optimal path from a start position to a goal (target) position has been obtained 

while avoiding any collision between the mobile robot and obstacles in its path which are 

detected by a LASER range sensor using modified E-Bug algorithm, where the actual 

dimension of the mobile robot has been considered instead of considering the robot to be a 

point.  
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1.4 OBJECTIVES AND SCOPE OF PRESENT RESEARCH WORK  

A Parallax mobile robot (ActivityBot), installed in the Robotics Laboratory of Production 

Engineering Department of Jadavpur University, has been used for the present project. Main 

aim of the present work is the development of necessary algorithm and software to navigate a 

mobile robot in presence of obstacles from start point to destination point using a LASER range 

sensor, mounted on the Activity Bot, to avoid any obstacle in its path. The ActivityBot robot 

will move towards the destination (goal) from start position until it meets an obstacle which is 

detected by the LASER range sensor. For this present work, a local path planning has been 

used based on modified form of E-Bug algorithm.   

  

For moving the robot forward along the path of target point, next point from any current point 

is determined by E-Bug algorithm by the output of range sensor which gives the distance of 

nearest obstacle from the sensor and also detects the sudden points (sudden change in distance 

from the sensor to nearest obstacle). The reading of distance either increasing or decreasing by 

a considerable amount according to the sudden change of range sensor output is considered for 

detecting the sudden points. The details of the algorithm and developed program will be 

discussed in chapter 2 and chapter 4 respectively.  

Hence the main objectives of the present work are as follows:   

a. To set up an arrangement for the workspace consisting of ActivityBot robot fitted with 

a LASER range sensor and obstacles on a suitable worktable having a marked 

boundary.   

  

b. To mount the LASER, range sensor system on the ActivityBot mobile robot system, 

and make necessary hardware connections to connect it to the propeller microcontroller 

through its input-output port (pins). To make necessary arrangements to be made to 

rotate the LASER sensor through 180° by a servo motor fitted to the ActivityBot mobile 

robot system.   

  

c. To make necessary arrangement to orient the LASER sensor so that the axes of its 

emitter and receiver are in the same vertical plane for getting reflected waves 

symmetrically from both sides of any object.  
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d. To develop a simplified algorithm based on E-Bug algorithm with necessary 

modification for considering the actual dimension of the ActivityBot mobile robot for 

moving the mobile robot from a start point to a target point by detecting and avoiding 

obstacles, if any, along its path towards goal.   

  

e. To develop a program in Propeller C language using Simple IDE software for the 

ActivityBot mobile robot for producing necessary movements of the robot in presence 

of static obstacles for moving from a starting point to a target point using modified E-

Bug algorithm, as mentioned in (d).    

  

f. To run the program for different layout of workspace for testing the usefulness of the 

algorithm.   

   

Scope   

The analyses, techniques and algorithms described in the thesis are related to any mobile robot, 

and the program development and experiments described in the thesis are related to a particular 

Parallax ActivityBot mobile robot fitted with a LASER range sensor and run by Simple IDE 

software existing in the Robotics Laboratory of Production Engineering Department of 

Jadavpur University.   
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CHAPTER 2  

2.0. PATH PLANNING METHODS FOR MOBILE 

ROBOTS  
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2.1 TYPES OF PATH PLANNING METHODS  
                                                   

The basic requirement for mobile robots in most applications is the ability to navigate form a 

start point to a given goal point along a collision free path that must be generated from the 

start point to the given goal point. It has been applied in guiding the robot to reach a particular 

objective from very simple trajectory planning to the selection of a suitable sequence of action. 

Path planning cannot always be designed in advance as the global environment information is 

not always available a priori. By proposing a proper algorithm, path planning can be widely 

applied in partially and unknown structured environments.  

Accurate path planning enables autonomous mobile robots to follow or track an optimal 

collision free path from start position to the goal position without colliding with obstacles in 

the workspace area. An ideal path planner must be able to handle uncertainties in the sensed 

world model, to minimize the impact of objects to the robot and to find the optimum path in 

minimum time especially if the path is to be negotiated regularly. Many path planning 

algorithms have been developed over the years for the navigation of mobile robots. These 

algorithms may be generally classified into different categories that are now described briefly.    

2.1.1 Path Planning in Static and Dynamic Environment  

In general dynamic environment there is a new optimization technique of mobile robot which 

combines static and dynamic mode of trajectory planning to provide an algorithm that gives 

fast and optimal solutions for static environments, and generates a new path when an 

unexpected situation occurs. The most conducted works in the trajectory optimization domain 

deal with either static known environments or dynamic environments where the mobile robot 

is confronted with unknown obstacles.     

In static environment the techniques are able to find the shortest path between two points but 

are ineffective when an unexpected obstacle comes to block the robot’s trajectory [12].    

In dynamic environments (an unforeseen obstacle blocking the robot’s trajectory) the robot 

is unable to pursue its path conveniently. The optimization of a traveling mobile robot’s path, 

in dynamic environments, has been the purpose of many investigations. The dynamic 

algorithms allow reaching the desired destination in an unknown environment but are very 

slow and are not conceived to find the optimal path. A natural extension to the basic path 
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planning problem is planning in dynamic environments Dynamic environment contains 

moving obstacles as well as stationary obstacles.    

2.1.2 Local and Global Path Planning  

Local path planning is path planning that requires robot to move in unknown environment or 

dynamic environment where the algorithm is used for the path planning will response to the 

obstacle and the change of environment. Local path planning also can be defined as real time 

obstacle avoidance by using sensory based information regarding contingency measures that 

affect the save navigation of the robot [32]. In local path planning, normally, a robot is guided 

with one straight line from starting point to the target point which is the shortest path and robot 

follows the line till it senses obstacle. Then the robot performs obstacle avoidance by deviating 

from the line and in the same time update some important information such as new distance 

from current position to the target point, obstacle leaving point and etc. In this type of path 

planning, the robot must always know the position of target point from its current position to 

ensure that robot can reach the destination accurately. Potential field method [33] is the one of 

the well-known local path planning technique.    

Global path planning is a path planning that requires robot to move with priori information 

of environment. The information about the environment first loaded into the robot path 

planning program before determining the path to take from starting point to a target point. In 

this approach the algorithm generates a complete path from the start point to the destination 

point before the robot starts its motion [34]. Global path planning is the process of 

deliberatively deciding the best way to move the robot from a start location to a goal location. 

Thus for global path planning, the decision of moving robot from a starting point to a goal is 

already made and then robot is released into the specified environment.      
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2.2 OVERVIEW OF DIFFERENT PATH PLANNING METHODS  

The motion planning approaches can be divided into conventional and biologically inspired 

methods. Some methods for robot motion planning are as follows:    

2.2.1 Graph Searching Technique  

The purpose of the graph search is to efficiently produce a set of paths that explore all regions 

in the configuration space and that may contain the optimal path. Using the graph search 

algorithm, the optimal path is the one that can be traversed at the minimum time between given 

end points. One approach to generating a large set of paths, using a graph search, is to use the 

k-best search by Dreyfus [35] to produce a set of shortest paths. It is similar to a shortest path 

search except that it effectively excludes the k − 1 best paths from the searched space while 

searching for the next kth best path.     

 

2.2.2   Artificial Potential Fields  
The artificial potential field (APF) based path planning methods have a local minimum 

problem, which can trap mobile robots before reaching its goal. The artificial potential field 

approaches are much convenient than Artificial Intelligence methods for their high efficiency 

in path planning provided that the working environment is known. Artificial Potential Field 

(EAPF) is proposed for real-time robot path planning. The artificial potential field method is 

combined with genetic algorithms, to derive optimal potential field functions. The proposed 

Evolutionary Artificial Potential Field approach is capable of navigating robot(s) situated 

among moving obstacles.    

2.2.3   Soft Computing Technique  

Soft computing techniques are a new class of techniques which is a combination of advanced 

theories and technologies such as Neural Network, Fuzzy Logic, Genetic Algorithm and 

Probabilistic reasoning. Soft computing technique is made based on human brain ability which 

is able to do difficult and complicated works.  Soft computing includes not only the previously 

mentioned approaches but also useful combinations of its components. Soft computing 

includes Neuro Fuzzy Systems, Fuzzy Neural Systems, and usage of Genetic Algorithms in 

Neural Networks and Fuzzy Systems and many other hybrid methodologies.  
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The main characteristic of soft computing is its "adaptive behaviour" so that systems adapt 

to users' perceptions [3]. Some soft computing techniques are given below:    

 Neural Network    

 Fuzzy Logic    

 Genetic Algorithms    

 Ant Colony Optimization    

 Hybrid Methods    
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2.3 BUG GROUP OF ALGORITHMS  
  

The Bug algorithms are simple algorithms which are well known mobile robot navigation 

methods for local path planning with minimum sensor without generating a full map of the 

environment. In these algorithms the robot takes an action on the basis of current percepts of 

sensors without taking into account the previous path and actions. The aim of the Bug 

algorithms is to guide a robot starting from a source (S) to a target (T) given that the robot has 

no knowledge of the complete environment. The robot should achieve this goal with as little 

global information as possible. When they face an unknown obstacle, they are able to easily 

produce their own path contouring the object in the 2D surface if a path to the goal exists. The 

purpose is to generate a collision-free path by using the boundary-following and the motion-

to-goal behaviors. In addition, the Bug’s family has three assumptions about the mobile robot: 

i) the robot is a point, ii) it has a perfect localization, and iii) its sensors are precise [19].    

The following algorithms from the Bug family have been implemented and evaluated: Bug1,  

Bug2, Alg1, Alg2, Dist Bug, Class1, Rev1, Rev2, One Bug, Leave Bug and Tangent Bug.   

