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Executive Summary 

The dissertation work is implemented with Logistic Regression Algorithm , 

Support Vector Machine Algorithm , Decision Tree Algorithm, KNN Algorithm , 

Random Forest Algorithm , Linear Discriminant Analysis Algorithm , Gradient 

Booster Algorithm . All algorithms are supervised machine learning algorithm. 

The proposed approach takes into account data from different patients. The main 

goal is to come up with Logistic Regression Algorithm, Support Vector Machine 

Algorithm and KNN Algorithm . After implementing the mother dataset I have 

implemented four more algorithms i.e. Random Forest Algorithm, Decision Tree 

Algorithm, Linear Discriminant Analysis Algorithm and Gradient Booster 

Algorithm. 
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1. Introduction 

 

1.1. Brain Tumor 

 
The brain is a vital organ in the human body and responsible for control and 

decision making. As the managing center of nervous systems, this part is very 

essential to be protected from any harm and illness. Tumors are the predominant 

infections caused by abnormal growth of cells that damages the Brain. Meningioma, 

Glioma, and Pituitary are brain tumors as opposed to the other types. Meningiomas 

are mostly a non-cancerous class of tumors that often develop in the narrow walls 

that usually surround the brain . Brain tumors are one of the life-threatening 

diseases that can directly affect human lives. The correct understanding of brain 

tumor stages is an important task for the prevention and cure of illness. To do so, 

Magnetic Resonance Imaging (MRI) is widely used by radiologists to analyze brain 

tumors. The result of this analysis reveals whether the brain is normal or abnormal. 

On the other hand, it identifies the type of tumor in the case of abnormality . With 

the advent of machine learning, the processing of MR images to have a for fast and 

accurate detection of brain tumors matter. 

 
1.2. Machine Learning 

In the beginning, approaches consisted of three steps: pre-processing of MR images, 

, feature generation, and extraction and classification. The median filter was used 

for the improvement of image quality and preserving the edges in the pre- 

processing stage . Segmentation of images with clustering methods such as k- 

means, fuzzy C-means, etc. generates beneficial features from images. Image 

segmentation plays an essential role in analyzing and interpreting images. It has vast 

applications in brain imaging, such as tissue classification, tumor location, tumor 

volume estimation, blood cell delineation, surgical planning, matching. In a brain 

tumor segmentation is applied by using a MR images. Automatic detection of the 

anatomical structure of the brain with a deep neural network. In a voting technique 

for an ensemble of visual appearances such as intensity and adaptive shape modes 

using a combination of discrete Gaussian and higher-order patterns such as Markov- 

Gibbs, random field classification is used. In this work, after denoising with a non- 

local mean filter, a Bayesian fuzzy clustering approach is utilized for the 

segmentation of brain tumors. In the 2D MRI mages are partitioned into the left and 

right hemisphere and statistical features such as mean, homogeneity, absolute value, 

and inertia are computed for the Support Vector Machine (SVM) classifier. Due to 

the vast number of features in step two, most studies consist of a further step to 

extract features with more valuable information using algorithms like principal 

component analysis (PCA) or SIFT detectors and SURF descriptors. After a hybrid 

feature extraction with a covariance matrix, a regularized extreme learning is used 
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to classify brain abnormality . Classification method such as K-Nearest Neighbors, 

Decision Trees, Support Vector Machine (SVM) and the Random Forest is the 

popular machine learning technique on image analysis . 

 

 

1.3. Problem Statement 

Detection of Brain Tumor of MRI based images using Machine Learning- An 

Approach. 

Brain tumors are a heterogeneous group of central nervous system neoplasms that 

arise within or adjacent to the brain. Moreover, the location of the tumor within the 

brain has a profound effect on the patient's symptoms, surgical therapeutic options, 

and the likelihood of obtaining a definitive diagnosis. The location of the tumor in 

the brain also markedly alters the risk of neurological toxicities that alter the 

patient's quality of life. 

There are many techniques for brain tumor detection. I have used Supervised 

Machine Learning Algorithms i.e. SVM , Logistic Regression , KNN, LDA, 

Gradient Boosting Algorithm, Random Forest , Decision Tree to identify the 

efficiency among the peers. 

1.4. Objective 

Detection of Brain Tumor of MRI based images using various supervised machine 

learning algorithms to get best algorithm to solve the problem. 
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2. Background Concept 

Some key concepts will be discussed to understand the details of the algorithm 

that have been implemented for the detection of Brain Tumor will be discussed. 

 
 

2.1. Logistic Regression 

Logistic regression is a statistical analysis method to predict a binary outcome, such 

as yes or no, based on prior observations of a data set. A logistic regression model 

predicts a dependent data variable by analyzing the relationship between one or 

more existing independent variables. 

 

Logistic regression can also play a role in data preparation activities by allowing 

data sets to be put into specifically predefined buckets during the extract, transform, 

load (ETL) process in order to stage the information for analysis. 

 

Logistic regression applications in business: 

Organizations use insights from logistic regression outputs to enhance their business 

strategy for achieving business goals such as reducing expenses or losses and 

increasing ROI in marketing campaigns. 

 

Why is logistic regression important? 

Logistic regression is important because it transforms complex calculations around 

probability into a straightforward arithmetic problem. Admittedly, the calculation 

itself is a bit complex, but modern statistical applications automate much of this 

grunt work. This dramatically simplifies analysing the impact of multiple variables 

and helps to minimize the effect of confounding factors. 

 
As a result, statisticians can quickly model and explore the contribution of various 

factors to a given outcome. 

 

Logistic regression works very similar to linear regression, but with a binomial 

response variable. The greatest advantage when compared to Mantel-Haenszel OR 

is the fact that you can use continuous explanatory variables and it is easier to 

handle more than two explanatory variables simultaneously. Although apparently 

trivial, this last characteristic is essential when we are interested in the impact of 

various explanatory variables on the response variable. If we look at multiple 

https://www.techtarget.com/whatis/definition/dependent-variable
https://www.techtarget.com/searchbusinessanalytics/definition/data-preparation
https://www.techtarget.com/searchdatamanagement/definition/Extract-Load-Transform-ELT
https://www.techtarget.com/searchcio/definition/ROI
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explanatory variables independently, we ignore the covariance among variables and 

are subjected to confounding effects, as was demonstrated in the example above 

when the effect of treatment on death probability was partially hidden by the effect 

of age. 

 
Logistic regression works very similar to linear regression, but with a binomial 

response variable. The greatest advantage when compared to Mantel-Haenszel OR 

is the fact that you can use continuous explanatory variables and it is easier to 

handle more than two explanatory variables simultaneously. Although apparently 

trivial, this last characteristic is essential when we are interested in the impact of 

various explanatory variables on the response variable. If we look at multiple 

explanatory variables independently, we ignore the covariance among variables and 

are subjected to confounding effects, as was demonstrated in the example above 

when the effect of treatment on death probability was partially hidden by the effect 

of age. 

