
1 | P a g e

Dissertation On

Detection of Brain Tumor of MRI based images using Machine

Learning- An Approach

Thesis submitted towards partial fulfillment of the requirement for the degree of

Master in Multimedia Development

Submitted by

MAMATA KHAMARU

EXAMINATION ROLL NO.: M4MMD22008

UNIVERSITY REGISTRATION NO.: 154516 of 2020-21

Under the guidance of

Mr. JOYDEEP MUKHERJEE

School of Education Technology

Jadavpur University

Course affiliated to

Faculty of Engineering and Technology

2 | P a g e

CERTIFICATE OF RECOMMENDATION

This is to certify that the thesis entitled “Detection of Brain Tumor of

MRI based images using Machine Learning- An Approach” is a

bonafide work carried out by Mamata Khamaru under supervision and

guidance of Mr. Joydeep Mukherjee for partial fulfillment of the requirements

for the degree of Master in Multimedia Development in School of Education

Technology, during the academic session 2020-2022.

_ _ _ _ _ _ _ _ _ _ _

Mr. Joydeep Mukherjee

Supervisor

Jadavpur University

Kolkata:700032

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Dr. Matangini Chattopadhyay

Director

School of Education Technology

Jadavpur University

Kolkata:700032

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Dean-FISLM

Jadavpur University

Kolkata:700032

3 | P a g e

CERTIFICATE OF APPROVAL

This foregoing thesis is hereby approved as a credible study of an engineering

subject carried out and presented in a manner satisfactory to warranty its

acceptance as a prerequisite to the degree for which it has been submitted. It is

understood that by this approval the undersigned do not endorse or approve any

statement made or opinion expressed or conclusion drawn therein but approve

the thesis only for purpose for which it has been submitted.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Committee of final examination _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

for evaluation of thesis _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

4 | P a g e

DECLARATION OF ORIGINALITY AND COMPLLIANCE OF

ACADEMIC ETHICS

I hereby declare that this thesis contains literature survey and original research

work by the undersigned candidate, as part of her Master in Multimedia

Development studies during academic session 2020- 2022.

All information in this document has been obtained and presented in accordance

with academic rules and ethical conduct.

I also declare that, as required by this rule and conduct, I have fully cited and

referenced all materials and results that are not original to this work.

Name: Mamata Khamaru

Examination Roll Number: M4MMD22008

Thesis Title: Detection of Brain Tumor of MRI based images using

Machine Learning- An Approach

_

Signature Date

5 | P a g e

ACKNOWLEDGEMENT

I feel fortunate while presenting this dissertation at School of Education

Technology, Jadavpur University, Kolkata, in the partial fulfillment of the

requirement for the degree of Master in Multimedia Development.

I hereby take this opportunity to show my gratitude towards my mentor, Mr.

Joydeep Mukherjee, who has guided and helped me with all possible

suggestions, support, aspiring advice and constructive criticism along with

illuminating views on different issues of this dissertation which helped me

throughout my work.

I would like to express my warm thanks to Dr. Matangini Chattopadhyay,

Director of School of Education Technology for his timely encouragement,

support and advice. I would also like to thank Dr. Ranjan Parekh and Dr.

Saswati Mukherjee for their constant support during my entire course of work.

My thanks and appreciation goes to my classmates from M.Tech in Information

Technology(Courseware Engineering) and Master in Multimedia Development.

I do wish to thank all the departmental support staffs and everyone else who has

different contributions to this dissertation.

Finally, my special gratitude to my parents who have invariably sacrificed and

supported me and made me achieve this height.

Date:

Place: Jadavpur, Kolkata

Mamata Khamaru

Master in Multimedia Development

School of Education Technology

Jadavpur University

Kolkata:700032

6 | P a g e

Contents

Topic Page no.

Executive Summary 7

1. Introduction 8

1.1. Brain Tumor 8

1.2. Machine Learning 8

1.3. Problem Statement 9

1.4. Objective 9

2. Background concept 10

2.1. Logistic Regression 10

2.2. Support Vector Machine 12

2.3. Decision Tree 14

2.4. K-NN 17

2.5. Random Forest 18

2.6. Linear Discriminant Analysis 19

2.7. Gradient Booster 20

3. Literature survey 22

4. Proposed Methodology 24

5. Experimental results and Evaluation 25

6. Conclusion and Future work 28

7. References 29

Appendix 31

7 | P a g e

Executive Summary

The dissertation work is implemented with Logistic Regression Algorithm ,

Support Vector Machine Algorithm , Decision Tree Algorithm, KNN Algorithm ,

Random Forest Algorithm , Linear Discriminant Analysis Algorithm , Gradient

Booster Algorithm . All algorithms are supervised machine learning algorithm.

The proposed approach takes into account data from different patients. The main

goal is to come up with Logistic Regression Algorithm, Support Vector Machine

Algorithm and KNN Algorithm . After implementing the mother dataset I have

implemented four more algorithms i.e. Random Forest Algorithm, Decision Tree

Algorithm, Linear Discriminant Analysis Algorithm and Gradient Booster

Algorithm.

8 | P a g e

1. Introduction

1.1. Brain Tumor

The brain is a vital organ in the human body and responsible for control and

decision making. As the managing center of nervous systems, this part is very

essential to be protected from any harm and illness. Tumors are the predominant

infections caused by abnormal growth of cells that damages the Brain. Meningioma,

Glioma, and Pituitary are brain tumors as opposed to the other types. Meningiomas

are mostly a non-cancerous class of tumors that often develop in the narrow walls

that usually surround the brain . Brain tumors are one of the life-threatening

diseases that can directly affect human lives. The correct understanding of brain

tumor stages is an important task for the prevention and cure of illness. To do so,

Magnetic Resonance Imaging (MRI) is widely used by radiologists to analyze brain

tumors. The result of this analysis reveals whether the brain is normal or abnormal.

On the other hand, it identifies the type of tumor in the case of abnormality . With

the advent of machine learning, the processing of MR images to have a for fast and

accurate detection of brain tumors matter.

1.2. Machine Learning

In the beginning, approaches consisted of three steps: pre-processing of MR images,

, feature generation, and extraction and classification. The median filter was used

for the improvement of image quality and preserving the edges in the pre-

processing stage . Segmentation of images with clustering methods such as k-

means, fuzzy C-means, etc. generates beneficial features from images. Image

segmentation plays an essential role in analyzing and interpreting images. It has vast

applications in brain imaging, such as tissue classification, tumor location, tumor

volume estimation, blood cell delineation, surgical planning, matching. In a brain

tumor segmentation is applied by using a MR images. Automatic detection of the

anatomical structure of the brain with a deep neural network. In a voting technique

for an ensemble of visual appearances such as intensity and adaptive shape modes

using a combination of discrete Gaussian and higher-order patterns such as Markov-

Gibbs, random field classification is used. In this work, after denoising with a non-

local mean filter, a Bayesian fuzzy clustering approach is utilized for the

segmentation of brain tumors. In the 2D MRI mages are partitioned into the left and

right hemisphere and statistical features such as mean, homogeneity, absolute value,

and inertia are computed for the Support Vector Machine (SVM) classifier. Due to

the vast number of features in step two, most studies consist of a further step to

extract features with more valuable information using algorithms like principal

component analysis (PCA) or SIFT detectors and SURF descriptors. After a hybrid

feature extraction with a covariance matrix, a regularized extreme learning is used

9 | P a g e

to classify brain abnormality . Classification method such as K-Nearest Neighbors,

Decision Trees, Support Vector Machine (SVM) and the Random Forest is the

popular machine learning technique on image analysis .

1.3. Problem Statement

Detection of Brain Tumor of MRI based images using Machine Learning- An

Approach.