This is not a complete list of Bug algorithms in existence. There are more examples VisBug21, 

VisBug2, HD1, Ave, Rover Bug, Wedge Bug, Cautious Bug etc. Those were not included for 

brevity and because they are quite similar to some of the included algorithms. For instance, 

Rover Bug, Wedge Bug and Cautious Bug are similar to Tangent Bug [11].  The variations of 

bug algorithms showed the effort toward shorter path planning, shorter timing, simpler 

algorithm and better performance. Langer, Coelho and Oliveira note that there is an increasing 

need for path planning algorithms in unknown environments for manufacturing, transport, 

goods storage, medicine (remote controlled surgery), military applications, computer games 

and spatial exploration.  They simulated K-Bug in an office like environment. Bug algorithms 

were the first non-heuristic algorithms for motion planning in an unknown environment which 

guaranteed termination. Further, the robot does not need to build a map of the environment, it 

only needs to store one point for termination to be guaranteed. This makes the Bug algorithms 

highly suitable for real-time implementation. Lumelsky and Stepanov [36].  later extended this 

work to include range sensors. Some bug algorithms are described given below.    
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2.3.1 Bug1 Algorithm  

The Bug1 algorithm was the first algorithm in the bug family created by Lumelsky and 

Stepanov[36]. Its principle is to advance toward the target along straight line until encountering 

an obstacle or reaching the target. When an obstacle is encountered the robot follows its 

boundary until encountering the hit point again, it means after its one complete circle, it restarts 

its motion around obstacles until reaches to leaving point. Then, the robot goes to the nearest 

boundary’s point to the target and continues its path towards the goal.     

In the Bug1 Algorithm the robot follows the following steps:    

• The robot heads towards the destination.    

• If the robot encounters an obstacle, it circumnavigates it and stores/remembers at 

each point how close it was to the goal.    

• After circumnavigating the obstacle, the robot returns to the point that is closest to 

the obstacle by wall-following and then continues on the path towards the destination. 

The Bug1 algorithm is shown in Fig: 2.1    

  

Fig: 2.1 Path generated by Bug1 Algorithm    
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2.3.2 Bug2 Algorithm  

Bug2 algorithm is almost similar to Bug1 algorithm. But in this algorithm the mobile robot 

doesn’t follow the whole boundary of obstacle. It follows the obstacle edge and calculating a 

new slope from every new position until the new slop matches the original slope [37]. When 

this slope becomes equal to slope of initial path, the behavior of the robot is changed to move 

to goal. Therefore, the robot follows single non-repeated path throughout its trajectory. Bug2 

algorithm is more efficient than Bug1 algorithm as it allows the robot to reach the destination 

in less time following a short trajectory. The Bug2 algorithm is shown in Fig: 2.2    

In the Bug2 algorithm the robot follows the following steps [38]:    

• The robot heads towards the destination on the m-line which is defined as the line 

joining the start location and the destination.    

• If an obstacle is encountered, the robot follows it until the time it again encounters 

the mline again closer to the goal.    

• The robot then leaves the obstacle and again continues toward the goal on the m-line    

  

Fig: 2.2 Path generated by Bug2 Algorithm    
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2.3.3 Tangent Bug Algorithm  

Kamon, Rivilin and Rimon introduce the Tangent Bug algorithm which is a range sensor based 

navigation algorithm for autonomous robots with two degrees of freedom. This algorithm uses 

the range sensor data to compute a locally shortest path based on the local tangent graph. 

Tangent Bug is one of the most frequently used algorithm for obstacle avoidance for sensor 

based mobile robots. In presence of static obstacles, the Tangent Bug algorithm can be used to 

plan a path from the start to the goal [11].    

 Tangent Bug algorithms principle is to advance towards target in straight line, and moving 

around encountered obstacles. The robot stops moving around obstacle and continues its path 

towards target once it founds a point on local tangent graph (LTG) closer to target then 

boundary’s one. One advantage of tangent bug algorithm is that there is no need for wall 

following since the robot only turns on the spot and travels in straight lines. The generated path 

of Tangent bug algorithm as shown in Fig: 2.3.    

    

 

    

Fig: 2.3 Path generated by Tangent Bug Algorithm    
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2.3.4 Point Bug Algorithm  
Point Bug algorithm has been implemented for robot navigation system [19]. This algorithm 

provides solution to identify the present location of the robot while moving towards target 

based on coordinates estimation. Point Bug algorithm is included in the Bug algorithm family. 

The point bug algorithm allows the robot to navigate in the given environment and it will avoid 

obstacle while it travels towards the target. The robot is equipped with an ultrasonic range 

sensor which helps in detecting an obstacle. The next point to move towards target is 

determined by the output of the range sensor which detects the sudden change in distance from 

sensor to the nearest obstacle.   

It introduces the new concept of ‘sudden point’ which is a point where a sudden change (either 

increasing or decreasing) in distance of sensor’s range is detected. The robot will move towards 

a sudden point according to the straight line (L) joining the current position and the target 

position. In the beginning it will move towards the target. When an obstacle is detected, the 

robot will avoid the obstacle and a new next position will be obtained. The flow chart of Point 

Bug algorithm is shown in Fig: 2.5    

 

Fig: 2.5 Flow Chart of Point Bug Algorithm    
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Point Bug Algorithm Limitations  

There are few limitations in Point Bug algorithm, some of which are given below [37]  

   

• There are no tests in Point Bug algorithm if a sudden point has been already treated, 

since it does not record visited sudden points. This may result in producing an infinite 

loop.    

• The choice of the point which minimizes the angular deviation relative to target 

direction does not produce the optimal path, as illustrated in Fig: 2.6. The deviation 

angle formed by point A is greater than that formed by point B, through the path length 

from S to D via point A is less than the path via B.     

    

    

    

Fig: 2.6 Minimum angular Deviations does not guarantee optimal path    
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2.3.5 E-Bug Algorithm   

Euclidian Bug is known as E-Bug Algorithm. E-Bug is a novel sensor-based path planning 

since it uses the Euclidian distance to choose the shortest path. E-Bug Algorithm is 

modification form of Point Bug Algorithm. E-Bug Algorithm’s principle as Point Bug 

Algorithm [37]. The objective is to minimize the sum of sub-paths leading to the target. The 

main objective of E-Bug algorithm is to minimize the sum of existing sub-paths to find the 

near optimal path in an unknown environment. As the robot has very limited knowledge about 

the environment, it only knows the local sub-paths. So only the local sub-paths can be 

minimized for the successful implementation of the algorithm. Arriving at any sudden point, 

the robot chooses the shortest sub-path in the visible part of the environment, and assumes 

there doesn’t exist an obstacle in the invisible part of the environment, until reaching this part. 

The proposed algorithm guarantees that the current sub path is optimal. In spite of limited 

sensor range and partial knowledge of the environment, EBug provides a good results 

comparing with other algorithms.     

Description of E-Bug Algorithm  

The optimal path never contains a cycle. A point can’t exist twice in the optimal path. 

Three sets of points (S), (C) and (R) are considered as    

• (S) is the set of all existing points (can perceived by the robot).    

• (C) is the set of points formulate the optimal path (which considered as optimal).    

• (R) is the set of rejected points.     

Each time when the robot reaches a new sudden point the algorithm constructs a list of next 

sudden points. Then the robot chooses the point that generates the minimal path length. The 

sudden point that provides the minimal sum of distances will be elected. If a point is attained 

for a second time, all points encountered between these two detections will be moved to reject 

set (R). If the robot can’t advance or detect any new sudden points from a given point, this 

point will be moved to the rejected set (R) and the robot returns to the previous sudden point.     
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E-Bug Algorithm Steps  
  

Begin    

1. From the current position enumerate all sudden point as detected by the range sensor.    

If it reaches the goal end with success.      

If no new sudden point is detected (C=ϕ) or all   detected points are rejected (S=R).  If 

the current position is the starting point.    

Stop (the goal is not reachable).    

Else go to the previous sudden point and move the current point to the rejected set (R)    

Else for each detected sudden point expect the rejected ones, calculate the sum of 

the two distances from the current position to this point and from this point to the 

target. Go to point that provided minimal distance.  End if      

           Go to 1    

End    

    

Fig: 2.8 The strategy of E-Bug Algorithm 

  

The Fig:2.8 shows the strategy of E-bug algorithm. The algorithm calculates the length of all 

the sub-paths [C, S0] and [S0, T], [C, S1] and [S1, T], [C, S2] and [S2, T], [C, S3] and [S3, T], 

[C, S4] and [S4, T]. The robot will choose point S2 since the path length is minimal. E-Bug 

algorithm will test all accessible sudden points and finally choose the point which provides 
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shortest path to the target after the robot reaches at any sudden point which will be treated as 

current shortest point (C). The S2 point will be added to the current shortest point (C). When 

S2 is already selected, it will be added to the rejected set (R) and ignored afterwards. If no 

sudden point is detected further, the robot turns back and continues with the next one after 

adding current point to the rejected set (R). Thus the algorithm provides guarantee of testing 

of all accessible sudden point and termination of the algorithm is assured.   

The robot chooses the shortest sub-paths in the visible (known) part of the environment after 

reaching any sudden point and thereafter assumes that no obstacle is present in the invisible 

(unknown) part of the environment that exist between the last sudden point and the target, until 

the goal is being reached. Therefore, the E-bug algorithm guarantees that the current sub-path 

is optimal.     

In the present work, the basic concept of considering the sub-path with minimal length as used 

in E-Bug algorithm has been used with the following modifications:    

• Instead of considering the mobile robot as a ‘point’, the actual dimension of 

the mobile robot has been considered.    

• Instead of considering a sudden change (increase or decrease) in distance of 

sensor’s range as ‘sudden point’ whenever an obstacle is encountered in its 

path of the mobile robot, only increase in distance of sensor’s range by an 

amount which is sufficient for the mobile robot to ‘go through’ considering 

its dimension has been considered as a ‘sudden point’ for finding the sub-

paths.    

Several changes in the algorithm (and also in the program) have been made for incorporating 

these modifications and will be described in Chapter 4.    
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CHAPTER  3  

3.0. SYSTEM HARDWARE AND SOFTWARE 

USED IN THE PROJECT
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3.1 SYSTEM COMPONENTS USED IN THE PROJECT    
The main components used in the present project can be divided into two parts hardware and 

software. The required components are mentioned below [42]:    

 Parallax Activity Bot mobile robot kit, installed in the Robotics laboratory of 

Production Engineering Department of Jadavpur University.    

    

 A LASER range sensor (LIDAR Lite V3) for providing the distance of the closest 

object from the sensor.    

    

 Simple IDE software (Version 1-1-0) and Propeller C language to run the mobile 

robot.    

  

Both the wheels of the mobile robot are equipped with incremental type optical encoders for 

providing the amount of rotation of the wheels. A number of obstacles of different shapes have 

been used for experimentation.    