 
Logistic regression works very similar to linear regression, but with a binomial 

response variable. The greatest advantage when compared to Mantel-Haenszel OR 

is the fact that you can use continuous explanatory variables and it is easier to 

handle more than two explanatory variables simultaneously. Although apparently 

trivial, this last characteristic is essential when we are interested in the impact of 

various explanatory variables on the response variable. If we look at multiple 

explanatory variables independently, we ignore the covariance among variables and 

are subjected to confounding effects, as was demonstrated in the example above 

when the effect of treatment on death probability was partially hidden by the effect 

of age. 

 
A logistic regression will model the chance of an outcome based on individual 

characteristics. Because chance is a ratio, what will be actually modeled is the 

logarithm of the chance given by: 
 

log( 
𝜋

 
1−𝜋 

)=β0+β1x1+β2x2+…βmxm 

where π indicates the probability of an event , and βi are the regression coefficients 

associated with the reference group and the xi explanatory variables. At this point, 
an important concept must to be highlighted. The reference group, represented 

by β0, is constituted by those individuals presenting the reference level of each and 

every variable x1...m. 
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2.2. Support Vector Machine (SVM) 

 
Support Vector Machine or SVM is one of the most popular Supervised Learning 

algorithms, which is used for Classification as well as Regression problems. 

However, primarily, it is used for Classification problems in Machine Learning. 
 

The goal of the SVM algorithm is to create the best line or decision boundary that 

can segregate n-dimensional space into classes so that we can easily put the new 

data point in the correct category in the future. This best decision boundary is called 

a hyperplane. 
 

SVM chooses the extreme points/vectors that help in creating the hyperplane. These 

extreme cases are called as support vectors, and hence algorithm is termed as 

Support Vector Machine. 
 

Types of SVM 

SVM can be of two types: 

 

Linear SVM: Linear SVM is used for linearly separable data, which means if a 

dataset can be classified into two classes by using a single straight line, then such 

data is termed as linearly separable data, and classifier is used called as Linear SVM 

classifier. 

 

Non-linear SVM: Non-Linear SVM is used for non-linearly separated data, which 

means if a dataset cannot be classified by using a straight line, then such data is 

termed as non-linear data and classifier used is called as Non-linear SVM classifier. 
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.The data may not be well linearly separable or not linearly separable 

at all, which is often the case for real world data. In the example given 

above, it can happen for example that two customers are acting 

completely similar in an online shop, with only one of them making a 

purchase. This would result in not separable data, due to the same 

attribute vector having different labels. 

.The second concern is the possibility of overfitting the SVM. To 

avoid this, data has to be preprocessed to identify noise and accept 

some misclassifications. Other- wise, the accuracy values of the SVM 

will be flawed and result in more erroneous classification for future 

events. 

The first problem can be resolved by using the kernel trick, mapping the n- 
dimensional input data to a higher dimensional space, where the data can be 

separated linearly. 
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2.3. Decision Tree 

A Decision Tree is a classification technique that focuses on an easily 

understandable representation form and is one of the most common 

learning methods. Decision Trees use data sets that consist of attribute 

vectors, which in turn contain a set of classification attributes 

describing the vector and a class attribute assigning the data entry to a 

certain class. A Decision Tree is built by iteratively splitting the data 

set on the attribute that separates the data as well as possible into the 

different existing classes until a certain stop criterion is reached. The 

representation form enables users to get a quick overview of the data,  

since Decision Trees can easily be visualized in a tree structured 

format,      which      is      easy      to      understand      for      humans. 

 

 

 
 

In Decision Trees, nodes can be separated into the root node, inner 

nodes, and end nodes, also called leaf’s. The root node represents the 

start of the decision support process and has no incoming edges. The 

inner nodes have exactly one incoming edge and have at least two 

outgoing edges. For instance, such a test might ask: “Is the customer 

older than 35 for the attribute age?”. Leaf nodes consist of an answer 

to the decision problem, which is mostly represented by a class 

prediction. As an example, a decision problem might be the question 

whether a customer in an online shop will make a purchase or not, 

with the class predictions being yes and no. Leaf nodes have no 

outgoing and exactly one incoming edge. Edges represent the decision 

taken from the previous node. Given a node n, all following nodes that 

are separated by exactly one edge to n are calledchildren of n, while n 

is called parent of all its child nodes. Figure 2.2 shows an exampleof a 

Decision Tree. For instance, a data record, having the attributes 

cold, polarBear would be passed down to the left subtree, since his 
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temperature attribute is cold and then down to the leaf “North Pole” 

being classified with the corresponding label. 

 

 

Figure 2.2: Example of a Decision Tree. 

 
Training a Decision Tree with this automated process can result in large Decision 

Trees with sections of very little power in terms of classification. Additionally, trees 

tend to be overfitted, which means that they fit the training instances too closely. 

This results in bad performances when these trees are applied to unseen data. 

Therefore, a technique called pruning has been developed. Its objective is to remove 

the less or non-productive parts from the Decision Tree, such as parts based on 

noisy or erroneous data or parts that are overfitted. This often results in further 

improvements in terms of accuracy and shrinks down the tree size. This process is 

especially important, due to the fact that every real- world data set contains 

erroneous or noisy data. 

Algorithm Decision Tree Training Process 

1. training set = S; 

2. attribute set: A; 

3. target Attribute = C; 

4. split criterion = sC; 

5. stop criterion = stop; 

6. Grow(S, A, C, sC, stop) 

7. if stop(S) = false 

8. then 

9. for all ai ∈ A 
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10. do find ai with the best sc(S); 

11. label current Node with a; 

12. for all values vi ∈ a 

13. do label outgoing edge with vi 

14. Ssub = S where a = vi; 

15. create subNode = Grow(Ssub, A, C, sC, stop); 

16. else currentNode = leaf; 

17. label currentNode with ci where ci is most 

common value of C ∈ S; 

Figure 2.3: Pseudo code of training a Decision Tree 

 
Figure 2.3 shows the process of training a Decision Tree in pseudo 

code, not taking numeric attributes into account. The algorithm starts 

by testing whether the stop criterion has been reached or not. If so, the 

current Node is labeled with the most common value of all existing 

class labels for the training set. If the stop criterion is not true, the 

algorithm calculates the split value for all attributes and labels the 

node with the attribute corresponding to the best split value. 