Brain tumors are a heterogeneous group of central nervous system neoplasms that

arise within or adjacent to the brain. Moreover, the location of the tumor within the

brain has a profound effect on the patient's symptoms, surgical therapeutic options,

and the likelihood of obtaining a definitive diagnosis. The location of the tumor in

the brain also markedly alters the risk of neurological toxicities that alter the

patient's quality of life.

There are many techniques for brain tumor detection. I have used Supervised

Machine Learning Algorithms i.e. SVM , Logistic Regression , KNN, LDA,

Gradient Boosting Algorithm, Random Forest , Decision Tree to identify the

efficiency among the peers.

1.4. Objective

Detection of Brain Tumor of MRI based images using various supervised machine

learning algorithms to get best algorithm to solve the problem.

10 | P a g e

2. Background Concept

Some key concepts will be discussed to understand the details of the algorithm

that have been implemented for the detection of Brain Tumor will be discussed.

2.1. Logistic Regression

Logistic regression is a statistical analysis method to predict a binary outcome, such

as yes or no, based on prior observations of a data set. A logistic regression model

predicts a dependent data variable by analyzing the relationship between one or

more existing independent variables.

Logistic regression can also play a role in data preparation activities by allowing

data sets to be put into specifically predefined buckets during the extract, transform,

load (ETL) process in order to stage the information for analysis.

Logistic regression applications in business:

Organizations use insights from logistic regression outputs to enhance their business

strategy for achieving business goals such as reducing expenses or losses and

increasing ROI in marketing campaigns.

Why is logistic regression important?

Logistic regression is important because it transforms complex calculations around

probability into a straightforward arithmetic problem. Admittedly, the calculation

itself is a bit complex, but modern statistical applications automate much of this

grunt work. This dramatically simplifies analysing the impact of multiple variables

and helps to minimize the effect of confounding factors.

As a result, statisticians can quickly model and explore the contribution of various

factors to a given outcome.

Logistic regression works very similar to linear regression, but with a binomial

response variable. The greatest advantage when compared to Mantel-Haenszel OR

is the fact that you can use continuous explanatory variables and it is easier to

handle more than two explanatory variables simultaneously. Although apparently

trivial, this last characteristic is essential when we are interested in the impact of

various explanatory variables on the response variable. If we look at multiple

https://www.techtarget.com/whatis/definition/dependent-variable
https://www.techtarget.com/searchbusinessanalytics/definition/data-preparation
https://www.techtarget.com/searchdatamanagement/definition/Extract-Load-Transform-ELT
https://www.techtarget.com/searchcio/definition/ROI

11 | P a g e

explanatory variables independently, we ignore the covariance among variables and

are subjected to confounding effects, as was demonstrated in the example above

when the effect of treatment on death probability was partially hidden by the effect

of age.

Logistic regression works very similar to linear regression, but with a binomial

response variable. The greatest advantage when compared to Mantel-Haenszel OR

is the fact that you can use continuous explanatory variables and it is easier to

handle more than two explanatory variables simultaneously. Although apparently

trivial, this last characteristic is essential when we are interested in the impact of

various explanatory variables on the response variable. If we look at multiple

explanatory variables independently, we ignore the covariance among variables and

are subjected to confounding effects, as was demonstrated in the example above

when the effect of treatment on death probability was partially hidden by the effect

of age.

Logistic regression works very similar to linear regression, but with a binomial

response variable. The greatest advantage when compared to Mantel-Haenszel OR

is the fact that you can use continuous explanatory variables and it is easier to

handle more than two explanatory variables simultaneously. Although apparently

trivial, this last characteristic is essential when we are interested in the impact of

various explanatory variables on the response variable. If we look at multiple

explanatory variables independently, we ignore the covariance among variables and

are subjected to confounding effects, as was demonstrated in the example above

when the effect of treatment on death probability was partially hidden by the effect

of age.

A logistic regression will model the chance of an outcome based on individual

characteristics. Because chance is a ratio, what will be actually modeled is the

logarithm of the chance given by:

log(
𝜋

1−𝜋

)=β0+β1x1+β2x2+…βmxm

where π indicates the probability of an event , and βi are the regression coefficients

associated with the reference group and the xi explanatory variables. At this point,
an important concept must to be highlighted. The reference group, represented

by β0, is constituted by those individuals presenting the reference level of each and

every variable x1...m.

12 | P a g e

2.2. Support Vector Machine (SVM)

Support Vector Machine or SVM is one of the most popular Supervised Learning

algorithms, which is used for Classification as well as Regression problems.

However, primarily, it is used for Classification problems in Machine Learning.

The goal of the SVM algorithm is to create the best line or decision boundary that

can segregate n-dimensional space into classes so that we can easily put the new

data point in the correct category in the future. This best decision boundary is called

a hyperplane.

SVM chooses the extreme points/vectors that help in creating the hyperplane. These

extreme cases are called as support vectors, and hence algorithm is termed as

Support Vector Machine.

Types of SVM

SVM can be of two types:

Linear SVM: Linear SVM is used for linearly separable data, which means if a

dataset can be classified into two classes by using a single straight line, then such

data is termed as linearly separable data, and classifier is used called as Linear SVM

classifier.

Non-linear SVM: Non-Linear SVM is used for non-linearly separated data, which

means if a dataset cannot be classified by using a straight line, then such data is

termed as non-linear data and classifier used is called as Non-linear SVM classifier.

13 | P a g e

.The data may not be well linearly separable or not linearly separable

at all, which is often the case for real world data. In the example given

above, it can happen for example that two customers are acting

completely similar in an online shop, with only one of them making a

purchase. This would result in not separable data, due to the same

attribute vector having different labels.

.The second concern is the possibility of overfitting the SVM. To

avoid this, data has to be preprocessed to identify noise and accept

some misclassifications. Other- wise, the accuracy values of the SVM

will be flawed and result in more erroneous classification for future

events.

The first problem can be resolved by using the kernel trick, mapping the n-
dimensional input data to a higher dimensional space, where the data can be

separated linearly.

14 | P a g e

2.3. Decision Tree

A Decision Tree is a classification technique that focuses on an easily

understandable representation form and is one of the most common

learning methods. Decision Trees use data sets that consist of attribute

vectors, which in turn contain a set of classification attributes

describing the vector and a class attribute assigning the data entry to a

certain class. A Decision Tree is built by iteratively splitting the data

set on the attribute that separates the data as well as possible into the

different existing classes until a certain stop criterion is reached. The

representation form enables users to get a quick overview of the data,

since Decision Trees can easily be visualized in a tree structured

format, which is easy to understand for humans.

In Decision Trees, nodes can be separated into the root node, inner

nodes, and end nodes, also called leaf’s. The root node represents the

start of the decision support process and has no incoming edges. The

inner nodes have exactly one incoming edge and have at least two

outgoing edges. For instance, such a test might ask: “Is the customer

older than 35 for the attribute age?”. Leaf nodes consist of an answer

to the decision problem, which is mostly represented by a class

prediction. As an example, a decision problem might be the question

whether a customer in an online shop will make a purchase or not,

with the class predictions being yes and no. Leaf nodes have no

outgoing and exactly one incoming edge. Edges represent the decision

taken from the previous node. Given a node n, all following nodes that

are separated by exactly one edge to n are calledchildren of n, while n

is called parent of all its child nodes. Figure 2.2 shows an exampleof a

Decision Tree. For instance, a data record, having the attributes

cold, polarBear would be passed down to the left subtree, since his

15 | P a g e

temperature attribute is cold and then down to the leaf “North Pole”

being classified with the corresponding label.

Figure 2.2: Example of a Decision Tree.

Training a Decision Tree with this automated process can result in large Decision

Trees with sections of very little power in terms of classification. Additionally, trees

tend to be overfitted, which means that they fit the training instances too closely.