    

    

    

    

    

    

    

   

  

    

  

  

  

  

  



 

41 

 

    

3.2 ACTIVITYBOT HARDWARE   
The ActivityBot mobile robot is a compact, zippy robot which consists of a multi-core 

Propeller microcontroller along with great hardware: Versatile Propeller Activity Board 

perched atop classic, sturdy aluminum chassis, Optical encoders and wheels with secure Oring 

tires ensure straight straight-aways and consistent maneuvers, SD card for data logging and 

file storage, Electronic components for building navigation systems using touch, visible light, 

infrared light, and ultrasonic sensors. The Activity Bot is an ideal option for beginner robot 

builders and also a good introduction to the technology for use in schools and colleges. It 

allows users to learn engineering skills which have useful applications in the real world. It is 

easy to program using a Windows, Linux or Mac system. The complete robot kit includes a 

Propeller control board that makes it simple to integrate sensors, motors and more to make the 

various projects. It also has high-speed servo motors with optical encoders to provide fast, 

consistent and controllable movement. A sample view of the ActivityBot (fitted with LASER 

sensor) is shown in Fig 3.1.  

 

    

Fig: 3.1 Parallax Activity Bot fitted with LASER sensor 
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3.2.1 Propeller Activity Board  
    

Propeller Activity Board features the 8-core Propeller programmable microcontroller prewired 

to a host of popular peripherals for fast processing of the applications. Programming is done 

through an easy to learn C language using software named Simple IDE.  

    

Main Features of the Propeller Activity Board     
    

 Built-in 8-core Propeller P8X32A microcontroller, 64 KB EEPROM, and 5 MHz 

crystal oscillator    

 Solder-free prototyping with breadboard and header sockets for power and I/O six 

servo/sensor ports with power-select jumpers     

 Automatically selects between USB and external power sources and provides USB 

overcurrent protection     

 For external power supplies 6–15 V center-positive 2.1 mm barrel jack     

 Reset button and 3-position power switch     

 Onboard mini stereo-audio jack with microphone/video pass-through    

 Built-in microSD card slot for data logging or storing WAV files     

 XBee wireless module socket simplifies advanced applications    

 Dedicated analog header sockets provide four A/D 12-bit inputs and two buffered 

variable resolutions D/A outputs     

 Indicator lights show the status of system power, servo power, programming source, 

DAC output levels, wireless communication activity.    

 USB communication activity 3.3 V and 5 V switching voltage regulators with 

independent 1.8 amp outputs.    

    

Key Specifications of the Board     
  

 Power requirements: 6 to 15 VDC from an external power supply, or 5 V from a USB 

port.    

 Communication: USB Mini-B (onboard serial over USB).     

 Dimensions: 4.0 x 3.05 x 0.625 in (10.16 x 7.75 x 1.59 cm).    

 Operating temp range: +32 to +158 °F (0 to +70 °C).    
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The details of Propeller Activity Board are shown in Fig 3.2.  

    

 

Briefly Description of Different Parts of Activity Board  

In parallax Activity Board there are 18 different parts which are briefly described below –    

1. XBee RF Module Socket    
This socket fits most XBee wireless modules and is useful when the Propeller Activity Board 

needs to be part of a wireless network. Use it for robot control and robot team sports, remote 

data logging, and wireless message exchange with computer connected to another XBee 

module.    

  

  

    

Fig:  3.2   Details of Propeller Activity Board        
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2. Power Jack     
The board accepts 6–9 V from this connector. This option is useful for robots and other remote 

applications where the board is not powered from a computer’s USB port. The 2.1 mm center 

positive power jack is one of the two power input options.     

   

3. Propeller 8-core Microcontroller System    
The P8X32A microcontroller has 8 cores, so it can do many different things at the same time. 

It uses I/O pins P28 and P29 to communicate with the I2C EEPROM for program and data 

storage. The crystal oscillator connected to the Propeller provides a clock signal for the system. 

The Propeller can multiply its 5 MHz oscillator signal by up to 16 for a system clock frequency 

of 80 MHz     

  

4. 3.3V & 5 V Regulators    
The linear 5 V regulator can deliver up to 1.5 A with a 6 V power supply, or 750 mA with a 9 

V power supply, for circuits built on the breadboard and devices connected to the servo ports. 

The 3.3 V regulator can deliver up to 500 mA for breadboard circuits, and it also powers the 

Propeller microcontroller system.    

5. Servo Ports     
There are three 3 pair of servo port among which one is for ultrasonic range sensor and other 

two for two wheels. Each pair of servo ports has a jumper on power-select pins to its immediate 

left. Each pair can be set to 5 V by placing the jumper over the pair of pins closer to the 5V 

label, or to unregulated input voltage from an external power input by placing it over the pair 

of pins closer to the VIN label. If the jumper for a pair of ports set to 5 V, they will receive 

regulated 5 V power whenever the power switch is set to 2. If the jumper for a pair of servo 

ports is set to VIN, they will receive unregulated power from the source connected to the 2.1 

mm barrel jack, so long as the power switch is set to 2. Fig 3.3 shows the different servo parts 

of the Activity Board.    
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Fig. 3.3 Different Servo Parts 

 

The connections for the servo ports to the servo motors, encoders and range sensors 

are as follows:  P12 - Left Servo    

P13 - Right Servo    

P14 - Left Encoder    

P15 - Right Encoder    

P16 - Laser Range Sensor Servo     

    

6. 3.3 V & 5 V Power Access     
The positive 3.3 V and 5 V supply sockets are positioned along the top of the breadboard. Use 

jumper wires to connect these sockets to circuits you build on the breadboard.     

 

7. Breadboard    
This breadboard has 34 5-socket rows arranged in 2 columns. The columns are separated by a 

valley in the middle. Any two wires plugged into the same 5-socket row become electrically 

connected. The socket spacing is 0.1”.    

    

8. GND, D/A, and A/D Access    
• GND access sockets — use jumper wires to connect these sockets to circuits on the 

breadboard.    

• Digital to Analog access sockets — D/A 0, 1 o Output voltage range: 0 to 3.3 V.     

o D/A 0 is the digital to analog voltage from P26 after it has passed through a low-pass filter 

and buffer amplifier (but before it has passed through the coupling capacitor to the stereo 
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output jack’s right speaker channel).   o D/A 1 is the same as D/A 0, but the duty modulated 

signal is provided by P27.    

• Analog to Digital access sockets — A/D 0, 1, 1, 2, 3  Input voltage range: 0 to 5 V.    

    

9. D/A Activity Lights     
These yellow LEDs give a visual indicator of the output voltage at D/A sockets 0 and 1. 

They also indicate activity on the stereo output jack. The LEDs will vary in brightness with 

duty modulated digital to analog signals.      

 

10. Analog to Digital Converter    
Use the Analog to Digital Converter to monitor the voltage at analog inputs labeled A/D 

0, 1, 2, and 3. It will give a number from 0 to 4095, which tells what the voltage is in a 

range from 0 to 5 volts. The converter used here is a 12-bit, 200 ksps SPI ADC, with a 5 

V reference.   

    

11.  Propeller I/O Pin     
Access to Propeller I/O pins P0. P15. Use jumper wires to connect these I/O pins to 

circuits on the breadboard, or to the XBee access header.    

    

12.  XBee Access     
The XBee access header is to the left of the Propeller I/O pin access header. Use jumper 

wires between the two headers to connect Propeller I/O pins to XBee DO (data out), DI 

(data in), RTS (ready to send) and CTS (clear to send) pins.    

  

13.  Reset Button     
Use this button to restart the Propeller microcontroller’s program. Press and hold to keep 

the microcontroller in reset, press and release to reset and allow the Propeller to load the 

program in EEPROM.    

  

14.  Power Switch The power switch has 3 settings:    
 0 — off    

 1 — power to the microcontroller system, including the P0-P15 via the I/O pin access 

socket    
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 2 — power to the microcontroller system and servo ports; see 5) Servo Ports for 

details.       

 

15.  Stereo Output Jack     
The audio output jack fits 1/8” headphone or speaker plugs. Propeller I/O pins P26 (left 

channel) and P27 (right channel) are hardwired to a low-pass filter, amplifier and 

coupling capacitor circuits that can drive headphones, ear-buds, speakers with built-in 

amplifiers, or line level inputs. it is compatible with the Veho 360 speaker from Parallax 

(item #90000018).    

    

16.  USB Port    
The USB port is used:     

• to load programs from your computer into the Propeller microcontroller    

• to provide serial-over-USB communication with a terminal program on your 

computer.     

• to supply 5 V power to the Propeller Activity Board from your computer’s USB 

port. For power, the USB Port is input current limited to between 450 mA and 500 

mA. This prevents any unexpected responses from USB 2.0 ports to current draws 

from motors, wiring mistakes, etc. If you are using this board with an external USB 

hub, be sure to use a powered hub if you are not providing power from the power 

jack.    

    

17.  X Bee DO/DI Activity Lights     
These LEDs give a visual indicator of communication happening between the XBee 

module and the Propeller microcontroller. The XBee DO line activity is indicated with 

a blue LED. The XBee DI line activity is indicated with a red LED.    

    

 18.  Micro SD Card Socket     
This socket is useful for applications that need to access files from a micro SD card.    

Examples include:    

 Large lookup tables    

 Play audio files    
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 C language programs using the extended memory model (XMM)    

 Data logging    

 Multiple Spin program application images to be boot loaded    

This socket is hardwired to I/O pins: P22 - DO (data out); P23 - CLK (clock); P24 - DI/CD 

(data in and card detect); P25 - /CS (active low chip select).    

    

Power & Connect Circuits  
 

The 3-Position Power Switch    
All versions of the Propeller Activity Board have a 3-position power switch as shown in Fig 

3.4    

Position 0 — For building and modifying circuits.  Position 0 turns off power to the circuits 

on the board.    

Position 1 — For programming and breadboard circuits. Position 1 connects power to most 

of the board, including the black sockets along the three edges of the white breadboard. It does 

NOT connect power to the 3-pin servo ports labeled P12-P17 that are above the white 

breadboard.    

Putting the switch in Position 1 before loading a navigation program that will make the robot's 

wheels turn, and after that the program will be loaded into EEPROM.  This will keep the robot 

from driving off the table as soon as the program is loaded.    