Afterwards, it splits the node into multiple nodes, one foreach value of 

the chosen attribute. The algorithm calls the same process recursively 

for all training subsets, containing all data records with the 

corresponding value of the chosenattribute. 
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2.4.k-nearest neighbor (K-NN) 

k-nearest neighbor (K-NN) is a supervised classification learning 

algorithm used to classify samples. The purpose of this algorithm is to 

classify a new sample based on its features and labeled training 

samples. The algorithm is memory-based and does not require a 

model to be fit. Given a query point x0, k training points closest in 

distance (Euclidean distance) to x0 are found. Based on the majority 

of the neighbors found, the new query is classified to its cluster. Any 

ties in voting are broken at random. 

o K-Nearest Neighbour is one of the simplest Machine Learning algorithms 

based on Supervised Learning technique. 

o K-NN algorithm assumes the similarity between the new case/data and 

available cases and put the new case into the category that is most similar to 

the available categories. 

o K-NN algorithm stores all the available data and classifies a new data point 

based on the similarity. This means when new data appears then it can be 

easily classified into a well suite category by using K- NN algorithm. 

o K-NN algorithm can be used for Regression as well as for Classification but 

mostly it is used for the Classification problems. 

o K-NN is a non-parametric algorithm, which means it does not make any 

assumption on underlying data. 

o It is also called a lazy learner algorithm because it does not learn from the 

training set immediately instead it stores the dataset and at the time of 

classification, it performs an action on the dataset. 

o KNN algorithm at the training phase just stores the dataset and when it gets 

new data, then it classifies that data into a category that is much similar to the 

newdata. 
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2.5. Random Forest 

 
2.5.1 Supervised Random Forests are grown using a collaboration of the bagging 

and ID3 principles. Each tree in the forest is grown in the following manner. Given 

a training set, a random subset is sampled (with replacement) and used to construct 

a tree which resembles the ID3 idea. However, every case in this bootstrap sample 

is not used to grow the tree. About one third of the bootstrap is left out and 

considered to be out-ofbag (OOB) data. Also, not every feature is used to construct 

the tree. A random selection of features is evaluated in each tree. The OOB data is 

used to get a classification error rate as trees are added to the forest and to measure 

input variable (feature) importance. After the forest is completed, a sample can be 

classified by taking a majority vote among all trees in the forest resembling the 

bootstrap aggregating idea. 

 

2.5.2 Unsupervised Random Forest can be run unsupervised; that is, without any 

prior information about the input data. Many unsupervised classifiers plot each 

input case in a multidimensional space based on feature values. If four features are 

evaluated in classification, each case is plotted in a four dimensional feature space 

and clustered using Euclidean distance. Random Forest works similarly 

unsupervised by calculating a variable dissimilarity measure and plotting each case 

in a space according to dissimilarity measure and clustering using Euclidean 

distance. 

Dissimilarity measures can be found in supervised learning by putting the 

training data down each tree. If observations i and j fall in the same terminal node, 

their similarity is increased by one. These values can be stored in matrix form. After 

the forest has been constructed and similarities have been found, the similarity 

matrix is divided by the number of trees. The dissimilarity is defined as: 

𝐷𝑖𝑗 = √1 − 𝑆𝑖𝑗 

 

where S is the similarity matrix. Using multidimensional scaling with 

dissimilarities as inputs, it is possible to plot points in a Euclidean space where the 

distance between the points is equal to the dissimilarities. The points can then be 

clustered. 

 

2.5.3 Synthetic Data When classes are completely unknown, it is necessary to 

make up or synthesize classes. By smartly creating synthetic data and adding it to 

the original dataset, we then have two classes: original data, and synthetic data. We 

can solve this two class problem using Random Forest and evaluate dissimilarity 

measures. Plotting based off the dissimilarity measures results in data that is able to 

be clustered appropriately. 



19 | P a g e 
 

 

 

2.5.4 Variable Importance 

Random Forest can measure variable importance. This is useful for data mining 

purposes and can assist in unsupervised classification. If we change a single 

feature’s input value and reclassify the record, we can determine that the feature’s 

importance is based on the new classification. This is done using OOB data. Each 

variable m is randomly permuted and the permuted OOB cases are sent through the 

forest again. Subtracting the number of correctly classified cases using permuted 

data from the number of correctly classified cases using non-permuted data gives 

the importance value of variable m. These values are different for each tree, but the 

average of each value over all trees in the forest gives a raw importance score for 

each variable . 

 
2.6. Linear Discriminant Analysis (LDA) 

It is a technique which is frequently used to extract discriminative features that 

preserve the class separability. LDA involves matrices eigen decomposition which 

can be computationally expensive in both time and memory, in particular when the 

number of samples and the number of features are large. This is the case for text and 

image data sets where the dimension can reach in order of hundreds of thousands or 

more. By reducing data dimension, we reduce the complexity of data analysis. The 

accuracy and the computational time of the proposed approach are provided for a 

wide variety of real image and text data sets. The results show the relevance of the 

proposed method compared to other methods. 
 

Although the logistic regression algorithm is limited to only two-class, linear 

Discriminant analysis is applicable for more than two classes of classification 

problems. 
 

Linear Discriminant analysis is one of the most popular dimensionality reduction 

techniques used for supervised classification problems in machine learning. It is 

also considered a pre-processing step for modeling differences in ML and 

applications of pattern classification. 
 

Whenever there is a requirement to separate two or more classes having multiple 

features efficiently, the Linear Discriminant Analysis model is considered the most 

common technique to solve such classification problems. For e.g., if we have two 

classes with multiple features and need to separate them efficiently. When we 

classify them using a single feature, then it may show overlapping. 
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To overcome the overlapping issue in the classification process, we must increase 

the number of features regularly. 

 
 
 

2.7. Gradient Booster 

 

Gradient boosting classifier are a group of machine learning algorithms that 

combine many weak learning models together to create a strong predictive model. 

Decision trees are usually used when doing gradient boosting. Gradient boosting 

models are becoming popular because of their effectiveness at classifying complex 

datasets, and have recently been used to win many data science competitions .In 

machine learning, there are two types of  supervised learning problems: 

 

Classification refers to the task of giving a machine learning algorithm features, 

and having the algorithm put the instances/data points into one of 

many discrete classes. Classes are categorical in nature, it isn't possible for an 

instance to be classified as partially one class and partially another. A classic 

example of a classification task is classifying emails as either "spam" or "not spam" 

- there's no "a bit spammy" email. 

 

Regressions are done when the output of the machine learning model is a real value 

or a continuous value. Such an example of these continuous values would be 

"weight" or "length". An example of a regression task is predicting the age of a 

person based off of features like height, weight, income, etc. 

 

Gradient boosting classifiers are specific types of algorithms that are used for 

classification tasks, as the name suggests. 
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label 

Features are the inputs that are given to the machine learning algorithm, the inputs 

that will be used to calculate an output value. In a mathematical sense, the features 

of the dataset are the variables used to solve the equation. The other part of the 

equation is the or target, which are the classes the instances will be 

categorized into. Because the labels contain the target values for the machine 

learning classifier, when training a classifier we should split up the data into 

training and testing sets. The training set will have targets/labels, while the testing 

set won't contain these values. 

 

Scikit-Learn, or "sklearn", is a machine learning library created for Python, intended 

to expedite machine learning tasks by making it easier to implement machine 

learning algorithms. It has easy-to-use functions to assist with splitting data into 

training and testing sets, as well as training a model, making predictions, and 

evaluating the model. 
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3. Literature Survey 

Brain tumor is an abnormal mass of tissue with uncoordinated growth inside the 

skull which may invade and damage nerves and other healthy tissues. Non- 

homogeneities of the brain tissues result in inaccurate detection of tumor boundaries 

with the existing methods for contrast enhancement and segmentation of magnetic 

resonance images (MRI). This paper presents an improved framework for detection 

of brain tumor. 