This results in bad performances when these trees are applied to unseen data.

Therefore, a technique called pruning has been developed. Its objective is to remove

the less or non-productive parts from the Decision Tree, such as parts based on

noisy or erroneous data or parts that are overfitted. This often results in further

improvements in terms of accuracy and shrinks down the tree size. This process is

especially important, due to the fact that every real- world data set contains

erroneous or noisy data.

Algorithm Decision Tree Training Process

1. training set = S;

2. attribute set: A;

3. target Attribute = C;

4. split criterion = sC;

5. stop criterion = stop;

6. Grow(S, A, C, sC, stop)

7. if stop(S) = false

8. then

9. for all ai ∈ A

16 | P a g e

10. do find ai with the best sc(S);

11. label current Node with a;

12. for all values vi ∈ a

13. do label outgoing edge with vi

14. Ssub = S where a = vi;

15. create subNode = Grow(Ssub, A, C, sC, stop);

16. else currentNode = leaf;

17. label currentNode with ci where ci is most

common value of C ∈ S;

Figure 2.3: Pseudo code of training a Decision Tree

Figure 2.3 shows the process of training a Decision Tree in pseudo

code, not taking numeric attributes into account. The algorithm starts

by testing whether the stop criterion has been reached or not. If so, the

current Node is labeled with the most common value of all existing

class labels for the training set. If the stop criterion is not true, the

algorithm calculates the split value for all attributes and labels the

node with the attribute corresponding to the best split value.

Afterwards, it splits the node into multiple nodes, one foreach value of

the chosen attribute. The algorithm calls the same process recursively

for all training subsets, containing all data records with the

corresponding value of the chosenattribute.

17 | P a g e

2.4.k-nearest neighbor (K-NN)

k-nearest neighbor (K-NN) is a supervised classification learning

algorithm used to classify samples. The purpose of this algorithm is to

classify a new sample based on its features and labeled training

samples. The algorithm is memory-based and does not require a

model to be fit. Given a query point x0, k training points closest in

distance (Euclidean distance) to x0 are found. Based on the majority

of the neighbors found, the new query is classified to its cluster. Any

ties in voting are broken at random.

o K-Nearest Neighbour is one of the simplest Machine Learning algorithms

based on Supervised Learning technique.

o K-NN algorithm assumes the similarity between the new case/data and

available cases and put the new case into the category that is most similar to

the available categories.

o K-NN algorithm stores all the available data and classifies a new data point

based on the similarity. This means when new data appears then it can be

easily classified into a well suite category by using K- NN algorithm.

o K-NN algorithm can be used for Regression as well as for Classification but

mostly it is used for the Classification problems.

o K-NN is a non-parametric algorithm, which means it does not make any

assumption on underlying data.

o It is also called a lazy learner algorithm because it does not learn from the

training set immediately instead it stores the dataset and at the time of

classification, it performs an action on the dataset.

o KNN algorithm at the training phase just stores the dataset and when it gets

new data, then it classifies that data into a category that is much similar to the

newdata.

18 | P a g e

2.5. Random Forest

2.5.1 Supervised Random Forests are grown using a collaboration of the bagging

and ID3 principles. Each tree in the forest is grown in the following manner. Given

a training set, a random subset is sampled (with replacement) and used to construct

a tree which resembles the ID3 idea. However, every case in this bootstrap sample

is not used to grow the tree. About one third of the bootstrap is left out and

considered to be out-ofbag (OOB) data. Also, not every feature is used to construct

the tree. A random selection of features is evaluated in each tree. The OOB data is

used to get a classification error rate as trees are added to the forest and to measure

input variable (feature) importance. After the forest is completed, a sample can be

classified by taking a majority vote among all trees in the forest resembling the

bootstrap aggregating idea.

2.5.2 Unsupervised Random Forest can be run unsupervised; that is, without any

prior information about the input data. Many unsupervised classifiers plot each

input case in a multidimensional space based on feature values. If four features are

evaluated in classification, each case is plotted in a four dimensional feature space

and clustered using Euclidean distance. Random Forest works similarly

unsupervised by calculating a variable dissimilarity measure and plotting each case

in a space according to dissimilarity measure and clustering using Euclidean

distance.

Dissimilarity measures can be found in supervised learning by putting the

training data down each tree. If observations i and j fall in the same terminal node,

their similarity is increased by one. These values can be stored in matrix form. After

the forest has been constructed and similarities have been found, the similarity

matrix is divided by the number of trees. The dissimilarity is defined as:

𝐷𝑖𝑗 = √1 − 𝑆𝑖𝑗

where S is the similarity matrix. Using multidimensional scaling with

dissimilarities as inputs, it is possible to plot points in a Euclidean space where the

distance between the points is equal to the dissimilarities. The points can then be

clustered.

2.5.3 Synthetic Data When classes are completely unknown, it is necessary to

make up or synthesize classes. By smartly creating synthetic data and adding it to

the original dataset, we then have two classes: original data, and synthetic data. We

can solve this two class problem using Random Forest and evaluate dissimilarity

measures. Plotting based off the dissimilarity measures results in data that is able to

be clustered appropriately.

19 | P a g e

2.5.4 Variable Importance

Random Forest can measure variable importance. This is useful for data mining

purposes and can assist in unsupervised classification. If we change a single

feature’s input value and reclassify the record, we can determine that the feature’s

importance is based on the new classification. This is done using OOB data. Each

variable m is randomly permuted and the permuted OOB cases are sent through the

forest again. Subtracting the number of correctly classified cases using permuted

data from the number of correctly classified cases using non-permuted data gives

the importance value of variable m. These values are different for each tree, but the

average of each value over all trees in the forest gives a raw importance score for

each variable .

2.6. Linear Discriminant Analysis (LDA)

It is a technique which is frequently used to extract discriminative features that

preserve the class separability. LDA involves matrices eigen decomposition which

can be computationally expensive in both time and memory, in particular when the

number of samples and the number of features are large. This is the case for text and

image data sets where the dimension can reach in order of hundreds of thousands or

more. By reducing data dimension, we reduce the complexity of data analysis. The

accuracy and the computational time of the proposed approach are provided for a

wide variety of real image and text data sets. The results show the relevance of the

proposed method compared to other methods.

Although the logistic regression algorithm is limited to only two-class, linear

Discriminant analysis is applicable for more than two classes of classification

problems.

Linear Discriminant analysis is one of the most popular dimensionality reduction

techniques used for supervised classification problems in machine learning. It is

also considered a pre-processing step for modeling differences in ML and

applications of pattern classification.

Whenever there is a requirement to separate two or more classes having multiple

features efficiently, the Linear Discriminant Analysis model is considered the most

common technique to solve such classification problems. For e.g., if we have two

classes with multiple features and need to separate them efficiently. When we

classify them using a single feature, then it may show overlapping.

20 | P a g e

To overcome the overlapping issue in the classification process, we must increase

the number of features regularly.

2.7. Gradient Booster

Gradient boosting classifier are a group of machine learning algorithms that

combine many weak learning models together to create a strong predictive model.

Decision trees are usually used when doing gradient boosting. Gradient boosting

models are becoming popular because of their effectiveness at classifying complex

datasets, and have recently been used to win many data science competitions .In

machine learning, there are two types of supervised learning problems:

Classification refers to the task of giving a machine learning algorithm features,

and having the algorithm put the instances/data points into one of

many discrete classes. Classes are categorical in nature, it isn't possible for an

instance to be classified as partially one class and partially another. A classic

example of a classification task is classifying emails as either "spam" or "not spam"

- there's no "a bit spammy" email.

Regressions are done when the output of the machine learning model is a real value

or a continuous value. Such an example of these continuous values would be

"weight" or "length". An example of a regression task is predicting the age of a

person based off of features like height, weight, income, etc.