Position 2 — For making the Activity Bot move.  Position 2 powers all the circuits on the 

board, including the 3-pin servo ports labeled P12-P17.After loading a navigation program 

into EEPROM, the robot can be put on the floor, holding the reset button down, switch will 

be put on position 2.  The program will start running.     

    

Fig: 3.4 Power Switch    
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Blink Lights    

Activity Board has two built-in light-emitting diodes (LEDs) near the bottom-right corner of 

the board. They are already electrically connected to Propeller I/O pins P26 and P27 as shown 

in Fig 3.5.  These LEDs are helpful when developing applications that use sensors.  

The idea is to build a program that turns on an LED when a sensor is activated.    

    

Fig: 3.5 Blink Link    

Here are some symptoms and causes.   

   

P26 Light stays off while turning the right wheel.    

• The right encoder cable may be plugged into the P14 servo port backwards.    

• 20 k resistor (red-black-brown) may not be making contact at either the P14 or 3.3 V 

socket.    

P27 Light stays off while turning the left wheel.    

• The left encoder cable may be plugged into the P15 servo port backwards.    

• 20 k resistor (red-black-brown) may not be making contact at either the P15 or 3.3 V 

socket.    

P27 light instead of P26 light blinks while wheel turning the right wheel (or vice versa).    

• The encoder cables are swapped! Switch the encoder cables plugged into P14 and P15.    

P26 or P27 light stays on while turning wheel.    

• Resistor connecting P14 or P15 socket to 3.3 V socket is too small. It should be 20 kohm 

(red-black-orange-gold). This resistor came in the bag with the encoder parts, not with the 

rest of the resistors in the kit.    
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3.2.2 Propeller Microcontroller Chip    
    

The multi-core Propeller microcontroller chip is designed to provide high-speed processing 

for embedded systems while maintaining low current consumption and a small physical 

footprint. In addition to being fast, the Propeller provides flexibility and power through its 

eight processors, called cogs, that can perform simultaneous independent or cooperative tasks, 

all while maintaining a relatively simple architecture that is easy to learn and utilize.  

The Fig 3.6 shows the propeller chip along with pins and pin names.   

    

 
Fig: 3.6 Propeller Chip Pins    

    

Propeller I/O Pin Assignments    

    

I/0 Pin 

 

Function 

 

P0–P15 General-purpose I/O access alongside the breadboard 

P12–P17 3-pin header signal pins — this is the servo port header above the 

breadboard 
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P18–P21  Analog to digital converter    

P22  microSD card DO (data out)    

P23  microSD card CLK (clock)    

P24  microSD card DI (data in)    

P25  microSD card /CS (active-low chip select)    

P26–P27  P26–P27: Duty modulated D/A converter signals go to:    

– Logic buffered yellow LED circuits sockets for brightness control     

– Low-pass filter + op amp buffer with outputs ranging from 0 to 3.3 V:    

• To DA0 and DA1 analog outputs on J1     

• Through coupling capacitor to stereo outputs    

P28–P29  64 KB I2C EEPROM for program and data storage. P28 = CLOCK, P29 =   

DATA    

P30  Propeller programming Rx (transmits signal received by USB-to-serial 

converter’s Rx line)    

P31  Propeller programming/debugging Tx (receives signal transmitted by    

USB-to-serial converter’s Tx line)    

    

      

3.2.3 High Speed Continuous Rotation Servo Motor           

Parallax’s high speed continuous rotation servo motor as shown in Fig: 3.7 offers 

easily controlled bi-directional rotation via simple pulse width modulation. Two such 

motors are used for rotating the wheels of the mobile robot.   

     

Features    

• Bi-directional continuous rotation.    

• Up to 150 RPM @ 6 VDC, or 180 RPM at 7.4 VDC.    

• Linear response to pulse-width modification for easy ramping.    

• 3-pin ground-power-signal cable and female header with 0.1” spacing.              

• Easy to interface with any Parallax microcontroller.    

• Very easy to control; examples available for many programming languages.    
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Key Specifications    

• Power requirements:6.0 to 8.0 VDC; Maximum current draw 130 +/- 50 mA at 7.4 

VDC when operating in no load conditions, 15 mA at 7.4 VDC when in static state    

• Communication: pulse-width modulation    

• Speed: 0.30 +/- 0.06 sec/360°     

• Torque: 22 +/-11 oz.-in (1.6 +/- 0.8 kg-cm) at 7.4 V     

• Weight: 1.5 oz. (42 g)     

• Dimensions: approx. 2.2 x 0.8 x 1.6 in (56 x 19 x 41 mm) excluding servo horn     

    
Fig: 3.7 Parallax High Speed Continuous Rotation Servo Motor 

   

Quick-Start Circuit    

Connection of the servo to the Propeller microcontroller is shown in Fig: 3.8.    

Vµ = microcontroller voltage supply    

Vservo = 6 to 7.5 VDC, regulated or battery    

 I/O = PWM TTL or CMOS output signal, 3.3 to 5 V; <Vservo + 0.2 V    

    

 

Fig: 3.8 Servo Motor Connection to Propeller Microcontroller 

 



 

53 

 

Servo Control    

The Parallax high speed continuous rotation servo is controlled through pulse width 

modulation. Rotational speed and direction are determined by the duration of a high pulse, 

refreshed every 20 ms. The pulse train required for the servo motor showing the control pulse 

width for stand still, clockwise and counterclockwise rotation is depicted in Fig: 3.9.    

 
Fig: 3.9 Pulse Train for Servo Motor    

  

• A 1.5 ms control pulse makes the servo stand still.     

• As pulse width decreases from 1.5 ms to 1.3 ms, the servo gradually rotates faster, 

clockwise.     

• As pulse width increases from 1.5 ms to 1.7 ms, the servo gradually rotates faster, 

counterclockwise.     

    

3.2.4   Optical Encoder    

Each ActivityBot encoder shines infrared light at the ring of 32 spokes in the wheel next to it. 

If the light passes between the spokes, the encoder sends the Propeller a high signal. If it 

bounces off a spoke and reflects back to the encoder’s light sensor, it sends a low signal to the 

Propeller. Each time the signal changes from high to low, or low to high, the Propeller chip 

counts it as an encoder tick. Each encoder tick makes the wheel travel 3.25 mm forward. 

Remember, an encoder tick is counted when the encoder sensor detects a transition from spoke 

to hole or hole to spoke. Since there are 32 spokes and 32 holes, othere are a total of 64 encoder 

ticks per wheel turn. A sample of an optical encoder is shown below in Fig: 3.10.    
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Fig: 3.10 Optical Encoder    

    

Sensing Direction    
    

The Propeller chip knows what direction the servos turn based on the signal it uses to make the 

servo move. All it needs from the encoder is to know how fast it’s turning. It does this by 

counting encoder ticks over a period of time. The libraries keep track of all this for you, so 

your programs just need to tell the robot how far or how fast to go.    
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3.3 LASER RANGE SENSOR SYSTEM   

The LASER range sensor system consists of a LASER transmitter and a LASER receiver for 

measuring the distance of an object. Proprietary signal processing techniques have been used 

to achieve high sensitivity, speed, and accuracy in a small, low-power, and low-cost system. 

The laser range sensor is shown in Fig. 3.11.  

  
Fig. 3.11 LASER Range Sensor  

  

Working Principle of the LASER Range Sensor System  
  

The LASER range sensor system measures distance by calculating the time delay between the 

transmission of a near-infrared laser signal and its reception after reflecting off from a target, 

using the known speed of light, as shown in Fig. 3.12. Its unique signal processing approach 

transmits a coded signature and looks for that signature in the return, which allows for highly 

effective detection with eye-safe laser power levels.   

 

Fig. 3.12 Working Principle of LASER Range Sensor  

  

The device sends a reference signal (signature) directly from the transmitter to the receiver. It 

stores the transmit signature, sets the time delay for "zero" distance, and recalculates this delay 
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periodically after several measurements. Next, the device initiates a measurement by 

performing a series of acquisitions. Each acquisition is a transmission of the main laser signal 

while recording the return signal at the receiver. If there is a signal match, the result is stored 

in memory as a correlation record. The next acquisition is summed with the previous result. 

When an object at a certain distance reflects the laser signal back to the device, these repeated 

acquisitions cause a peak to emerge, out of the noise, at the corresponding distance location in 

the correlation record.  

  

The device integrates acquisitions until the signal peak in the correlation record reaches a 

maximum value. If the returned signal is not strong enough for this to occur, the device stops 

at a predetermined maximum acquisition count.  

 

Signal strength is calculated from the magnitude of the signal record peak and a valid signal 

threshold is calculated from the noise floor. If the peak is above this threshold the measurement 

is considered valid and the device will calculate the distance, otherwise it will report 1 cm. 

When beginning the next measurement, the device clears the signal record and starts the 

sequence again.  

  

Specifications    
  

Physical  

Specification  Measurement  

Size (LxWxH)  20 × 48 × 40 mm(0.8 × 1.9 × 1.6in).  

Weight  22 g(0.78oz. )  

Operating temperature  −20 to 60∘C(−4 to 140∘F)  

  

Electrical  

Specification  Measurement  

Power  5Vdc nominal 4.5Vdc min., 5.5Vdc max.  
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Current consumption  

  

105 mA idle  

135 mA continuous operation  

  

Performance  

Specification  Measurement  

Range ( 70% reflective 

target)  
40 m(131ft)  

Resolution  +/−1 cm(0.4in.)  

Accuracy < 5 m  ±2.5 cm ( 1 in.) typical  ∗  

Accuracy ≥ 5 m  
±10 cm (3.9 in.) typical Mean ±1% of distance maximum  

Ripple ±1% of distance maximum  

Update rate (70% 

Reflective Target)  

270 Hz typical 650 Hz fast mode* > 1000 Hz short range 

only  

Repetition rate  ∼ 50 Hz default 500 Hz max  

  

*Nonlinearity present below 1 m (39.4 in.)  