 
Automated detection and segmentation of brain abnormalities is therefore 

a challenging problem of research since decades. Solid brain tumors are 

malignant masses of tissues formed inside skull as a result of abnormal and 

uncoordinated growth due to proliferation of atypical cells. 

Alfonse and Salem [1] have presented a technique for automatic classification of 

brain tumor from MR images using an SVM-based classifier. To improve the 

accuracy of the classifier,features are extracted using fast Fourier transform 

(FFT)and reduction of features is performed using Minimal-Redundancy- 

Maximal-Relevance (MRMR) technique. This technique has obtained an accuracy 

of 98.9%. 

Damodharan and Raghavan [2] have presented a neural network based technique 

for brain tumor detection and classification. In this method, the quality rate is 

produced separately for segmentation of WM, GM, CSF, and tumor region and 

claims an accuracy of 83% using neural network based classifier. 

Owasis et al [3] proposed how AI assists in the diagnosis and prediction of a 

disease, it is essential to understand the use and applicability of diverse techniques 

such as SVM, KNN, Decision Tree, Random Forest and Long short-term memory 

(LSTM) and many others for various   disease detection system (Owasis et 

al. 2019; Nithya et al. 2020). We conducted an extensive survey based on the 

machine and deep learning models for disease diagnosis. The study covers the 

review of various diseases and their diagnostic methods using AI techniques. 

https://link.springer.com/article/10.1007/s12652-021-03612-z#ref-CR109
https://link.springer.com/article/10.1007/s12652-021-03612-z#ref-CR105
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Mohamed A. Naser and M. J amal Deen [4] (2020) in their research paper 

illustrates transfer learning models and use of deep learning for MRI images . It 

gives exact automatic grading of LGG brain tumors with detection. Full 

automation is acheived by the use of pipeline of MRI images. It allows 

simultaneous grading and segmentation of the brain tumors. Author claims that 

this method shows a promising results as a non- invasive tool for tumors 

characterization in LGG. 
 

 

Ijaz et al. [5] proposed (2020) a cervical cancer prediction model for early 

prediction of cervical cancer using risk factors as inputs. The authors utilize 

several machine learning approaches and outlier detection for different pre- 

processing tasks. 

 
 

Desautels et al. [6] proposed a transfer learning-based machine learning 

algorithm. They achieved good discrimination. Unplanned readmission prediction 

can be used to target resources more efficiently. 

 
 

Flores et al. [7] proposed a method that evaluate heterogeneous and missing 

clinical data using unsupervised machine learning algorithm to detect important 

artery disease. 

 

S. Banerjee, S. Mitra, B. U. Shankar, [8] reports the accuracy achieved by seven 

standard classifiers,viz. i) Decision Tree, ii) Random Forest, iii) Logistic Regression 

(LR), iv) Linear Discriminant Analysis (LDA), v) Support Vector Machine (SVM), 

vi) Gradient Booster, and vii) k-nearest neighbours (k-NN). 

 
The accuracy reported in International Journal of Computer Science and 

communication Vol. 2, No. 2, JulyDecember-2011,pp. 325-331 [9]is on the 

BRaTS 2015 dataset (a subset of BRaTS 2017 dataset) which consists of 200 

HGG and 54 LGG cases. 56 three-dimensional quantitative MRI features 

extracted manually from each patient MRI and used for the classification 
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4. Proposed Methodology 

 
The proposed work is to analyse the images MRI based brain tumor detection using 

supervised machine learning algorithm . It has been used several algorithms i.e. 

Logistics Regression, Support Vector Machine, Decision Tree, KNN, Random 

Forest , Linear Discriminant Analysis and Gradient Booster. 

 

First, I have implemented the mother paper which have been implemented with 

logistic regression, support vector machine and KNN Algorithm . While 

implementing mother paper first import the required modules. Then I have started to 

prepare the data. The training dataset is classified as "no" means no tumor in brain 

and "yes" means tumor in brain. I have marked "no" as 0 and "yes" as 1. Then I 

have created two class i.e. X and Y and have appended the images in X and mark 

the classification of images in Y and while appending all the images have been 

resized into one specific size. Then I have turned X and Y into numpy array. After 

that splitting the dataset into test and train data. Then features has been scaled and 

selected with PCA. After selecting the features the model has been trained with 

support vector machine algorithm, logistic regression algorithm and KNN 

algorithm. Then each model is evaluated and predicted and tested. 

 

After implementing the mother dataset I have implemented four more algorithms 

i.e. random forest algorithm, decision tree algorithm, linear discriminant analysis 

algorithm and gradient booster algorithm. 

 

First import the required modules. Then I have started to prepare the data. The 

training dataset is classified as "no" means no tumor in brain and "yes" means tumor 

in brain. I have marked "no" as 0 and "yes" as 1. Then I have created two classes i.e. 

X and Y and have appended the images in X and mark the classification of images 

in Y and while appending all the images have been resized into one specific size. 

Then I have turned X and Y into numpy array. After that splitting the dataset into 

test and train data. Then features has been scaled and selected with PCA. After 

selecting the features the model has been trained with support vector machine 

algorithm, logistic regression algorithm, KNN algorithm, random forest algorithm, 

decision tree algorithm, gradient booster algorithm and linear discriminant analysis 

algorithm .Then each model is evaluated and predicted and tested. 
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5. Experimental Result and Evaluation 

 
The dissertation is done with several supervised machine learning algorithms 

i.e. Logistic Regression, Support Vector Machine Algorithm, KNN, Random Forest 

Algorithm, Decision Tree Algorithm, Gradient Booster Algorithm and Linear 

Discriminant Analysis Algorithm. 

 

Logistic Regression 

 

Logistic regression is an example of supervised learning. It is used to calculate or 

predict the probability of a binary (yes/no) event occurring. 

logclf.fit(xtrain, ytrain) 

logclf.score(xtest, ytest) 

0.926530612244898 
Fig:1 

 

Fig:1 shows the experimental result for Logistic Regression. 

 

Decision Tree 

 

Decision Trees are a type of Supervised Machine Learning (that is you explain what 

the input is and what the corresponding output is in the training data) where the data 

is continuously split according to a certain parameter. The tree can be explained by 

two entities, namely decision nodes and leaves. 

treeclf.fit(xtrain, ytrain) 

treeclf.score(xtest, ytest) 

0.963265306122449 

Fig:2 

Fig:2 shows the experimental result for Decision Tree. 

 

Random Forest 

 

Random forest is a Supervised Machine Learning Algorithm that is used widely in 

Classification and Regression problems. It builds decision trees on different samples 

and takes their majority vote for classification and average in case of regression. 

 
rf_clf.fit(xtrain, ytrain) 

rf_clf.score(xtest, ytest) 

0.9959183673469387 

Fig:3 

Fig:3 shows the experimental result for Random Forest . 
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KNN 

 
 

The k-nearest neighbors algorithm, also known as KNN or k-NN, is a non- 

parametric, supervised learning classifier, which uses proximity to make 

classifications or predictions about the grouping of an individual data point. 

 
print("Training Score:", KNN_model.score(pca_train, ytra 

in)) 

print("Testing Score:", KNN_model.score(pca_test, ytest) 

) 

 

Training Score: 1.0 

Testing Score: 0.9510204081632653 

Fig:4 

 

Fig:4 shows the experimental result for KNN . 