Gradient boosting classifiers are specific types of algorithms that are used for

classification tasks, as the name suggests.

21 | P a g e

label

Features are the inputs that are given to the machine learning algorithm, the inputs

that will be used to calculate an output value. In a mathematical sense, the features

of the dataset are the variables used to solve the equation. The other part of the

equation is the or target, which are the classes the instances will be

categorized into. Because the labels contain the target values for the machine

learning classifier, when training a classifier we should split up the data into

training and testing sets. The training set will have targets/labels, while the testing

set won't contain these values.

Scikit-Learn, or "sklearn", is a machine learning library created for Python, intended

to expedite machine learning tasks by making it easier to implement machine

learning algorithms. It has easy-to-use functions to assist with splitting data into

training and testing sets, as well as training a model, making predictions, and

evaluating the model.

22 | P a g e

3. Literature Survey

Brain tumor is an abnormal mass of tissue with uncoordinated growth inside the

skull which may invade and damage nerves and other healthy tissues. Non-

homogeneities of the brain tissues result in inaccurate detection of tumor boundaries

with the existing methods for contrast enhancement and segmentation of magnetic

resonance images (MRI). This paper presents an improved framework for detection

of brain tumor.

Automated detection and segmentation of brain abnormalities is therefore

a challenging problem of research since decades. Solid brain tumors are

malignant masses of tissues formed inside skull as a result of abnormal and

uncoordinated growth due to proliferation of atypical cells.

Alfonse and Salem [1] have presented a technique for automatic classification of

brain tumor from MR images using an SVM-based classifier. To improve the

accuracy of the classifier,features are extracted using fast Fourier transform

(FFT)and reduction of features is performed using Minimal-Redundancy-

Maximal-Relevance (MRMR) technique. This technique has obtained an accuracy

of 98.9%.

Damodharan and Raghavan [2] have presented a neural network based technique

for brain tumor detection and classification. In this method, the quality rate is

produced separately for segmentation of WM, GM, CSF, and tumor region and

claims an accuracy of 83% using neural network based classifier.

Owasis et al [3] proposed how AI assists in the diagnosis and prediction of a

disease, it is essential to understand the use and applicability of diverse techniques

such as SVM, KNN, Decision Tree, Random Forest and Long short-term memory

(LSTM) and many others for various disease detection system (Owasis et

al. 2019; Nithya et al. 2020). We conducted an extensive survey based on the

machine and deep learning models for disease diagnosis. The study covers the

review of various diseases and their diagnostic methods using AI techniques.

https://link.springer.com/article/10.1007/s12652-021-03612-z#ref-CR109
https://link.springer.com/article/10.1007/s12652-021-03612-z#ref-CR105

23 | P a g e

Mohamed A. Naser and M. J amal Deen [4] (2020) in their research paper

illustrates transfer learning models and use of deep learning for MRI images . It

gives exact automatic grading of LGG brain tumors with detection. Full

automation is acheived by the use of pipeline of MRI images. It allows

simultaneous grading and segmentation of the brain tumors. Author claims that

this method shows a promising results as a non- invasive tool for tumors

characterization in LGG.

Ijaz et al. [5] proposed (2020) a cervical cancer prediction model for early

prediction of cervical cancer using risk factors as inputs. The authors utilize

several machine learning approaches and outlier detection for different pre-

processing tasks.

Desautels et al. [6] proposed a transfer learning-based machine learning

algorithm. They achieved good discrimination. Unplanned readmission prediction

can be used to target resources more efficiently.

Flores et al. [7] proposed a method that evaluate heterogeneous and missing

clinical data using unsupervised machine learning algorithm to detect important

artery disease.

S. Banerjee, S. Mitra, B. U. Shankar, [8] reports the accuracy achieved by seven

standard classifiers,viz. i) Decision Tree, ii) Random Forest, iii) Logistic Regression

(LR), iv) Linear Discriminant Analysis (LDA), v) Support Vector Machine (SVM),

vi) Gradient Booster, and vii) k-nearest neighbours (k-NN).

The accuracy reported in International Journal of Computer Science and

communication Vol. 2, No. 2, JulyDecember-2011,pp. 325-331 [9]is on the

BRaTS 2015 dataset (a subset of BRaTS 2017 dataset) which consists of 200

HGG and 54 LGG cases. 56 three-dimensional quantitative MRI features

extracted manually from each patient MRI and used for the classification

24 | P a g e

4. Proposed Methodology

The proposed work is to analyse the images MRI based brain tumor detection using

supervised machine learning algorithm . It has been used several algorithms i.e.

Logistics Regression, Support Vector Machine, Decision Tree, KNN, Random

Forest , Linear Discriminant Analysis and Gradient Booster.

First, I have implemented the mother paper which have been implemented with

logistic regression, support vector machine and KNN Algorithm . While

implementing mother paper first import the required modules. Then I have started to

prepare the data. The training dataset is classified as "no" means no tumor in brain

and "yes" means tumor in brain. I have marked "no" as 0 and "yes" as 1. Then I

have created two class i.e. X and Y and have appended the images in X and mark

the classification of images in Y and while appending all the images have been

resized into one specific size. Then I have turned X and Y into numpy array. After

that splitting the dataset into test and train data. Then features has been scaled and

selected with PCA. After selecting the features the model has been trained with

support vector machine algorithm, logistic regression algorithm and KNN

algorithm. Then each model is evaluated and predicted and tested.

After implementing the mother dataset I have implemented four more algorithms

i.e. random forest algorithm, decision tree algorithm, linear discriminant analysis

algorithm and gradient booster algorithm.

First import the required modules. Then I have started to prepare the data. The

training dataset is classified as "no" means no tumor in brain and "yes" means tumor

in brain. I have marked "no" as 0 and "yes" as 1. Then I have created two classes i.e.

X and Y and have appended the images in X and mark the classification of images

in Y and while appending all the images have been resized into one specific size.

Then I have turned X and Y into numpy array. After that splitting the dataset into

test and train data. Then features has been scaled and selected with PCA. After

selecting the features the model has been trained with support vector machine

algorithm, logistic regression algorithm, KNN algorithm, random forest algorithm,

decision tree algorithm, gradient booster algorithm and linear discriminant analysis

algorithm .Then each model is evaluated and predicted and tested.

25 | P a g e

5. Experimental Result and Evaluation

The dissertation is done with several supervised machine learning algorithms

i.e. Logistic Regression, Support Vector Machine Algorithm, KNN, Random Forest

Algorithm, Decision Tree Algorithm, Gradient Booster Algorithm and Linear

Discriminant Analysis Algorithm.

Logistic Regression

Logistic regression is an example of supervised learning. It is used to calculate or

predict the probability of a binary (yes/no) event occurring.

logclf.fit(xtrain, ytrain)

logclf.score(xtest, ytest)

0.926530612244898
Fig:1

Fig:1 shows the experimental result for Logistic Regression.

Decision Tree

Decision Trees are a type of Supervised Machine Learning (that is you explain what

the input is and what the corresponding output is in the training data) where the data

is continuously split according to a certain parameter. The tree can be explained by

two entities, namely decision nodes and leaves.

treeclf.fit(xtrain, ytrain)

treeclf.score(xtest, ytest)

0.963265306122449

Fig:2

Fig:2 shows the experimental result for Decision Tree.

Random Forest

Random forest is a Supervised Machine Learning Algorithm that is used widely in

Classification and Regression problems. It builds decision trees on different samples

and takes their majority vote for classification and average in case of regression.

rf_clf.fit(xtrain, ytrain)

rf_clf.score(xtest, ytest)

0.9959183673469387

Fig:3

Fig:3 shows the experimental result for Random Forest .