 ∗∗ Reduced sensitivity  

  

Interface  

Specification  Measurement  

User interface  

  

I2C  

PWM External trigger  

I2C interface  
Fast-mode (400 kbit/s) Default 7-bit address 0 × 62 Internal register 

access & control  

PWM  

interface  External trigger input PWM output proportional to distance at 10𝜇s/cm  
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Laser  

Specification  Measurement  

Wavelength  905 nm (nominal)  

Total laser power (peak)  1.3 W  

Mode of operation  Pulsed (256 pulse max. pulse train)  

Pulse width  0.5𝜇s(50% duty Cycle)  

Pulse train repetition frequency  10 − 20KHz nominal  

Energy per pulse  < 280 nJ  

Beam diameter at laser aperture  12 × 2 mm(0.47 × 0.08in).  

Divergence  8mRadian  

  

Connections  

Wire Color  Function  

Red  5Vdc(+)  

Orange  Power enable (internal pull-up)  

Yellow  Mode control  

Green  I2C SCL  

Blue  I2C SDA  

Black  Ground (−)  
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3.4.  ACTIVITYBOT SYSTEM SOFTWARE  

The Propeller microcontroller is run by Simple IDE software, and the programming language 

used for controlling the ActivityBot mobile robot system is Propeller C.  

3.4.1 Simple IDE   

Simple IDE software is available for Windows and Mac. This is an open-source C 

programming environment for the multi-core Propeller microcontroller. Simple IDE supports 

the C, C++, and Propeller Assembly (PASM) programming languages. It comes packaged with 

the PropGCC compiler for C and C++ and the Open Spin compiler for Propeller Assembly 

(PASM). Simple IDE has a central workspace to edit code and an integrated serial terminal for 

exchanging information between user and Propeller microcontroller. Simple IDE uses the 

Project Manager to keep a list of any library, folder, and file resources the project utilizes that 

are not part of Propeller GCC. Libraries that are not part of Propeller GCC, or Simple Tools, 

have to be added to the project so that the compiler can find them. This software helps in writing 

the program in C language in Propeller C. This is a C-language tutorial for the 8-core Propeller 

microcontroller. It features the Propeller Activity Board but other Propeller development 

boards will work. The program can be downloaded through USB cable and then the loaded 

program is used to run the mobile robot either by loading the program into RAM or EEPROM. 

The program can be saved with a project file name and can be edited anytime as and when 

needed.     

3.4.2 Propeller C  

The version of C language for the Propeller microcontroller is Propeller C.    

  

3.4.3 Main Commands and Functions used in the Project    

servo angle    

Parallax Standard Servo angle can be set from 0 to 180 degree in tenths of a degree. 0 to 1800 

corresponds to control pulses ranging from 500 to 2300 with 1400 at center (90 degrees).    

Example: servo_angle (pin, 900); // for 90 degrees     
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pause    

Pause causes moving from moving on to the next statement for a certain length of time. The 

default time increment is 1 ms, so pause (100) would delay for 100 ms = 1/10th of a second. 

This time increment can be changed with a call to the set_pause_dt function.     

Example: Pause (int time)    

drive_setMax speed  

This function sets the maximum speed of the servo motors of the wheels of the mobile robot. 

The default is 128 ticks/second = 2 revolutions per second (RPS). This is the full speed that 

drive_distance and drive_goto use. This value can currently be reduced, but not increased. 

Speeds faster than 128 ticks per second.     

Example: drive_setMax speed (int speed)   

drive_goto  

This function is used to drive the wheels through a specified distance in either direction. This 

function ramps up to full speed if the distance is long enough. It holds that speed until it needs 

to ramp down. After ramping down it applies compensation.     

Example: drive_goto (int distleft, int disright)    

sin, cos, atan2  

Returns the sine of a radian angle, returns the cosine of a radian angle, returns the arc tangent 

in radians of y/x based on the signs of both values to determine the correct quadrant 

respectively.    

Example: sin (angle in radian), cos (angle in radian), atan2(y,x).  

laser_cm    

This command gives measured distance of the nearest obstacle sensed by the LASER range 

sensor in centimeter.      

Example:  laser_cm () 
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3.5 ACTIVITYBOT NAVIGATION SYSTEM   
 

This section will cover how to move forward, how to move backward, how to rotate left, how 

to rotate right etc which depend upon direction of rotation of two high speed parallax servo 

motors. Each wheel is servo controlled and fitted with encoders to calculate the number of 

ticks it moved. Rotational speed and direction are determined by the duration of a high pulse.     

• All commands have to give in ticks for each wheel. Positive ticks number will 

rotate the wheel in such a direction so as to move the robot in forward directions 

and negative ticks for backward direction.     

• The propeller Activity Bot wheel has 32 spokes, which are separated by 32 spaces, 

for a total of 64 ticks. If 1/64th of a turn, it will travel 3.25mm.     

• If distance is known and if distance is divided by 3.25 then we can find out the 

ticks value to reach that particular distance.    

  

3.5.1 Forward and Backward Movement     

In forward movement the ActivityBot has to turn its both left wheel and right wheel in such a 

direction so that the robot moves forward, where its left wheel driven by a servo motor 

connected to pin 12 and right wheel connected to pin 13. The following command is used for 

forward movment.     

{drive_goto(int disleft, int disright)        //distance value in ticks and also +ve value for 

both ticks  pause(int time)                         // time in mili second  }    

    

In backward movement the ActivityBot has to turn its both left wheel and right wheel in the 

opposite direction of forward movement. The following command is used for backward 

movement.   

{drive_goto(int disleft, int disright)        //distance value in ticks and also -ve value for 

both ticks  pause(int time)                         // time in mili second }    

The details of straight line navigation of Activity-Bot in forward and backward direction are 

depicted in Fig. 3.13.   
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Fig. 3.13 ActivityBot Backward and Forward Movement  

  

3.5.2 Turning the Activity Bot by calculating the encoder ticks    

The Propeller ActivityBot wheel has 32 spokes, separated by 32 spaces, for a total of 64 ticks. 

If the wheel turns 1/64th of a turn, it will travel 3.25 mm. The term “tick” indicates a transition 

from either spoke detected to hole detected, or vice -versa. The ActivityBot’s turning radius(R) 

is typically 105.8 mm.    

Ticks = distance (mm) ÷ 3.25 mm/tick    

Number of turn (n) = turning angle/360    

For right wheel turn, the left wheel is to be held fixed, the right wheel will have to turn by 

2*π*turning radius(R) which is equal to 664.76 mm. For turning activity-bot by n number of 

turn that would be 664.76 * n. To calculate the number of ticks for corresponding turning 

angle, no of ticks (t) = 664.76 * n / 3.25.    

The number of ticks can be divided into equal number of ticks for both wheel movement, but 

each wheel to be turned in opposite direction in respect of right or left turning.    

For right turning drive_goto (- t/2, t/2) command will be used, for left turning drive_goto (t/2, 

- t/2) to be used. The Fig. 3.14 shows the basics of turning the Activity-bot by a particular 

angle by ticks calculation.    



 

63 

 

  
Fig. 3.14 Turning the ActivityBot through a Particular Angle 
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CHAPTER   4  

4.0. EXPERIMENTATION WITH A PARALLAX 

ACTIVITYBOT MOBILE ROBOT FITTED WITH 

A LASER RANGE SENSOR FOR NAVIGATION 

BASED ON IMPROVED E-BUG ALGORITHM 
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4.1. MODIFICATION IN THE ALGORITHM CONSIDERING THE 

ACTUAL DIMENSIONS OF MOBILE ROBOT  
  

In E- Bug and all other algorithms of Bug family the mobile robot is assumed as a point. But 

in real case when the algorithm is used for navigation of mobile robot avoiding obstacle and 

to reach the goal one has to consider the real dimension of the mobile robot which is actually 

not a point. That's why some modifications have been done in E-Bug algorithm considering 

the actual dimensions of the mobile robot used in present object. When a sudden point is 

obtained after detecting an obstacle, the robot will have to move to a modified sudden point 

which is slightly away from the actual sudden point.   

  

4.1.1 Modification in Angle of Rotation for Modified Sudden Point   

When the range sensor detects an obstacle, it scans the obstacle on both sides to get sudden 

points. Now if the mobile robot goes to the actual sudden point based on the selection criteria 

of E-Bug algorithm, it will definitely collide with the obstacle due its actual size. To avoid the 

obstacle, the mobile robot, rotate through an extra angle, which should be added to the angle 

for actual sudden point. The geometry to calculate this extra angle (ang-plus) from the 

dimension of mobile robot and distance of sudden point, as detected by the LASER range 

sensor is shown in Fig 4.1 for one direction (right) only. The angle (angr) for the sudden point 

is obtained with respect to the position of the sensor (point B), but the robot must rotate about 

the wheel ‘axle’ centre (point A) through an angle, angr + ang- plus, the calculations of which 

are also shown in the figure.   

In the present project, when the mobile robot moves towards goal, it will move up to a distance 

of 30 cm from any obstacle detected along its path. Considering the distance and other 

dimensions of the mobile robot (ActivityBot), this extra angle has been calculated as slightly 

less than 15 °.   
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Fig. 4.1 The Geometry for Calculating the Required Modification in Rotation Angle and 

Distance  

 

B = Location of sensor when the obstacle is detected.   

A = Location of robot wheel- ‘axle’ (imaginary line) center when the obstacle is detected. 

angr = Sudden point angle (right side)  

angrA = Angle of rotation required for the wheel-axle center.   

ang-plus = Minimum addition angle rotation required to avoid collision considering robot 

width.    

a = Sudden point distance from sensor.   

aA = Sudden point distance from wheel- ‘axle’ center.   

d = Distance between wheel- ‘axle’ center and wheel center (5 cm).   

s = Distance between sensor and wheel center (7cm)   

t = Distance between the wheel ‘axle’ center and the rear end of the robot (8.5cm)   

  

Now, ang-plus = d/aA …………………...………. (1)   

aA. sin (angrA) = a.sin(angr)……………….….…. (2)   

aA. cos (angrA) = a.cos (angr) + s………….….…. (3)   

From these equations, aA, angrA   can be obtained.   
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4.1.2. Modification in Distance for the Actual Dimension of the Robot   

Now after reaching the modified sudden point, the robot will have to reorient itself towards the 

goal. As the robot will rotate about its wheel axle center to orient itself, the robot should move 

to a point whose distance will be more than the distance (a) of the sudden point as detected by 

the range sensor. The geometry to calculate this modified distance is also shown in Fig 4.1. 