 

LDA 

 

Linear discriminant analysis (LDA) is used here to reduce the number of features to 

a more manageable number before the process of classification. Each of the new 

dimensions generated is a linear combination of pixel values, which form a 

template. 

 
LDAclf.fit(xtrain, ytrain) 

LDAclf.score(xtest, ytest) 

0.8081632653061225 

Fig:5 

Fig:5 shows the experimental result for LDA . 

Gradient Boosting 

Gradient boosting is a machine learning technique used in regression and 

classification tasks, among others. It gives a prediction model in the form of an 

ensemble of weak prediction models, which are typically decision trees. 
 

gbclf = ensemble.GradientBoostingClassifier() 

gbclf.fit(xtrain, ytrain) 

gbclf.score(xtest, ytest) 

0.9877551020408163 

Fig:6 

Fig:6 shows the experimental result for Gradient Boosting. 
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SVM 

 
 

Support Vector Machine or SVM is one of the most popular Supervised Learning 

algorithms, which is used for Classification as well as Regression problems. 

 
print("Training Score:", sv.score(pca_train, ytrain)) 

print("Testing Score:", sv.score(pca_test, ytest)) 

 

Training Score: 0.9907881269191402 

Testing Score: 0.9673469387755103 

Fig:7 

 

Fig:7 shows the experimental result for SVM. 
 

 

 

 

 
 

SL No. Name of Algorithm Result 

1 Logistic Regression 0.9265 

2 Decision Tree 0.9632 

3 Random Forest 0.9959 

4 KNN 0.9510 

5 LDA 0.8081 

6 Gradient Boosting 0.9877 

7 SVM 0.9673 

 

 

After exploring the confusion matrix and score of all the algorithms it is found that 

Random Forest Algorithm gives better result i.e. 0.9959183673469387. 



28 | P a g e 
 

6. Conclusion and Future work 

 
From the implementation code it has been seen that among all the algorithms like 

Logistic Regression , SVM, Decision Tree , Random Forest , Gradient Booster, it 

can be said that Random Forest Algorithm gives best result . 

 

This work can be further experimented with unsupervised learning algorithms in 

future. The dataset would be very large for unsupervised learning algorithm. 
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Appendix 

 
Data of patients from different hospital is collected. 

 
Mounting to drive 

 

[ ] 

 

 

Load Modules 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

from sklearn.model_selection import RandomizedSearchCV, 

KFold, train_test_split 

from sklearn.metrics import accuracy_score 

import cv2 

from tensorflow import keras 

Prepare/collect the data 

import os 

 

path = os.listdir('/content/drive/MyDrive/Project/main/T 

raining/') 

classes = {'no':0, 'yes':1} 

 

import cv2 

X = [] 

Y = [] 

for cls in classes: 

pth = '/content/drive/MyDrive/Project/main/Training/ 

'+cls 

for j in os.listdir(pth): 

img = cv2.imread(pth+'/'+j, 0) 

img = cv2.resize(img, (200,200)) 

X.append(img) 

Y.append(classes[cls]) 

from google.colab import drive 

drive.mount('/content/drive') 

Mounted at /content/drive 
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X = np.array(X) 

Y = np.array(Y 
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np.unique(Y) 

 
array([0, 1]) 

pd.Series(Y).value_counts() 

 
1 827 

0 395 

dtype: int64 

 
X.shape 

(1222, 200, 200) 

 
Visualize data 

 

plt.imshow(X[0], cmap='gray') 

<matplotlib.image.AxesImage at 0x7f4428397dd0> 
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Prepare Data 

 

X_updated = X.reshape(len(X), -1) 

X_updated.shape 

(1222, 40000) 

 
Splitting Data 

 

xtrain, xtest, ytrain, ytest = train_test_split(X_update 

d, Y, random_state=10,test_size=.20) 

xtrain.shape, xtest.shape 

((977, 40000), (245, 40000)) 

 
Feature Scaling 

 

print(xtrain.max(), xtrain.min()) 

print(xtest.max(), xtest.min()) 

xtrain = xtrain/255 

xtest = xtest/255 

print(xtrain.max(), xtrain.min()) 

print(xtest.max(), xtest.min()) 

255 0 
 

255 0 

1.0 0.0 

1.0 0.0 

 
Feature Selection: PCA 

 

from sklearn.decomposition import PCA 

print(xtrain.shape, xtest.shape) 

 

pca = PCA(.98) 

# pca_train = pca.fit_transform(xtrain) 

# pca_test = pca.transform(xtest) 

pca_train = xtrain 

pca_test = xtest 

(977, 40000) (245, 40000) 
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print(pca_train.shape, pca_test.shape) 

#print(pca.n_components_) 

#print(pca.n_features_) 

(977, 40000) (245, 40000) 

 

Train Model 

 
from sklearn.linear_model import LogisticRegression 

from sklearn.svm import SVC 

 

import warnings 

warnings.filterwarnings('ignore') 

 

lg = LogisticRegression(C=0.1) 

lg.fit(xtrain, ytrain) 

 
LogisticRegression(C=0.1) 

sv = SVC() 

 

sv.fit(pca_train, ytrain) 

SVC() 

 

from sklearn import neighbors 

#KNN_model=neighbors.KNeighborsClassifier(n_neighbors=be 

st_k,n_jobs=-1) 
 

#KNN_model.fit(pca_train,pca_train) 
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from sklearn.metrics import f1_score,confusion_matrix,ro 

c_auc_score 

f1_list=[] 

k_list=[] 

 

for k in range(1,10): 

clf=neighbors.KNeighborsClassifier(n_neighbors=k,n_j 

obs=-1) 

clf.fit(xtrain,ytrain) 

pred=clf.predict(xtest) 

f=f1_score(ytest,pred,average='macro') 

f1_list.append(f) 

k_list.append(k) 

 

best_f1_score=max(f1_list) 

best_k=k_list[f1_list.index(best_f1_score)] 

print("Optimum K value=",best_k," with F1- 

Score=",best_f1_score) 

Optimum K value= 4 with F1-Score= 0.9623829264547827 

KNN_model=neighbors.KNeighborsClassifier(n_neighbors=1,n 

_jobs=-1) 

KNN_model.fit(xtrain,ytrain) 

 

KNeighborsClassifier(n_jobs=-1, n_neighbors=1) 

 
Evaluation 

 
print("Training Score:", lg.score(pca_train, ytrain)) 

print("Testing Score:",lg.score(pca_test, ytest)) 

 

Training Score: 1.0 

Testing Score: 0.9714285714285714 

 

print("Training Score:", sv.score(pca_train, ytrain)) 

print("Testing Score:", sv.score(pca_test, ytest)) 