26 | P a g e

KNN

The k-nearest neighbors algorithm, also known as KNN or k-NN, is a non-

parametric, supervised learning classifier, which uses proximity to make

classifications or predictions about the grouping of an individual data point.

print("Training Score:", KNN_model.score(pca_train, ytra

in))

print("Testing Score:", KNN_model.score(pca_test, ytest)

)

Training Score: 1.0

Testing Score: 0.9510204081632653

Fig:4

Fig:4 shows the experimental result for KNN .

LDA

Linear discriminant analysis (LDA) is used here to reduce the number of features to

a more manageable number before the process of classification. Each of the new

dimensions generated is a linear combination of pixel values, which form a

template.

LDAclf.fit(xtrain, ytrain)

LDAclf.score(xtest, ytest)

0.8081632653061225

Fig:5

Fig:5 shows the experimental result for LDA .

Gradient Boosting

Gradient boosting is a machine learning technique used in regression and

classification tasks, among others. It gives a prediction model in the form of an

ensemble of weak prediction models, which are typically decision trees.

gbclf = ensemble.GradientBoostingClassifier()

gbclf.fit(xtrain, ytrain)

gbclf.score(xtest, ytest)

0.9877551020408163

Fig:6

Fig:6 shows the experimental result for Gradient Boosting.

27 | P a g e

SVM

Support Vector Machine or SVM is one of the most popular Supervised Learning

algorithms, which is used for Classification as well as Regression problems.

print("Training Score:", sv.score(pca_train, ytrain))

print("Testing Score:", sv.score(pca_test, ytest))

Training Score: 0.9907881269191402

Testing Score: 0.9673469387755103

Fig:7

Fig:7 shows the experimental result for SVM.

SL No. Name of Algorithm Result

1 Logistic Regression 0.9265

2 Decision Tree 0.9632

3 Random Forest 0.9959

4 KNN 0.9510

5 LDA 0.8081

6 Gradient Boosting 0.9877

7 SVM 0.9673

After exploring the confusion matrix and score of all the algorithms it is found that

Random Forest Algorithm gives better result i.e. 0.9959183673469387.

28 | P a g e

6. Conclusion and Future work

From the implementation code it has been seen that among all the algorithms like

Logistic Regression , SVM, Decision Tree , Random Forest , Gradient Booster, it

can be said that Random Forest Algorithm gives best result .

This work can be further experimented with unsupervised learning algorithms in

future. The dataset would be very large for unsupervised learning algorithm.

29 | P a g e

7. References

1. M. Alfonse , A. B. M. Salem, “An automatic classification of brain tumors

through MRI using support vector machine,” Egyptian Computer Science

Journal, vol. 40, pp. 11–21, 2016.

2. T. Torheim, E. Malinen, K. Kvaal et al., “Classification of dynamic

contrast enhanced MR images of cervical cancers using texture analysis

and support vector machines,” IEEE Transactions on Medical Imaging,

vol. 33, no. 8, pp. 1648–1656, 2014.

3. A. Hebli, S. Gupta, (2017). Brain tumor prediction and classification using

support vector machine. In 2017 international conference on advances in

computing,communication and control (ICAC3) (pp. 1–6). IEEE.

4. M. Ghose, R. Pradhan, and S. Ghose, “Decision Tree Classification of

Remotely Sensed Satellite Data using Spectral Separability Matrix,” Int. J.

Adv. Comput. Sci. Appl., vol. 1, no. 5, pp. 93–101, 2010.

5. Anon, (2017). [online] Available at: http://Wikipedia contributors. "K-

nearest neighbors algorithm." Wikipedia, The Free Encyclopedia.

Wikipedia, The Free Encyclopedia, 28 Nov. 2016. Web. 28 Nov. 2016

[Accessed 4 Dec. 2017].

6. Brownlee, Jason A Gentle Introduction to the Gradient Boosting Algorithm

for Machine Learning. Machine Learning Mastery, 21 Sept. 2016,

machinelearningmastery.com/gentle-introduction-gradient-boosting-

algorithmmachine-learning/

7. Polamuri, Saimadhu How the Random Forest Algorithm Works in

Machine Learning. Dataaspirant, 1 Oct. 2017,

dataaspirant.com/2017/05/22/random-forest-algorithm-machine-learing/

8. Park, Hyeoun-Ae An Introduction to Logistic Regression: From Basic

Concepts to Interpretation with Particular Attention to Nursing Domain.

Journal of Korean Academy of Nursing, vol. 43, no. 2, 2013, p. 154.,

doi:10.4040/jkan.2013.43.2.154.

9. R. Kumari, “SVM classification an approach on detecting abnormality in

brain MRI images,” International Journal of Engineering Research and

Applications, vol. 3, pp. 1686–1690, 2013.

http://wikipedia/

30 | P a g e

10. M. Alfonse and A.-B. M. Salem, “An automatic classification of brain

tumors through MRI using support vector machine,” Egyptian Computer

Science Journal, vol. 40, pp. 11–21, 2016.

11. L. Guo, L. Zhao, Y. Wu, Y. Li, G. Xu, and Q. Yan, “Tumor detection in

MR images using one-class immune feature weighted SVMs,” IEEE

Transactions on Magnetics, vol. 47, no. 10, pp.3849–3852, 2011.

12. N. Gordillo, E. Montseny, and P. Sobrevilla, “State of the art survey on

MRI brain tumor segmentation,” Magnetic Resonance Imaging, vol. 31,

no. 8, pp. 1426–1438, 2013.

13. Javaria Amin a , Muhammad Sharif a , ∗ , Mudassar Raza a , Tanzila Saba

b ,Muhammad Almas Anjum c Brain tumor detection using machine

learning method”, https://doi.org/10.1016/j.cmpb.2019.05.015 0169-

2607/© 2019 Published by Elsevier B.V.,Science Direct Computer

Methods and Programs in Biomedicine.

14. Sergio Pereira, Adriano Pinto, Victor Alves, and Carlos A. Silva ―Brain

Tumor Segmentation Using Convolutional Neural Networks in MRI

Images‖IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 35,

NO. 5, MAY 2016

31 | P a g e

Appendix

Data of patients from different hospital is collected.

Mounting to drive

[]

Load Modules

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.model_selection import RandomizedSearchCV,

KFold, train_test_split

from sklearn.metrics import accuracy_score

import cv2

from tensorflow import keras

Prepare/collect the data

import os

path = os.listdir('/content/drive/MyDrive/Project/main/T

raining/')

classes = {'no':0, 'yes':1}

import cv2

X = []

Y = []

for cls in classes:

pth = '/content/drive/MyDrive/Project/main/Training/

'+cls

for j in os.listdir(pth):

img = cv2.imread(pth+'/'+j, 0)

img = cv2.resize(img, (200,200))

X.append(img)

Y.append(classes[cls])

from google.colab import drive

drive.mount('/content/drive')

Mounted at /content/drive

32 | P a g e

X = np.array(X)

Y = np.array(Y

33 | P a g e

np.unique(Y)

array([0, 1])

pd.Series(Y).value_counts()

1 827

0 395

dtype: int64

X.shape

(1222, 200, 200)

Visualize data

plt.imshow(X[0], cmap='gray')

<matplotlib.image.AxesImage at 0x7f4428397dd0>

34 | P a g e

Prepare Data

X_updated = X.reshape(len(X), -1)

X_updated.shape

(1222, 40000)

Splitting Data

xtrain, xtest, ytrain, ytest = train_test_split(X_update

d, Y, random_state=10,test_size=.20)

xtrain.shape, xtest.shape

((977, 40000), (245, 40000))

Feature Scaling

print(xtrain.max(), xtrain.min())

print(xtest.max(), xtest.min())

xtrain = xtrain/255

xtest = xtest/255

print(xtrain.max(), xtrain.min())

print(xtest.max(), xtest.min())