The robot should move to a point so that its end point will reach the modified sudden point and 

the distance required to move to this point will be aA + t, as shown in the figure where the 

calculation of aA is also shown.   
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4.2 PROGRAM DEVELOPMENT FOR PRODUCING 

NECESSARY MOVEMENTS OF THE ACTIVITYBOT MOBILE 

ROBOT USING LASER RANGE SENSOR BASED ON 

IMPROVED E-BUG ALGORITHM    

A program has been developed in Propeller C language for IDE software for producing the 

necessary movements of the ActivityBot mobile robot using LASER range sensor (capable of 

180° rotation) based on the improved E-Bug algorithm. The developed program is used to run 

the mobile robot from a start to a goal point by avoiding obstacles coming across its path. The 

coordinates of the start and goal points are entered as variables to execute the program in 

different layouts of the workspace. The robot is kept parallel to the x-axis at the start position. 

The Euclidean distance and orientation of goal point from start point is calculated. The robot 

rotates towards goal and starts moving towards it. The output data for the distance of the nearest 

object (obstacle) is continuously monitored and the robot moves towards the goal in small steps 

(taken as 3-ticks = 9.75 mm) until an obstacle is detected within a specified distance (taken as 

30 cm) from the range sensor. The coordinates of the current location are calculated using 

trigonometric relation and formulas of sine and cosine. After detection of an obstacle the range 

sensor starts searching for the sudden points on both sides by rotating the sensor. The sudden 

point is taken as a point where the distance measured by the range sensor increases by an 

amount (taken as 20 cm) such that there is enough space for the mobile robot to go through. 

The angle of sensor rotation is noted and recorded for determining the angular rotation of the 

sudden point. But the sensor is further rotated in the same direction to check whether no other 

obstacle is present within a specified angle (taken as 30° at a distance of 30 cm) such that there 

is enough space for the ActivityBot mobile robot to go through. If any other obstacle is detected 

within 30°, the process is repeated and the sudden point is modified, and the corresponding 

angle of sensor rotation, is also modified. If no sudden point is obtained within 90° of rotation, 

a message is shown to indicate that it is not possible to move to that direction. Now after the 

sudden point on both right and left sides are detected, the location of the modified sudden point 

on both sides are determined considering the actual dimension of the mobile robot and 

according to the modification done for the angle of rotation and distance as described in 

sections 4.1.1 and 4.1.2 respectively. These modifications which are necessary for a real mobile 

robot for its actual dimensions rather than being considered as a point in E-Bug algorithm are 

the main improvement in the present project in the algorithm for improved E-Bug algorithm. 

Then the distance from the current point to the modified sudden point and the modified sudden 

point to target (the latter distance being computed using cosine rule) have been calculated and 
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added for both sides for finding the total distance to traverse more to reach the goal point 

(target) for both sides. The robot then ‘chooses’ to move towards the location of the modified 

sudden point which provides the shorter path. Then the mobile robot rotates towards this 

modified sudden point by properly calculating the angle of rotation required for this, and moves 

to this location by properly calculating the distance. After reaching the selected modified 

sudden point, the robot again rotates towards the target by turning through a properly calculated 

angle, and again goes towards the goal in steps as it did at the beginning. The whole process is 

repeated until the robot reaches its goal, or a situation is reached when no path can be found. 

The simple flowchart of the process is shown in Fig 4.2 and the completed program is given 

in section 4.3.   
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Fig. 4.2 Flowchart of the Developed Program  
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4.3 PROPELLER C PROGRAM DEVELOPED FOR NAVIGATION 

OF ACTIVITY-BOT MOBILE ROBOT USING A LASER RANGE 

SENSOR BASED ON IMPROVEDED E-BUG ALGORITHM   

The complete Propeller C program developed for the project is given below:  

/*  

NAVIGATION OF ACTIVITYBOT MOBILE ROBOT USING A LASER RANGE SENSOR  

 BASED ON IMPROVED E-BUG ALGORITHM  

*/  

  

#include "simpletools.h"   // Include simple tools  

#include "abdrive.h"         // Include ActivityBot files      

#include "servo.h"            // Include servo motor files            

#include "fdserial.h"        // Include files for serial communication  

 //                           required for LASER range sensor  

  

int main()                         // Main function  

{  
 float X1, X2, Y1, Y2,ang,angrad, n, tt ,delx,dely, d, pi=3.1415926;                      

int nticks=3,t;  drive_setMaxSpeed(4);  

   

 print("Enter start point(x,y) in mm”);  

scan("%f%f\n",&X1,&Y1);  

 print("Enter goal point(x,y) in mm”);  

scan("%f%f\n",&X2,&Y2);  

   

 delx=X2-X1;  dely=Y2-

Y1;  

 d=sqrt((X2-X1)*(X2-X1)+(Y2-Y1)*(Y2-Y1));  

 print("total distance = %f mm \n",d);  

angrad=atan2(dely,delx);  ang=angrad*180/pi;      

// in degree  print("angle=%f\n",ang);  

   

 n=ang/360;                                                                                              

tt=(664.76*n)/3.25;  

t=tt/2;  int i,m;  float 

dis, D;  

servo_angle(16,900);  

pause(1000);   

drive_goto(-t,t);  

pause(500);  

    

 L1:   

i=0;  
  m=d/(nticks*3.25);   

print("m=%d\n",m); if (i<m)     

             {      
                  drive_goto(nticks,nticks);                   

dis= 10*laser_cm();  
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                  print("dis=%f\n",dis);                   

i=i+1;                                      if 

(dis>300)                                                          

goto L1;                       
             }                      

else                         

{                       goto 

L0;              }    

  D=i*(nticks*3.25);  

  print("Distance Moved=%f\n",D);  

    

  X1=X1+D*cos(angrad);  

  Y1=Y1+D*sin(angrad);  

      

  d=sqrt((X2-X1)*(X2-X1)+(Y2-Y1)*(Y2-Y1));  

  print("d=%f\n",d);  

    

  float j,k,a,a0,b,b0,angr,angl,angt,dr,dl;  

  a=b=a0=b0=dis;      

    

  j=900;  

  

  L3:       while((a-

a0)<=200)   

     {   
       servo_angle(16,j);        

pause(500);        a0=a;  

       a=10*laser_cm();  

         

       angr=(900-j)/10;        

print("%d  %d\n",angr,a);  
       j=j-10;        

if (j<=0)  

       {  

        print("no sudden point is found on right side  \n");         

angr=100;  

        goto L4;      

       }         

     }   

      

    angr=angr-1;    

  

  

  

  

    while ((a-a0)>=200)  
    {         servo_angle(16,j);        

pause(500);        

a=10*laser_cm();        

angt=(900-j)/10;        
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print("%d  %d\n",angt,a);        

j=j-10;  

       if ((angt-angr)>30)  

       {  

       print("angr=%d dist=%d\n", angr,a0);    

       goto L4;      

       }  

                 

}             

goto L3;               

        

   L4:  
       pause(500);        

servo_angle(16,900);  

  

           a=a0+120;    

      angr=angr+15;  

           dr= a+sqrt((a*a)+(d*d)-(2*a*d*cos(angr*pi/180)));  
           print("angr=%f\n",angr);            

print("a=%f\n",a);   k=900;   

  

  L5:    while((b-

b0)<=200)   

     {   
       servo_angle(16,k);        

pause(500);        b0=b;        

b=10*laser_cm();               

angl=(k-900)/10;        

print("%d  %d\n",angl,b);        

k=k+10;  

       if (k>=1800)  

       {  
        print("no sudden point is found on left side  \n");         

angl=100;  

        goto L6;      

       }         

     }   

    angl=angl-1;    

   

  

  

         

    while ((b-b0)>=200)  

    {   
       servo_angle(16,k);        

pause(500);        

b=10*laser_cm();        angt=(k-

900)/10;        print("%d  

%d\n",angt,b);        k=k+10;  

       if ((angt-angl)>30)  
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       {  

       print("angl=%d dist=%d\n", angl,b0);  

       goto L6;     

       }          

    }         

    goto L5;    
             

L6:       
       pause(500);        

servo_angle(16,900);          

   

           b=b0+120;    

    angl=angl+15;    

           dl= b+sqrt((b*b)+(d*d)-(2*b*d*cos(angl*pi/180)));  

           print("ang2=%f\n",angl);  

           print("b=%f\n",b);  

  

 if(dr<dl)  
            {                     int 

t1,tto,tt1,ta ;             float 

n1,no,to,p1,angturned;                     

n1= angr/360;             t1= 

(664.76*n1)/3.25;  

            tt1=t1/2;  

            ta=a/3.25;  

                                 

            drive_goto(tt1,-tt1);             

pause(100);             

drive_goto(ta,ta);  

            pause(20);  

                      

            p1=ang-angr;             

X1=X1+(a*cos(p1*pi/180));             

Y1=Y1+(a*sin(p1*pi/180));             print("%f\n 

%f\n",X1,Y1);  
            print("p1=%f\n",p1);                     d=sqrt((X2-X1)*(X2-

X1)+(Y2-Y1)*(Y2-Y1));  
            delx=X2-X1;             

dely=Y2-Y1;             

angrad=atan2(dely,delx);             

ang=angrad*180/pi;             

angturned=ang-p1;                             

print("d=%f\n ang=%f\n 

angtur=%f\n", d,ang,angturned);                        

no=angturned/360;             

to=(664.76*no)/3.25;  

            tto=to/2;  

          

           drive_goto(-tto,tto);            

pause(100);                        
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           if (d>0)        

                goto L1;   

        

            }             

     else                 {                 

int t2,tto,tt2,tb ;  

            float n2,u,no,to,p2,angturned;  

          

            n2= angl/360;             

t2= (664.76*n2)/3.25;             

tt2=t2/2;  

            tb=b/3.25;                    

               

            drive_goto(-tt2,tt2);             

pause(100);             

drive_goto(tb,tb);  

            pause(20);   

              

            p2= ang+angl;  
            X1=X1+(b*cos(p2*pi/180));             

Y1=Y1+(b*sin(p2*pi/180));             print("%f\n 

%f\n",X1,Y1);  

            print("p2=%f\n",p2);  

          

            d=sqrt((X2-X1)*(X2-X1)+(Y2-Y1)*(Y2-Y1));  
            delx=X2-X1;             

dely=Y2-Y1;             

angrad=atan2(dely,delx);             

ang=angrad*180/pi;             

angturned=p2-ang;  

          

            print("d=%f\n ang=%f\n angtur=%f", d,ang,angturned);  

          

            no=angturned/360;             

to=(664.76*no)/3.25;  

            tto=to/2;  

         

            drive_goto(tto,-tto);  

            pause(100);  

  

                 

    if (d>0)        

             goto L1;                

          

            }         

  L0:   

  print ("goal reached \n");  

  pause(1000);  
             }  



 

76 

 

Different variables used in the program   

X1, Y1: Co-ordinates of starting or current position (initially the start position).   