 

Training Score: 0.9907881269191402 

Testing Score: 0.9673469387755103 
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print("Training Score:", KNN_model.score(pca_train, ytra 

in)) 

print("Testing Score:", KNN_model.score(pca_test, ytest) 

) 

 

Training Score: 1.0 

Testing Score: 0.9510204081632653 

 
Prediction 

 
pred = sv.predict(pca_test) 

np.where(ytest!=pred) 

 

(array([ 49, 51, 59, 65, 68, 166, 171, 238]),) 

 

pred[4] 

0 

ytest[36] 

1 

pred = lg.predict(pca_test) 

np.where(ytest!=pred) 

 

(array([ 3, 49, 50, 59, 65, 166, 238]),) 

 

pred=KNN_model.predict(pca_test) 

np.where(ytest!=pred) 

#print("Accuracy={}%".format((sum(ytest==pred)/ytest.sha 

pe[0])*100)) 

 

(array([ 41, 49, 50, 59, 65, 112, 137, 160, 166, 169, 

171, 238]),) 

 
TEST MODEL 

dec = {0:'No Tumor', 1:'Positive Tumor'} 

plt.figure(figsize=(20,16)) 
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p = os.listdir('/content/drive/MyDrive/Project/main/Test 

ing/') 

c=1 

for i in os.listdir('/content/drive/MyDrive/Project/main 

/Testing/no/')[:16]: 

plt.subplot(4,4,c) 

 

img = cv2.imread('/content/drive/MyDrive/Project/mai 

n/Testing/no/'+i,0) 

img1 = cv2.resize(img, (200,200)) 

img1 = img1.reshape(1,-1)/255 

p = sv.predict(img1) 

plt.title(dec[p[0]]) 

plt.imshow(img, cmap='gray') 

plt.axis('off') 

c+=1 
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plt.figure(figsize=(20,16)) 

p = os.listdir('/content/drive/MyDrive/Project/main/Test 

ing/') 

c=1 

for i in os.listdir('/content/drive/MyDrive/Project/main 

/Testing/yes/')[:16]: 

plt.subplot(4,4,c) 

 

img = cv2.imread('/content/drive/MyDrive/Project/mai 

n/Testing/yes/'+i,0) 

img1 = cv2.resize(img, (200,200)) 

img1 = img1.reshape(1,-1)/255 

p = lg.predict(img1) 

plt.title(dec[p[0]]) 

plt.imshow(img, cmap='gray') 

plt.axis('off') 

c+=1 
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plt.figure(figsize=(20,16)) 

p = os.listdir('/content/drive/MyDrive/Project/main/Test 

ing/') 

c=1 

for i in os.listdir('/content/drive/MyDrive/Project/main 

/Testing/yes/')[:16]: 

plt.subplot(4,4,c) 

 

img = cv2.imread('/content/drive/MyDrive/Project/mai 

n/Testing/yes/'+i,0) 

img1 = cv2.resize(img, (200,200)) 

img1 = img1.reshape(1,-1)/255 

p = KNN_model.predict(img1) 

plt.title(dec[p[0]]) 

plt.imshow(img, cmap='gray') 

plt.axis('off') 

c+=1 
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Classifier 

import pandas as pd 

from sklearn.model_selection import GridSearchCV 

from sklearn.preprocessing import StandardScaler 

from sklearn.preprocessing import LabelEncoder 

#from pydataset import data 

from sklearn.model_selection import train_test_split 

from sklearn.model_selection import cross_val_score 

from sklearn.linear_model import LogisticRegression 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.neighbors import KNeighborsClassifier 

#from mlxtend.classifier import EnsembleVoteClassifier 

from sklearn.discriminant_analysis import LinearDiscrimi 

nantAnalysis as LDA 

from sklearn.metrics import accuracy_score 

from sklearn.metrics import classification_report 

 

import os 

path = os.listdir('/content/drive/MyDrive/Project/main/T 

raining/') 

classes = {'no':0, 'yes':1} 

 

import cv2 

X = [] 

Y = [] 

for cls in classes: 

pth = '/content/drive/MyDrive/Project/main/Training/ 

'+cls 

for j in os.listdir(pth): 

img = cv2.imread(pth+'/'+j, 0) 

img = cv2.resize(img, (200,200)) 

X.append(img) 

Y.append(classes[cls]) 

 

X = np.array(X) 

Y = np.array(Y) 

 

np.unique(Y) 

array([0, 1]) 

 

pd.Series(Y).value_counts() 

1 827 

0 395 
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dtype: int64 

 
X.shape 

(1222, 200, 200) 

 
X_updated = X.reshape(len(X), -1) 

X_updated.shape 

(1222, 40000) 

 

xtrain, xtest, ytrain, ytest = train_test_split(X_update 

d, Y, random_state=10,test_size=.20) 

xtrain.shape, xtest.shape 

((977, 40000), (245, 40000)) 

 

print(xtrain.max(), xtrain.min()) 

print(xtest.max(), xtest.min()) 

xtrain = xtrain/255 

xtest = xtest/255 

print(xtrain.max(), xtrain.min()) 

print(xtest.max(), xtest.min()) 

255 0 

255 0 

1.0 0.0 

1.0 0.0 

 
logclf=LogisticRegression(penalty='l2',C=0.001, random_s 

tate=0) 

treeclf=DecisionTreeClassifier(max_depth=3,criterion='en 

tropy',random_state=0) 

knnclf=KNeighborsClassifier(n_neighbors=1,p=2,metric='mi 

nkowski') 

LDAclf=LDA() 

 

treeclf.fit(xtrain, ytrain) 

treeclf.score(xtest, ytest) 

0.963265306122449 

 
y_pred = treeclf.predict(xtest) 

 

#from sklearn.metrics import confusion_matrix 

confusion_matrix(ytest, y_pred) 
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array([[ 75, 6], 

[ 3, 161]]) 

 

from sklearn import ensemble 

rf_clf = ensemble.RandomForestClassifier(n_estimators=10 

0) 

rf_clf.fit(xtrain, ytrain) 

rf_clf.score(xtest, ytest) 

0.9959183673469387 

 
logclf.fit(xtrain, ytrain) 

logclf.score(xtest, ytest) 

0.926530612244898 

y_pred = logclf.predict(xtest) 

 

#from sklearn.metrics import confusion_matrix 

confusion_matrix(ytest, y_pred) 

array([[ 63, 18], 

[ 0, 164]]) 

 
knnclf.fit(xtrain, ytrain) 

knnclf.score(xtest, ytest) 

0.9510204081632653 

 
y_pred = knnclf.predict(xtest) 

 

#from sklearn.metrics import confusion_matrix 

confusion_matrix(ytest, y_pred) 

array([[ 70, 11], 

[ 1, 163]]) 

 
LDAclf.fit(xtrain, ytrain) 

LDAclf.score(xtest, ytest) 

0.8081632653061225 

 
y_pred = LDAclf.predict(xtest) 