255 0

255 0

1.0 0.0

1.0 0.0

Feature Selection: PCA

from sklearn.decomposition import PCA

print(xtrain.shape, xtest.shape)

pca = PCA(.98)

pca_train = pca.fit_transform(xtrain)

pca_test = pca.transform(xtest)

pca_train = xtrain

pca_test = xtest

(977, 40000) (245, 40000)

35 | P a g e

print(pca_train.shape, pca_test.shape)

#print(pca.n_components_)

#print(pca.n_features_)

(977, 40000) (245, 40000)

Train Model

from sklearn.linear_model import LogisticRegression

from sklearn.svm import SVC

import warnings

warnings.filterwarnings('ignore')

lg = LogisticRegression(C=0.1)

lg.fit(xtrain, ytrain)

LogisticRegression(C=0.1)

sv = SVC()

sv.fit(pca_train, ytrain)

SVC()

from sklearn import neighbors

#KNN_model=neighbors.KNeighborsClassifier(n_neighbors=be

st_k,n_jobs=-1)

#KNN_model.fit(pca_train,pca_train)

36 | P a g e

from sklearn.metrics import f1_score,confusion_matrix,ro

c_auc_score

f1_list=[]

k_list=[]

for k in range(1,10):

clf=neighbors.KNeighborsClassifier(n_neighbors=k,n_j

obs=-1)

clf.fit(xtrain,ytrain)

pred=clf.predict(xtest)

f=f1_score(ytest,pred,average='macro')

f1_list.append(f)

k_list.append(k)

best_f1_score=max(f1_list)

best_k=k_list[f1_list.index(best_f1_score)]

print("Optimum K value=",best_k," with F1-

Score=",best_f1_score)

Optimum K value= 4 with F1-Score= 0.9623829264547827

KNN_model=neighbors.KNeighborsClassifier(n_neighbors=1,n

_jobs=-1)

KNN_model.fit(xtrain,ytrain)

KNeighborsClassifier(n_jobs=-1, n_neighbors=1)

Evaluation

print("Training Score:", lg.score(pca_train, ytrain))

print("Testing Score:",lg.score(pca_test, ytest))

Training Score: 1.0

Testing Score: 0.9714285714285714

print("Training Score:", sv.score(pca_train, ytrain))

print("Testing Score:", sv.score(pca_test, ytest))

Training Score: 0.9907881269191402

Testing Score: 0.9673469387755103

37 | P a g e

print("Training Score:", KNN_model.score(pca_train, ytra

in))

print("Testing Score:", KNN_model.score(pca_test, ytest)

)

Training Score: 1.0

Testing Score: 0.9510204081632653

Prediction

pred = sv.predict(pca_test)

np.where(ytest!=pred)

(array([49, 51, 59, 65, 68, 166, 171, 238]),)

pred[4]

0

ytest[36]

1

pred = lg.predict(pca_test)

np.where(ytest!=pred)

(array([3, 49, 50, 59, 65, 166, 238]),)

pred=KNN_model.predict(pca_test)

np.where(ytest!=pred)

#print("Accuracy={}%".format((sum(ytest==pred)/ytest.sha

pe[0])*100))

(array([41, 49, 50, 59, 65, 112, 137, 160, 166, 169,

171, 238]),)

TEST MODEL

dec = {0:'No Tumor', 1:'Positive Tumor'}

plt.figure(figsize=(20,16))

38 | P a g e

p = os.listdir('/content/drive/MyDrive/Project/main/Test

ing/')

c=1

for i in os.listdir('/content/drive/MyDrive/Project/main

/Testing/no/')[:16]:

plt.subplot(4,4,c)

img = cv2.imread('/content/drive/MyDrive/Project/mai

n/Testing/no/'+i,0)

img1 = cv2.resize(img, (200,200))

img1 = img1.reshape(1,-1)/255

p = sv.predict(img1)

plt.title(dec[p[0]])

plt.imshow(img, cmap='gray')

plt.axis('off')

c+=1

39 | P a g e

plt.figure(figsize=(20,16))

p = os.listdir('/content/drive/MyDrive/Project/main/Test

ing/')

c=1

for i in os.listdir('/content/drive/MyDrive/Project/main

/Testing/yes/')[:16]:

plt.subplot(4,4,c)

img = cv2.imread('/content/drive/MyDrive/Project/mai

n/Testing/yes/'+i,0)

img1 = cv2.resize(img, (200,200))

img1 = img1.reshape(1,-1)/255

p = lg.predict(img1)

plt.title(dec[p[0]])

plt.imshow(img, cmap='gray')

plt.axis('off')

c+=1

40 | P a g e

plt.figure(figsize=(20,16))

p = os.listdir('/content/drive/MyDrive/Project/main/Test

ing/')

c=1

for i in os.listdir('/content/drive/MyDrive/Project/main

/Testing/yes/')[:16]:

plt.subplot(4,4,c)

img = cv2.imread('/content/drive/MyDrive/Project/mai

n/Testing/yes/'+i,0)

img1 = cv2.resize(img, (200,200))

img1 = img1.reshape(1,-1)/255

p = KNN_model.predict(img1)

plt.title(dec[p[0]])

plt.imshow(img, cmap='gray')

plt.axis('off')

c+=1

41 | P a g e

Classifier

import pandas as pd

from sklearn.model_selection import GridSearchCV

from sklearn.preprocessing import StandardScaler

from sklearn.preprocessing import LabelEncoder

#from pydataset import data

from sklearn.model_selection import train_test_split

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression

from sklearn.tree import DecisionTreeClassifier

from sklearn.neighbors import KNeighborsClassifier

#from mlxtend.classifier import EnsembleVoteClassifier

from sklearn.discriminant_analysis import LinearDiscrimi

nantAnalysis as LDA

from sklearn.metrics import accuracy_score

from sklearn.metrics import classification_report

import os

path = os.listdir('/content/drive/MyDrive/Project/main/T

raining/')

classes = {'no':0, 'yes':1}

import cv2

X = []

Y = []

for cls in classes:

pth = '/content/drive/MyDrive/Project/main/Training/

'+cls

for j in os.listdir(pth):

img = cv2.imread(pth+'/'+j, 0)

img = cv2.resize(img, (200,200))

X.append(img)

Y.append(classes[cls])

X = np.array(X)

Y = np.array(Y)

np.unique(Y)

array([0, 1])

pd.Series(Y).value_counts()

1 827

0 395

42 | P a g e

dtype: int64

X.shape

(1222, 200, 200)

X_updated = X.reshape(len(X), -1)

X_updated.shape

(1222, 40000)

xtrain, xtest, ytrain, ytest = train_test_split(X_update

d, Y, random_state=10,test_size=.20)

xtrain.shape, xtest.shape

((977, 40000), (245, 40000))

print(xtrain.max(), xtrain.min())

print(xtest.max(), xtest.min())

xtrain = xtrain/255

xtest = xtest/255

print(xtrain.max(), xtrain.min())

print(xtest.max(), xtest.min())

255 0

255 0

1.0 0.0

1.0 0.0

logclf=LogisticRegression(penalty='l2',C=0.001, random_s

tate=0)

treeclf=DecisionTreeClassifier(max_depth=3,criterion='en

tropy',random_state=0)

knnclf=KNeighborsClassifier(n_neighbors=1,p=2,metric='mi

nkowski')

LDAclf=LDA()

treeclf.fit(xtrain, ytrain)

treeclf.score(xtest, ytest)

0.963265306122449

y_pred = treeclf.predict(xtest)

#from sklearn.metrics import confusion_matrix

confusion_matrix(ytest, y_pred)