X2, Y2: Co-ordinates of goal position.   

ang: goal orientation angle w.r.t current orientation in angle.    

angrad: goal orientation angle w.r.t current orientation in radian.   

n: no of turns corresponding to angle (ang).   

tt: no of encoder ticks for rotating “n” no of turn.   

t: half value of ticks (tt) for both wheel rotation in opposite direction about centre of robot 

wheel axis.   

delx, dely: incremental value of x and y co-ordinates from current and goal position.   

d: Euclidean distance between current (initially the start position) and goal position.   

nticks: no of encoder ticks for straight line movement. i: counter variable to store the number 

of ticks travelled so far.   

m: no of ticks for travelling d distance.   

dis: obstacle distance obtained from range sensor.    

D: distance moved till it detects obstacle.   

j: counter variable for scanning sudden point angle on right.   

k: counter variable for scanning sudden point angle on left.   

a: right sudden point distance.    

a0: previous value of right sudden point distance.   

b: left sudden point distance   

b0: previous value of left sudden point distance.   

angr: right sudden point angle measured from normal direction.  

angl: left sudden point angle measured from normal direction.  

dr: summed distance of current to right sudden and from right 

sudden to target point.    

dl: summed distance of current to left sudden and from left 

sudden to target point.     

n1: no of turns corresponding to angle (ang1).   

n2: no of turns corresponding to angle (ang2).    

t1: no of encoder ticks for rotating “n1” no of turn.   
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t2: no of encoder ticks for rotating “n2” no of turn.   

tt1: half value of ticks (t1) for both wheel rotation in opposite direction about centre of robot 

wheel axis.   

tt2: half value of ticks (t2) for both wheel rotation in opposite direction about centre of robot 

wheel axis.   

ta: no of ticks for travelling a distance.   

tb: no of ticks for travelling b distance.   

p1: angle of robot rotation after moving to right sudden point measured from X-axis.   

p2: angle of robot rotation after moving to left sudden point measured from X-axis.   

angturned: angle of rotation of robot from sudden point to the target point calculated from 

Xaxis.   

no: no of turn corresponding to angle (angturned).   

to: no of encoder ticks for rotating “no” no of turn.   

tto: half value of ticks (to) for both wheel rotation in opposite direction about centre of robot 

wheel axis.   

   

  

  

  

  

  

  

  

 

 

 

 

  



 

78 

 

4.4. RESULTS AND DISCUSSSIONS   

The developed C program has been run for moving the ActivityBot robot from its starting point 

to the goal point by detecting any obstacle using LASER range sensor. The angular position of 

the sudden point is obtained from servo motor rotation on which the LASER range sensor is 

mounted. Initially, the robot orientation is parallel to the x-axis and it rotates towards goal by 

turning through required angle, and calculating the numbers of ticks and using drive_goto 

command for rotating cw or ccw direction accordingly. The forward movement is executed 

using drive_goto command. While advancing towards goal the range sensor continuously 

senses the distance to detect any obstacle within a specified distance (taken as 30 cm). On 

detection of obstacle, scanning operation is carried out by simply rotating the servo motor 

attached to the sensor for determining the sudden points on both sides. Sudden point distance 

and angle as retrieved from the sensor are modified, as described in sections 4.2 and 4.3. The 

robot then takes decision about its next point to move based on the calculation of lengths of 

sub-paths of current to target point through one modified sudden point and will move towards 

that sudden point following the selected path.   

On reaching the sudden point, the program again calculates the angle and distance of goal from 

current point, then rotates and starts moving towards goal. The program will continue till the 

robot reaches its target. In this way the robot moves in an unknown environment by avoiding 

obstacle in near optimal path. The developed program has been run successfully for different 

layouts of the workspace with different positions of the obstacles and goal point.   
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CHAPTER  5 

5.0. CONCLUTIONS AND FUTURE SCOPE 
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5.1. CONCLUSIONS    

Based on the foregoing analysis, program development, experimentations and results on   

“ONLINE PATH PLANNING OF A MOBILE ROBOT USING LASER RANGE SENSOR  

BASED ON AN IMPROVED E-BUG ALGORITHM” for the present project, the following 

conclusions may be drawn   

a. Various algorithms of different path planning techniques have been studied thoroughly 

including Bug group of algorithms, where Point Bug and modified Bug algorithms have 

been found suitable in most cases.   

  

b. Point Bug algorithm has some limitations in finding optimal path because minimizing the 

angular deviation does not always guarantee shortest path. Some improved algorithms have 

also been studied which overcomes the deficiencies of Point Bug algorithm.   

  

c. A new sensor based algorithm called E-Bug algorithm is used in the present project. This 

algorithm is an improved algorithm as compared to other Bug algorithms and is based on 

the Point Bug algorithm. E-Bug algorithm is simplified E-Bug algorithm finds the near 

optimal path by adding the sub-paths length from current point to sudden point and from 

sudden point to target point and selecting the shorter sub-path. The path length from sudden 

to target point is determined using cosine rule. The sensor output helps in detecting any 

obstacle present along the path of the robot while travelling the distance in a straight line.   

  

d. Most of the existing path planning algorithms consider mobile robot as a point source and 

simulations results are available and a very few real robot experimentation of the algorithm 

is performed. In the present project robot dimension is taken into account while developing 

the program to prove the effectiveness of the algorithm (E-Bug) in real life situation. Here 

some modifications have been made in the algorithm for the ‘Sudden point’.   

  

e. An arrangement has been made for setting up the workspace consisting of an ActivityBot 

mobile robot and multiple obstacles.   

  

f. The LASER range sensor has been mounted on the 180 degree rotating servo motor and it 

is used for scanning both ends of the obstacle for sudden point detection.   

  

g. A program in Propeller C, based on improved E-Bug algorithm for navigating the robot 

from start to goal position in presence of static obstacles, considering robot dimensions, 

has been developed using Simple IDE software.   

  

h. The developed program has been run successfully for different workspace layouts and 

thereby proving the usefulness of the modified E-Bug path planning algorithm in industrial 

application.    
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5.2. FUTURE SCOPE   

Future scope of the present work includes experimentation of the algorithm in presence of 

dynamic (moving) obstacles by modifying the algorithm and developing the program 

accordingly. 



 

82 

 

CHAPTER 6 

6.0. REFERENCE 



 

83 

 

[1] Sariff, N., & Buniyamin, N. (2006). An overview of autonomous mobile robot path 

planning algorithms. In Research and Development,4th Student Conference,183-188   

[2] Alajlan, A., Elleithy, K., Almasri, M., & Sobh, T. (2017). An Optimal and Energy 

Efficient Multi-Sensor Collision-Free Path Planning Algorithm for a Mobile Robot in 

Dynamic Environments. Robotics, 6(2), 7-11.   

[3] Ng, J., & Bräunl, T. (2007). Performance comparison of bug navigation algorithms. 

Journal of Intelligent and Robotic Systems, 50(1), 73-84.   

[4] Belkhous, S., Azzouz, A., Saad, M., Nerguizian, C., & Nerguizian, V. (2005). A novel 

approach for mobile robot navigation with dynamic obstacles avoidance. Journal of 

Intelligent and Robotic Systems, 44(3), 187-201.   

[5] Zi-Xing, C. A. I., Zhi-Qiang, W. E. N., ZOU, X. B., & CHEN, B. F. (2008). A Mobile 

Robot Path-planning Approach under Unknown Environments. IFAC Proceedings 

Volumes, 41(2), 5389-5392.   

[6] Langer, R. A., Coelho, L. S., & Oliveira, G. H. (2007). K-Bug, a new bug approach for 

mobile robot's path planning. In Control Applications, IEEE International Conference, 

403-408.   

[7] Roy, N., Chattopadhay, R., Mukherjee, A., & Bhuiya, A. (2017). Implementation of 

Image Processing and Reinforcement Learning in Path Planning of Mobile Robots. 

International Journal of Engineering Science, 7(10) 15211-15213.   

[8] Nguyen, H. T., & Le, H. X. (2016). Path planning and Obstacle avoidance approaches for 

Mobile robot, International Journal of Computer Science Issues, 13(4), 1-10.   

[9] Ganeshmurthy, M. S., & Suresh, G. R. (2015) Path planning algorithm for autonomous 

mobile robot in dynamic environment. In Signal Processing, Communication and 

Networking (ICSCN), 3rd International Conference, 1-6.   

[10] Alpaslan YU, Osman PA (2009). Performance Comparison of Bug Algorithms for Mobile 

Robots. In 5th International Advanced Technologies Symposium, 13(1).   

[11] Devi, B. M., & Prabakar, S. (2013). Dynamic Point Bug Algorithm for Robot Navigation. 

International Journal of Scientific & Engineering Research, 4(4), 12761279.   

[12] Al-Jarrah, R., Al-Jarrah, M., & Roth, H. (2018). A Novel Edge Detection Algorithm for 

Mobile Robot Path Planning. Journal of Robotics.   

[13] Han, J., & Seo, Y. (2017). Mobile robot path planning with surrounding point set and path 

improvement. Applied Soft Computing, 57, 35-47.   

[14] Zohaib, M., Iqbal, J., & Pasha, S. M. (2018). A Novel Goal-Oriented Strategy for Mobile 

Robot Navigation without Sub-Goals Constraint. Revue Roumaine Des Sciences 

TechniquesSerie Electrotechnique Et Energetique, 63(1), 106-111.   

[15] Borenstein, J., & Koren, Y. (1989). Real-time obstacle avoidance for fast mobile robots.  

IEEE Transactions on systems, Man, and Cybernetics, 19(5), 1179-1187.   