 

#from sklearn.metrics import confusion_matrix 

confusion_matrix(ytest, y_pred) 

array([[ 57, 24], 
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[ 23, 141]]) 

 
gbclf = ensemble.GradientBoostingClassifier() 

gbclf.fit(xtrain, ytrain) 

gbclf.score(xtest, ytest) 

0.9877551020408163 

 

# Let's tune this Gradient booster. 

gbclf = ensemble.GradientBoostingClassifier(n_estimators 

=50) 

gbclf.fit(xtrain,ytrain) 

gbclf.score(xtest, ytest) 

0.9795918367346939 

 
# Importing library 

#from scipy.stats import kurtosis 

# Creating a dataset 

#dataset = xtrain[0] 

 

# Calculate the kurtosis 

#print(kurtosis(dataset, axis=0, bias=True)) 

 
DL 

import numpy as np # linear algebra 

import pandas as pd # data processing, CSV file I/O (e.g 

. pd.read_csv) 

import os 

import matplotlib.pyplot as plt 

import seaborn as sb 

sb.set_style('whitegrid') 

import tensorflow as tf 

from tensorflow.keras import layers,models,optimizers,pr 

eprocessing 

from tensorflow.keras.layers import Conv2D,Dense,MaxPool 

ing2D,Flatten,Dropout 

 

main_dir = "/content/drive/MyDrive/Project/main/Training 

/" 

classification_dirs = [("no",), ("yes",)] 

resolution = 64 
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def load_images(root_dir_name): 

x = [] 

y = [] 

 

for label, sub_dir_names in enumerate(classification 

_dirs): 

 

e}") 

for sub_dir_name in sub_dir_names: 

print(f"loading {root_dir_name} {sub_dir_nam 

 

sub_dir_path = os.path.join(main_dir, root_d 

ir_name, sub_dir_name) 

for image_name in os.listdir(sub_dir_path): 

image_path = os.path.join(sub_dir_path, 

image_name) 

image = preprocessing.image.load_img(ima 

ge_path, color_mode="grayscale", target_size=(resolution 

, resolution)) 

 

y(image)) 

x.append(preprocessing.image.img_to_arra 

y.append(label) 

 

x = np.array(x) / 255.0 

y = np.array(y) 

 

return x, y 

return x, y 

 

x_train, y_train = load_images("/content/drive/MyDrive/P 

roject/main/Training/") 

x_test, y_test = load_images("/content/drive/MyDrive/Pro 

ject/main/Testing/") 

 

loading /content/drive/MyDrive/Project/main/Training/ no 
loading /content/drive/MyDrive/Project/main/Training/ yes 
loading /content/drive/MyDrive/Project/main/Testing/ no 
loading /content/drive/MyDrive/Project/main/Testing/ yes 

 
x_train.shape 

(1222, 64, 64, 1) 

 

x_test.shape 

(179, 64, 64, 1) 
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c = 10 

 

fig, subplots = plt.subplots(1, c) 

fig.set_size_inches(25, 3) 

for i in range(c): 

n = np.random.randint(0, len(x_train)) 

num = y_train[n] 

word = "out" if num == 0 else "" 

 

subplots[i].imshow(x_train[n].reshape((resolution, r 

esolution)), cmap="gray") 

subplots[i].set_title(f"brain with{word} tumor: {num 

}") 

subplots[i].axis("off") 

plt.show() 

 

 

input_shape = (64,64,1) 

model = models.Sequential() 

model.add(Conv2D(32,kernel_size = (2,2),strides = (1,1), 

activation = 'linear',input_shape = input_shape)) 

model.add(MaxPooling2D(pool_size = (2,2),strides = (2,2) 

)) 

model.add(Conv2D(64,kernel_size = (2,2),strides = (1,1), 

activation = 'linear')) 

model.add(MaxPooling2D(pool_size 

)) 

= (2,2),strides = (2,2) 

model.add(Conv2D(128,kernel_size = (2,2),strides = (1,1) 

,activation = 'linear')) 

model.add(MaxPooling2D(pool_size 

 

= 

 

(2,2),strides 

 

= 

 

(2,2) 

)) 

model.add(Conv2D(256,kernel_size 

 

= 

 

(2,2),strides 

 

= 

 

(1,1) 

,activation = 'linear'))     

model.add(MaxPooling2D(pool_size = (2,2),strides = (2,2) 

)) 

model.add(Conv2D(512,kernel_size 

 

= 

 

(2,2),strides 

 

= 

 

(1,1) 

,activation = 'linear')) 

model.add(MaxPooling2D(pool_size 

 

= 

 

(2,2),strides 

 

= 

 

(2,2) 

)) 

model.add(Flatten()) 

model.add(Dropout(0.5)) 
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model.add(Dense(256, activation="linear")) 

model.add(Dense(1, activation="sigmoid")) 

model.summary() 

Model: "sequential" 
__   _   _ _ _   _ _ _   _ _ _ _   _   _ _ _ 
Layer (type) Output Shape Param# 

============================================================= 
==== 
conv2d (Conv2D) (None, 63, 63, 32) 160 

max_pooling2d (MaxPooling2D ) (None, 31, 31, 32) 0 

conv2d_1 (Conv2D) (None, 30, 30, 64) 8256 

max_pooling2d_1 (MaxPooling2D) (None, 15, 15, 64) 0 

 

conv2d_2 (Conv2D) (None, 14, 14, 128) 32896 

max_pooling2d_2 (MaxPooling2D) (None, 7, 7, 128) 0 

conv2d_3 (Conv2D) (None, 6, 6, 256) 131328 

max_pooling2d_3 (MaxPooling2D) (None, 3, 3, 256) 0 

conv2d_4 (Conv2D) (None, 2, 2, 512) 524800 

max_pooling2d_4 (MaxPooling 2D) (None, 1, 1, 512) 0 

flatten (Flatten) (None, 512) 0 

dropout (Dropout) (None, 512) 0 

dense (Dense) (None, 256) 131328 

dense_1 (Dense) (None, 1) 257 
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Total params: 829,025 
Trainable params: 829,025 
Non-trainable params: 0 
__   _   _ _ _   _ _ _   _ _ _ _   _   _ _ _ 
model.compile(optimizer = 'rmsprop',loss = "binary_cross 

entropy",metrics = ['accuracy']) 

 

model.fit(x_train,y_train,batch_size = 7,epochs = 25, va 

lidation_data=(x_test, y_test)) 

 