43 | P a g e

array([[75, 6],

[3, 161]])

from sklearn import ensemble

rf_clf = ensemble.RandomForestClassifier(n_estimators=10

0)

rf_clf.fit(xtrain, ytrain)

rf_clf.score(xtest, ytest)

0.9959183673469387

logclf.fit(xtrain, ytrain)

logclf.score(xtest, ytest)

0.926530612244898

y_pred = logclf.predict(xtest)

#from sklearn.metrics import confusion_matrix

confusion_matrix(ytest, y_pred)

array([[63, 18],

[0, 164]])

knnclf.fit(xtrain, ytrain)

knnclf.score(xtest, ytest)

0.9510204081632653

y_pred = knnclf.predict(xtest)

#from sklearn.metrics import confusion_matrix

confusion_matrix(ytest, y_pred)

array([[70, 11],

[1, 163]])

LDAclf.fit(xtrain, ytrain)

LDAclf.score(xtest, ytest)

0.8081632653061225

y_pred = LDAclf.predict(xtest)

#from sklearn.metrics import confusion_matrix

confusion_matrix(ytest, y_pred)

array([[57, 24],

44 | P a g e

[23, 141]])

gbclf = ensemble.GradientBoostingClassifier()

gbclf.fit(xtrain, ytrain)

gbclf.score(xtest, ytest)

0.9877551020408163

Let's tune this Gradient booster.

gbclf = ensemble.GradientBoostingClassifier(n_estimators

=50)

gbclf.fit(xtrain,ytrain)

gbclf.score(xtest, ytest)

0.9795918367346939

Importing library

#from scipy.stats import kurtosis

Creating a dataset

#dataset = xtrain[0]

Calculate the kurtosis

#print(kurtosis(dataset, axis=0, bias=True))

DL

import numpy as np # linear algebra

import pandas as pd # data processing, CSV file I/O (e.g

. pd.read_csv)

import os

import matplotlib.pyplot as plt

import seaborn as sb

sb.set_style('whitegrid')

import tensorflow as tf

from tensorflow.keras import layers,models,optimizers,pr

eprocessing

from tensorflow.keras.layers import Conv2D,Dense,MaxPool

ing2D,Flatten,Dropout

main_dir = "/content/drive/MyDrive/Project/main/Training

/"

classification_dirs = [("no",), ("yes",)]

resolution = 64

45 | P a g e

def load_images(root_dir_name):

x = []

y = []

for label, sub_dir_names in enumerate(classification

_dirs):

e}")

for sub_dir_name in sub_dir_names:

print(f"loading {root_dir_name} {sub_dir_nam

sub_dir_path = os.path.join(main_dir, root_d

ir_name, sub_dir_name)

for image_name in os.listdir(sub_dir_path):

image_path = os.path.join(sub_dir_path,

image_name)

image = preprocessing.image.load_img(ima

ge_path, color_mode="grayscale", target_size=(resolution

, resolution))

y(image))

x.append(preprocessing.image.img_to_arra

y.append(label)

x = np.array(x) / 255.0

y = np.array(y)

return x, y

return x, y

x_train, y_train = load_images("/content/drive/MyDrive/P

roject/main/Training/")

x_test, y_test = load_images("/content/drive/MyDrive/Pro

ject/main/Testing/")

loading /content/drive/MyDrive/Project/main/Training/ no
loading /content/drive/MyDrive/Project/main/Training/ yes
loading /content/drive/MyDrive/Project/main/Testing/ no
loading /content/drive/MyDrive/Project/main/Testing/ yes

x_train.shape

(1222, 64, 64, 1)

x_test.shape

(179, 64, 64, 1)

46 | P a g e

c = 10

fig, subplots = plt.subplots(1, c)

fig.set_size_inches(25, 3)

for i in range(c):

n = np.random.randint(0, len(x_train))

num = y_train[n]

word = "out" if num == 0 else ""

subplots[i].imshow(x_train[n].reshape((resolution, r

esolution)), cmap="gray")

subplots[i].set_title(f"brain with{word} tumor: {num

}")

subplots[i].axis("off")

plt.show()

input_shape = (64,64,1)

model = models.Sequential()

model.add(Conv2D(32,kernel_size = (2,2),strides = (1,1),

activation = 'linear',input_shape = input_shape))

model.add(MaxPooling2D(pool_size = (2,2),strides = (2,2)

))

model.add(Conv2D(64,kernel_size = (2,2),strides = (1,1),

activation = 'linear'))

model.add(MaxPooling2D(pool_size

))

= (2,2),strides = (2,2)

model.add(Conv2D(128,kernel_size = (2,2),strides = (1,1)

,activation = 'linear'))

model.add(MaxPooling2D(pool_size

=

(2,2),strides

=

(2,2)

))

model.add(Conv2D(256,kernel_size

=

(2,2),strides

=

(1,1)

,activation = 'linear'))

model.add(MaxPooling2D(pool_size = (2,2),strides = (2,2)

))

model.add(Conv2D(512,kernel_size

=

(2,2),strides

=

(1,1)

,activation = 'linear'))

model.add(MaxPooling2D(pool_size

=

(2,2),strides

=

(2,2)

))

model.add(Flatten())

model.add(Dropout(0.5))

47 | P a g e

model.add(Dense(256, activation="linear"))

model.add(Dense(1, activation="sigmoid"))

model.summary()

Model: "sequential"
__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Layer (type) Output Shape Param#

===
====
conv2d (Conv2D) (None, 63, 63, 32) 160

max_pooling2d (MaxPooling2D) (None, 31, 31, 32) 0

conv2d_1 (Conv2D) (None, 30, 30, 64) 8256

max_pooling2d_1 (MaxPooling2D) (None, 15, 15, 64) 0

conv2d_2 (Conv2D) (None, 14, 14, 128) 32896

max_pooling2d_2 (MaxPooling2D) (None, 7, 7, 128) 0

conv2d_3 (Conv2D) (None, 6, 6, 256) 131328

max_pooling2d_3 (MaxPooling2D) (None, 3, 3, 256) 0

conv2d_4 (Conv2D) (None, 2, 2, 512) 524800

max_pooling2d_4 (MaxPooling 2D) (None, 1, 1, 512) 0

flatten (Flatten) (None, 512) 0

dropout (Dropout) (None, 512) 0

dense (Dense) (None, 256) 131328

dense_1 (Dense) (None, 1) 257

48 | P a g e

Total params: 829,025
Trainable params: 829,025
Non-trainable params: 0
__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
model.compile(optimizer = 'rmsprop',loss = "binary_cross

entropy",metrics = ['accuracy'])

model.fit(x_train,y_train,batch_size = 7,epochs = 25, va

lidation_data=(x_test, y_test))

Epoch 1/25
175/175 [==============================] - 9s 46ms/step - loss:
0.4879 - accuracy: 0.7962 - val_loss: 0.4224 - val_accuracy: 0.7877
Epoch 2/25
175/175 [==============================] - 9s 49ms/step - loss:
0.1961 - accuracy: 0.9411 - val_loss: 0.1758 - val_accuracy: 0.8939
Epoch 3/25
175/175 [==============================] - 8s 46ms/step - loss:
0.1271 - accuracy: 0.9656 - val_loss: 0.3089 - val_accuracy: 0.9050
Epoch 4/25
175/175 [==============================] - 8s 46ms/step - loss:
0.0836 - accuracy: 0.9755 - val_loss: 0.6070 - val_accuracy: 0.8436
Epoch 5/25
175/175 [==============================] - 8s 46ms/step - loss:
0.0444 - accuracy: 0.9877 - val_loss: 0.0839 - val_accuracy: 0.9665
Epoch 6/25
175/175 [==============================] - 8s 46ms/step - loss:
0.0609 - accuracy: 0.9853 - val_loss: 0.4211 - val_accuracy: 0.9050
Epoch 7/25
175/175 [==============================] - 8s 46ms/step - loss:
0.0092 - accuracy: 0.9975 - val_loss: 0.0882 - val_accuracy: 0.9497
Epoch 8/25
175/175 [==============================] - 8s 46ms/step - loss:
0.0474 - accuracy: 0.9885 - val_loss: 0.3767 - val_accuracy: 0.9050
Epoch 9/25
175/175 [==============================] - 8s 45ms/step - loss:
0.0333 - accuracy: 0.9926 - val_loss: 0.9540 - val_accuracy: 0.8547
Epoch 10/25
175/175 [==============================] - 8s 46ms/step - loss:
0.0104 - accuracy: 0.9984 - val_loss: 0.9468 - val_accuracy: 0.8883
Epoch 11/25
175/175 [==============================] - 8s 46ms/step - loss:
0.0267 - accuracy: 0.9935 - val_loss: 1.0687 - val_accuracy: 0.8771