[16] Harshini, K., &, Ramji. (2015). Navigation of mobile robots in the presence of static 

obstacles of various shapes.  5(10-11),    



 

84 

 

[17] Sankaranarayanan, A., & Vidyasagar, M. (1990). A new path planning algorithm for 

moving a point object amidst unknown obstacles in a plane. In Robotics and Automation, 

Proceedings, International Conference, 1930-1936.   

[18] Buniyamin, N., Ngah, W. W., Sariff, N., & Mohamad, Z. (2011). A simple local path 

planning algorithm for autonomous mobile robots. International journal of systems 

applications, Engineering & development, 5(2), 151-159.   

[19] Mandal, P., Barai, R. K., Maitra, M., & Roy, S. (2013). Path planning of autonomous 

mobile robot: A new approach. In Intelligent Systems and Control (ISCO), 7th 

International Conference, 238-243   

[20] Hachour, O. (2008). Path planning of Autonomous Mobile robot. International journal of 

systems applications, engineering & development, 2(4), 178-190.   

[21] Iijima, J. I. (1992). Searching unknown 2-D environment by a mobile robot with a range 

sensor. Computers & electrical engineering, 18(1), 83-98.   

[22] Contreras-Cruz, M. A., Ayala-Ramirez, V., & Hernandez-Belmonte, U. H. (2015).  

Mobile robot path planning using artificial bee colony and evolutionary programming. 

Applied Soft Computing, 30(1), 319-328.   

[23] Kuric, I., Bulej, V., Saga, M., & Pokorny, P. (2017). Development of simulation software 

for mobile robot path planning within multilayer map system based on metric and 

topological maps. International Journal of Advanced Robotic Systems, 14(6), 1-14.   

[24] Cai, L., Yang, J., Zhao, L., & Wu, L. (2018). An efficient optimization algorithm for 

quadratic programming problem and its applications to mobile robot path planning. 

International Journal of Advanced Robotic Systems, 15(1), 1-8.   

[25] Jin, T., Ko, J., & Lee, J. (2004). An efficient path planning of a mobile robot using image 

of a moving object. IFAC Proceedings Volumes, 37(12), 291-296.]   

[26] Pandey, A., & Parhi, D. R. (2017). Optimum path planning of mobile robot in unknown 

static and dynamic environments using Fuzzy-Wind Driven Optimization algorithm. 

Defence Technology, 13(1), 47-58.   

[27] Leena, N., & Saju, K. K. (2014). A survey on path planning techniques for autonomous 

mobile robots. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 8, 

7679.   

[28] Sahu, D., & Mishra, A. K. (2017). Mobile Robot Path Planning by Genetic Algorithm 

with Safety Parameter. International Journal of Engineering Science, 14723.   

[29] Akka, K., & Khaber(2018). Mobile robot path planning using an improved ant colony 

optimization. International Journal of Advanced Robotic.   

[30] Haj Darwish, A., Joukhadar, A., & Kashkash, M. (2018). Using the bees algorithm for 

wheeled mobile robot path planning in an indoor dynamic environment. Cogent 

Engineering, (just-accepted), 1426539.   

[31] Li, G., & Chou, W. (2018). Path planning for mobile robot using self-adaptive learning 

particle swarm optimization. Science China Information Sciences, 61(5), 052204.   



 

85 

 

[32] Kumar, E. V., Aneja, M., & Deodhare, D. (2017). Solving a Path Planning Problem in a 

Partially Known Environment using a Swarm Algorithm. arXiv preprint 

arXiv:1705.03176.   

[33] Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. In 

Autonomous robot vehicles (pp. 396-404). Springer, New York, NY.    

[34] Sedighi, K. H., Ashenayi, K., Manikas, T. W., Wainwright, R. L., & Tai, H. M. (2004).   

Autonomous local path planning for a mobile robot using a genetic algorithm. In  

Evolutionary Computation, CEC, Congress, 2(1), 1338-1345   

[35] Lawler EL (1976) combinatorial optimization. Holt, Rinehart and Winston, New York   

[36] Lumelsky, V. J., & Stepanov, A. A. (1987). Path-planning strategies for a point mobile 

automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica, 2(1-4), 

403-430.   

[37] Meddah, F., & Dib, L. (2015). E-Bug: New Bug Path-planning algorithm for autonomous 

robot in unknown environment. In Proceedings of the International  

Conference on Intelligent Information Processing, Security and Advanced  

Communication, 1-8, DOI:10.1145/2816839.2816864   

[38] Banerjee, S. (2014). A comparative study of underwater robot path planning algorithms 

for adaptive sampling in a network of sensors, 1-159   

[39] Kamon, I., & Rivlin, E. (1997). Sensory-based motion planning with global proofs. IEEE 

transactions on Robotics and Automation, 13(6), 814-822.   

[40] Noborio, H., Nogami, R., & Hirao, S. (2004). A new sensor-based path-planning 

algorithm whose path length is shorter on the average. In Robotics and Automation, 

Proceedings, IEEE International Conference, 3(1), 2832-2839   

[41] Langer, R. A., Coelho, L. S., & Oliveira, G. H. (2007). K-Bug, a new bug approach for 

mobile robot's path planning. In Control Applications, IEEE International Conference  

403-408, DOI: 10.1109/CCA.2007.4389264   

[42] Parallax Activity Bot reference manual and Simple IDE software details and system of 

the commands and their functions are available at: https://learn.parallax.com.   

  

https://doi.org/10.1109/CCA.2007.4389264
https://doi.org/10.1109/CCA.2007.4389264
https://doi.org/10.1109/CCA.2007.4389264
https://doi.org/10.1109/CCA.2007.4389264
https://doi.org/10.1109/CCA.2007.4389264

	CHAPTER – 1                                                                                                                    8- 24
	CHAPTER – 2                                                                                                                   25-38
	CHAPTER – 3                                                            39-63
	CHAPTER – 4                                                                                                                   64-78
	CHAPTER – 5                                                                                                                   79-81
	1.1 INTRODUCTION TO MOBILE ROBOTS
	1.2 OVERVIEW OF PATH PLANNING OF MOBILE ROBOTS
	1.3 LITERATURE SURVEY
	1.4 OBJECTIVES AND SCOPE OF PRESENT RESEARCH WORK
	Scope


	CHAPTER 2
	2.0. PATH PLANNING METHODS FOR MOBILE ROBOTS
	2.1.1 Path Planning in Static and Dynamic Environment
	2.1.2 Local and Global Path Planning
	2.2 OVERVIEW OF DIFFERENT PATH PLANNING METHODS
	2.2.1 Graph Searching Technique
	2.2.2   Artificial Potential Fields
	2.2.3   Soft Computing Technique
	2.3.1 Bug1 Algorithm
	2.3.2 Bug2 Algorithm
	2.3.3 Tangent Bug Algorithm
	2.3.4 Point Bug Algorithm
	Point Bug Algorithm Limitations
	2.3.5 E-Bug Algorithm

	Description of E-Bug Algorithm
	E-Bug Algorithm Steps


	CHAPTER  3
	3.0. SYSTEM HARDWARE AND SOFTWARE USED IN THE PROJECT
	3.1 SYSTEM COMPONENTS USED IN THE PROJECT
	3.2 ACTIVITYBOT HARDWARE
	3.2.1 Propeller Activity Board
	Main Features of the Propeller Activity Board
	Key Specifications of the Board
	Briefly Description of Different Parts of Activity Board
	1. XBee RF Module Socket
	2. Power Jack
	3. Propeller 8-core Microcontroller System
	4. 3.3V & 5 V Regulators
	5. Servo Ports
	6. 3.3 V & 5 V Power Access
	7. Breadboard
	8. GND, D/A, and A/D Access
	9. D/A Activity Lights
	10. Analog to Digital Converter
	11.  Propeller I/O Pin
	12.  XBee Access
	13.  Reset Button
	15.  Stereo Output Jack
	16.  USB Port
	17.  X Bee DO/DI Activity Lights
	18.  Micro SD Card Socket


	The 3-Position Power Switch
	Blink Lights
	3.2.2 Propeller Microcontroller Chip
	Propeller I/O Pin Assignments
	3.2.3 High Speed Continuous Rotation Servo Motor


	Features
	Key Specifications
	Quick-Start Circuit
	Servo Control
	3.2.4   Optical Encoder

	Sensing Direction

	3.3 LASER RANGE SENSOR SYSTEM
	Working Principle of the LASER Range Sensor System
	Specifications

	3.4.  ACTIVITYBOT SYSTEM SOFTWARE
	3.4.1 Simple IDE
	3.4.3 Main Commands and Functions used in the Project
	servo angle
	pause
	drive_setMax speed
	sin, cos, atan2
	laser_cm


	3.5 ACTIVITYBOT NAVIGATION SYSTEM
	3.5.1 Forward and Backward Movement
	3.5.2 Turning the Activity Bot by calculating the encoder ticks


	CHAPTER   4
	4.0. EXPERIMENTATION WITH A PARALLAX ACTIVITYBOT MOBILE ROBOT FITTED WITH A LASER RANGE SENSOR FOR NAVIGATION BASED ON IMPROVED E-BUG ALGORITHM
	4.1. MODIFICATION IN THE ALGORITHM CONSIDERING THE ACTUAL DIMENSIONS OF MOBILE ROBOT
	4.1.1 Modification in Angle of Rotation for Modified Sudden Point
	4.1.2. Modification in Distance for the Actual Dimension of the Robot

	4.2 PROGRAM DEVELOPMENT FOR PRODUCING NECESSARY MOVEMENTS OF THE ACTIVITYBOT MOBILE ROBOT USING LASER RANGE SENSOR BASED ON IMPROVED E-BUG ALGORITHM
	4.3 PROPELLER C PROGRAM DEVELOPED FOR NAVIGATION OF ACTIVITY-BOT MOBILE ROBOT USING A LASER RANGE SENSOR BASED ON IMPROVEDED E-BUG ALGORITHM
	Different variables used in the program

	4.4. RESULTS AND DISCUSSSIONS

	CHAPTER  5
	5.0. CONCLUTIONS AND FUTURE SCOPE
	5.1. CONCLUSIONS
	5.2. FUTURE SCOPE

	CHAPTER 6
	6.0. REFERENCE