Epoch 1/25 
175/175 [==============================] - 9s 46ms/step - loss: 
0.4879 - accuracy: 0.7962 - val_loss: 0.4224 - val_accuracy: 0.7877 
Epoch 2/25 
175/175 [==============================] - 9s 49ms/step - loss: 
0.1961 - accuracy: 0.9411 - val_loss: 0.1758 - val_accuracy: 0.8939 
Epoch 3/25 
175/175 [==============================] - 8s 46ms/step - loss: 
0.1271 - accuracy: 0.9656 - val_loss: 0.3089 - val_accuracy: 0.9050 
Epoch 4/25 
175/175 [==============================] - 8s 46ms/step - loss: 
0.0836 - accuracy: 0.9755 - val_loss: 0.6070 - val_accuracy: 0.8436 
Epoch 5/25 
175/175 [==============================] - 8s 46ms/step - loss: 
0.0444 - accuracy: 0.9877 - val_loss: 0.0839 - val_accuracy: 0.9665 
Epoch 6/25 
175/175 [==============================] - 8s 46ms/step - loss: 
0.0609 - accuracy: 0.9853 - val_loss: 0.4211 - val_accuracy: 0.9050 
Epoch 7/25 
175/175 [==============================] - 8s 46ms/step - loss: 
0.0092 - accuracy: 0.9975 - val_loss: 0.0882 - val_accuracy: 0.9497 
Epoch 8/25 
175/175 [==============================] - 8s 46ms/step - loss: 
0.0474 - accuracy: 0.9885 - val_loss: 0.3767 - val_accuracy: 0.9050 
Epoch 9/25 
175/175 [==============================] - 8s 45ms/step - loss: 
0.0333 - accuracy: 0.9926 - val_loss: 0.9540 - val_accuracy: 0.8547 
Epoch 10/25 
175/175 [==============================] - 8s 46ms/step - loss: 
0.0104 - accuracy: 0.9984 - val_loss: 0.9468 - val_accuracy: 0.8883 
Epoch 11/25 
175/175 [==============================] - 8s 46ms/step - loss: 
0.0267 - accuracy: 0.9935 - val_loss: 1.0687 - val_accuracy: 0.8771 
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Epoch 12/25 
175/175 [==============================] - 9s 52ms/step - loss: 
0.0404 - accuracy: 0.9959 - val_loss: 1.0717 - val_accuracy: 0.8883 
Epoch 13/25 
175/175 [==============================] - 8s 46ms/step - loss: 
0.0112 - accuracy: 0.9967 - val_loss: 0.5373 - val_accuracy: 0.9497 
Epoch 14/25 
175/175 [==============================] - 8s 46ms/step - loss: 
0.0127 - accuracy: 0.9951 - val_loss: 0.0567 - val_accuracy: 0.9665 
Epoch 15/25 
175/175 [==============================] - 8s 47ms/step - loss: 
0.0168 - accuracy: 0.9967 - val_loss: 0.3284 - val_accuracy: 0.9553 
Epoch 16/25 
175/175 [==============================] - 8s 47ms/step - loss: 
0.0248 - accuracy: 0.9975 - val_loss: 0.0936 - val_accuracy: 0.9721 
Epoch 17/25 
175/175 [==============================] - 8s 47ms/step - loss: 
0.0093 - accuracy: 0.9975 - val_loss: 0.1757 - val_accuracy: 0.9721 
Epoch 18/25 
175/175 [==============================] - 8s 47ms/step - loss: 
0.0136 - accuracy: 0.9975 - val_loss: 1.9985 - val_accuracy: 0.9106 
Epoch 19/25 
175/175 [==============================] - 8s 47ms/step - loss: 
0.0065 - accuracy: 0.9975 - val_loss: 1.4758 - val_accuracy: 0.9106 
Epoch 20/25 
175/175 [==============================] - 8s 46ms/step - loss: 
0.0207 - accuracy: 0.9975 - val_loss: 3.8979 - val_accuracy: 0.8324 
Epoch 21/25 
175/175 [==============================] - 8s 47ms/step - loss: 
0.0041 - accuracy: 0.9992 - val_loss: 0.4383 - val_accuracy: 0.9274 
Epoch 22/25 
175/175 [==============================] - 8s 47ms/step - loss: 
1.4356e-04 - accuracy: 1.0000 - val_loss: 1.3686 - val_accuracy: 0.8994 
Epoch 23/25 
175/175 [==============================] - 8s 47ms/step - loss: 
1.4269e-04 - accuracy: 1.0000 - val_loss: 0.0026 - val_accuracy: 1.0000 
Epoch 24/25 
175/175 [==============================] - 8s 47ms/step - loss: 
1.2337e-05 - accuracy: 1.0000 - val_loss: 1.2157 - val_accuracy: 0.8883 
Epoch 25/25 
175/175 [==============================] - 8s 47ms/step - loss: 
5.4701e-06 - accuracy: 1.0000 - val_loss: 0.8670 - val_accuracy: 0.9162 
<keras.callbacks.History at 0x7fd4e4ce4590> 
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y_test_results = model.predict(x_test) 

 

c = 10 

fig, subplots = plt.subplots(1, c) 

fig.set_size_inches(30, 9) 

for i in range(c): 

n = np.random.randint(0, len(x_test)) 

guess = str(round(y_test_results[n][0], 2)).ljust(4, 

"0") 

actual = y_test[n] 

 

subplot = subplots[i] 

subplot.imshow(x_test[n].reshape((resolution, resolu 

tion)), cmap="gray") 

subplot.set_title(f"predicted: {guess}, actual: {act 

ual}") 

subplot.axis("off") 

plt.show() 

 

# Score of test data 

#pred = model.predict(X_test) 

from sklearn.metrics import accuracy_score,f1_score,conf 

usion_matrix,classification_report 

from sklearn import metrics 

 

score = accuracy_score(y_test, y_test_results.round()) 

print(score*100,'%') 

 

91.62011173184358 % 

 

"""clf_labels=['Logistic Regression','Decision Tree','KN 

N','LDAclf'] 

for clf, label in zip ([logclf,treeclf,knnclf,LDAclf],cl 

f_labels): 

scores=cross_val_score(estimator=clf,X=xtrain,y=ytra 

in,cv=10,scoring='accuracy') 

print("accuracy: %0.2f (+/- 

%0.2f) [%s]" % (scores.mean(),scores.std(),label)) 

 

for clf, label in zip ([logclf,treeclf,knnclf,LDAclf],cl 

f_labels): 

scores=cross_val_score(estimator=clf,X=xtrain,y=ytra 

in,cv=10,scoring='roc_auc') 
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print("roc auc: %0.2f (+/- 

%0.2f) [%s]" % (scores.mean(),scores.std(),label))""" 

clf_labels=[\'Logistic Regression\',\'Decision 

Tree\',\'KNN\',\'LDAclf\']\nfor clf, label in zip 

([logclf,treeclf,knnclf,LDAclf],clf_labels):\n 

scores=cross_val_score(estimator=clf,X=xtrain,y=ytrain,c 

v=10,scoring=\'accuracy\')\n print("accuracy: %0.2f (+/- 

%0.2f) [%s]" % 

(scores.mean(),scores.std(),label))\n\nfor clf, label in 

zip ([logclf,treeclf,knnclf,LDAclf],clf_labels):\n 

scores=cross_val_score(estimator=clf,X=xtrain,y=ytrain,c 

v=10,scoring=\'roc_auc\')\n print("roc auc: %0.2f (+/- 

%0.2f) [%s]" % (scores.mean(),scores.std(),label)) 
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