49 | P a g e

Epoch 12/25
175/175 [==============================] - 9s 52ms/step - loss:
0.0404 - accuracy: 0.9959 - val_loss: 1.0717 - val_accuracy: 0.8883
Epoch 13/25
175/175 [==============================] - 8s 46ms/step - loss:
0.0112 - accuracy: 0.9967 - val_loss: 0.5373 - val_accuracy: 0.9497
Epoch 14/25
175/175 [==============================] - 8s 46ms/step - loss:
0.0127 - accuracy: 0.9951 - val_loss: 0.0567 - val_accuracy: 0.9665
Epoch 15/25
175/175 [==============================] - 8s 47ms/step - loss:
0.0168 - accuracy: 0.9967 - val_loss: 0.3284 - val_accuracy: 0.9553
Epoch 16/25
175/175 [==============================] - 8s 47ms/step - loss:
0.0248 - accuracy: 0.9975 - val_loss: 0.0936 - val_accuracy: 0.9721
Epoch 17/25
175/175 [==============================] - 8s 47ms/step - loss:
0.0093 - accuracy: 0.9975 - val_loss: 0.1757 - val_accuracy: 0.9721
Epoch 18/25
175/175 [==============================] - 8s 47ms/step - loss:
0.0136 - accuracy: 0.9975 - val_loss: 1.9985 - val_accuracy: 0.9106
Epoch 19/25
175/175 [==============================] - 8s 47ms/step - loss:
0.0065 - accuracy: 0.9975 - val_loss: 1.4758 - val_accuracy: 0.9106
Epoch 20/25
175/175 [==============================] - 8s 46ms/step - loss:
0.0207 - accuracy: 0.9975 - val_loss: 3.8979 - val_accuracy: 0.8324
Epoch 21/25
175/175 [==============================] - 8s 47ms/step - loss:
0.0041 - accuracy: 0.9992 - val_loss: 0.4383 - val_accuracy: 0.9274
Epoch 22/25
175/175 [==============================] - 8s 47ms/step - loss:
1.4356e-04 - accuracy: 1.0000 - val_loss: 1.3686 - val_accuracy: 0.8994
Epoch 23/25
175/175 [==============================] - 8s 47ms/step - loss:
1.4269e-04 - accuracy: 1.0000 - val_loss: 0.0026 - val_accuracy: 1.0000
Epoch 24/25
175/175 [==============================] - 8s 47ms/step - loss:
1.2337e-05 - accuracy: 1.0000 - val_loss: 1.2157 - val_accuracy: 0.8883
Epoch 25/25
175/175 [==============================] - 8s 47ms/step - loss:
5.4701e-06 - accuracy: 1.0000 - val_loss: 0.8670 - val_accuracy: 0.9162
<keras.callbacks.History at 0x7fd4e4ce4590>

50 | P a g e

y_test_results = model.predict(x_test)

c = 10

fig, subplots = plt.subplots(1, c)

fig.set_size_inches(30, 9)

for i in range(c):

n = np.random.randint(0, len(x_test))

guess = str(round(y_test_results[n][0], 2)).ljust(4,

"0")

actual = y_test[n]

subplot = subplots[i]

subplot.imshow(x_test[n].reshape((resolution, resolu

tion)), cmap="gray")

subplot.set_title(f"predicted: {guess}, actual: {act

ual}")

subplot.axis("off")

plt.show()

Score of test data

#pred = model.predict(X_test)

from sklearn.metrics import accuracy_score,f1_score,conf

usion_matrix,classification_report

from sklearn import metrics

score = accuracy_score(y_test, y_test_results.round())

print(score*100,'%')

91.62011173184358 %

"""clf_labels=['Logistic Regression','Decision Tree','KN

N','LDAclf']

for clf, label in zip ([logclf,treeclf,knnclf,LDAclf],cl

f_labels):

scores=cross_val_score(estimator=clf,X=xtrain,y=ytra

in,cv=10,scoring='accuracy')

print("accuracy: %0.2f (+/-

%0.2f) [%s]" % (scores.mean(),scores.std(),label))

for clf, label in zip ([logclf,treeclf,knnclf,LDAclf],cl

f_labels):

scores=cross_val_score(estimator=clf,X=xtrain,y=ytra

in,cv=10,scoring='roc_auc')

51 | P a g e

print("roc auc: %0.2f (+/-

%0.2f) [%s]" % (scores.mean(),scores.std(),label))"""

clf_labels=[\'Logistic Regression\',\'Decision

Tree\',\'KNN\',\'LDAclf\']\nfor clf, label in zip

([logclf,treeclf,knnclf,LDAclf],clf_labels):\n

scores=cross_val_score(estimator=clf,X=xtrain,y=ytrain,c

v=10,scoring=\'accuracy\')\n print("accuracy: %0.2f (+/-

%0.2f) [%s]" %

(scores.mean(),scores.std(),label))\n\nfor clf, label in

zip ([logclf,treeclf,knnclf,LDAclf],clf_labels):\n

scores=cross_val_score(estimator=clf,X=xtrain,y=ytrain,c

v=10,scoring=\'roc_auc\')\n print("roc auc: %0.2f (+/-

%0.2f) [%s]" % (scores.mean(),scores.std(),label))

52 | P a g e

53 | P a g e

	Dissertation On
	Master in Multimedia Development

	MAMATA KHAMARU
	Mr. JOYDEEP MUKHERJEE
	Faculty of Engineering and Technology
	Jadavpur University Kolkata:700032
	School of Education Technology Jadavpur University Kolkata:700032

	CERTIFICATE OF APPROVAL
	Committee of final examination _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
	_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
	Name: Mamata Khamaru
	Thesis Title: Detection of Brain Tumor of MRI based images using Machine Learning- An Approach

	ACKNOWLEDGEMENT
	Date:
	Mamata Khamaru

	Contents
	1. Introduction
	1.2. Machine Learning
	1.3. Problem Statement
	1.4. Objective
	2. Background Concept
	2.2. Support Vector Machine (SVM)
	Types of SVM
	SVM can be of two types:
	2.3. Decision Tree
	8. then
	2.5. Random Forest
	2.5.4 Variable Importance

	2.6. Linear Discriminant Analysis (LDA)
	2.7. Gradient Booster

	3. Literature Survey
	4. Proposed Methodology
	5. Experimental Result and Evaluation
	Logistic Regression
	Decision Tree
	Random Forest
	KNN
	LDA
	SVM

	6. Conclusion and Future work
	Appendix
	Mounting to drive
	Load Modules
	Prepare/collect the data
	Visualize data
	Prepare Data
	Splitting Data
	Feature Scaling
	Feature Selection: PCA
	Evaluation
	Prediction
	TEST MODEL
	Classifier
	DL

