
Dissertation on

An Image Feature-Based Method for Detection of

Parking Lot Occupancy

Thesis submitted towards partial fulfillment of the
requirements for the degree of

Master of Technology in IT (Courseware Engineering)

Submitted by

DEBANJAN KSHETRY

EXAMINATION ROLL NO.: M4CWE22020

UNINVERSITY REGISTRATION NO.: 131239 of 2015-16

Under the guidance of

Mr. JOYDEEP MUKHERJEE

School of Education Technology

Jadavpur University

Course aff il iated to

Faculty of Engineering and Technology

Jadavpur University

Kolkata 700032

India

M.Tech. IT (Courseware Engineering)
Course Affiliated to

Faculty of Engineering and Technology
Jadavpur University

Kolkata, India

CERTIFICATE OF RECOMMENDATION

This is to certify that the thesis entitled “An Image Feature Based Method for

Detection of Parking Lot Occupancy” is a bonafide work carried out by

DEBANJAN KSHETRY under our supervision and guidance for partial fulfillment

of the requirements for the degree of Master of Technology in IT (Courseware

Engineering) from the School of Education Technology, during the academic

session 2021-2022.

...
SUPERVISOR
School of Education Technology
Jadavpur University,
Kolkata – 700032

...
DIRECTOR
School of Education Technology
Jadavpur University,
Kolkata – 700032

...
DEAN-FISLM
Jadavpur University,
Kolkata – 700032

Course affiliated to

M.Tech. IT (Courseware Engineering)
Course Affiliated to

Faculty of Engineering and Technology
Jadavpur University

Kolkata, India

CERTIFICATE OF APPROVAL

This foregoing thesis is hereby approved as a credible study of an engineering

subject carried out and presented in a manner satisfactory to warranty its

acceptance as a perquisite to the degree for which it has been submitted. It is

understood that by this approval the undersigned do not endorse or approve

any statement made or opinion expressed or conclusion drawn therein but

approve the thesis only for purpose for which it has been submitted.

………………………………………………….

………………………………………………….
Committee of final examination for

Evaluation of Thesis .…………………………………………………

………………………………………………..

DECLARATION OF ORIGINALITY AND COMPLIANCE

OF ACADEMIC ETHICS

I hereby declare that this thesis contains literature survey and original research

work by the undersigned candidate, as part of his Master of Technology in IT

(Courseware Engineering) studies.

All information in this document has been obtained and presented in

accordance with academic rules and ethical conduct.

I also declare that. As required by this rule and conduct, I have fully cited and

referenced all materials and results that are not original to this work.

NAME: DEBANJAN KSHETRY

EXAMINATION ROLL NUMBER: M4CWE22020

THESIS TITLE: An Image Feature-Based Method for Detection of

Parking Lot Occupancy

SIGNATURE: DATE:

ACKNOWLEDGEMENT

I feel gratified in presenting this thesis at the School of Education Technology,

Jadavpur University, Kolkata, in partial fulfillment of the requirements for the degree

of Master of Technology in IT (Courseware Engineering).

The contentment and elation that accompany the successful completion of

any task would be incomplete without the mention of the people who made it

possible, whose constant guidance, supervision and encouragement crowned my

effort with success.

I convey my gratitude to our guide, Mr. Joydeep Mukherjee, for his timely

help, encouragement, constructive suggestion, and many more innovative ideas in

carrying out this thesis.

I am also grateful to Prof. Matangini Chattopadhyay and, Director of the

School of Education Technology, for her support, encouragement and helpful advice.

I am really indebted to Dr. Saswati Mukherjee for her constant support during the

entire course of the research work. Their advice and support were highly

inspirational and helpful.

I would like to take this opportunity to pay my regards and thank to all of

classmates at M.Tech IT (Courseware Engineering) motivated me to complete my

research work successfully. I do wish to thank all of those who were associated with

this research work.

 Thanks & Regards, ________________________

Debanjan Kshetry,
Class Roll No: 002030402020
Exam Roll No: M4CWE22020

Registration No.:131239 of 2015-16
Master of Technology in IT (Courseware Engineering)

School of Education Technology,
Jadavpur University,

Kolkata- 700032

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 1

CONTENTS

Chapter 1: Introduction 2-7

1.1 Executive Summary 2-3

1.2 Literature Survey 3-6

1.3 Objective 6-7

1.4 Problem Statement 7

Chapter 2: Methodology and Implementation 8-26

 2.1 ROI Detection 8-10

 2.2 Image Acquisition 10

 2.3 RGB to Grayscale Conversion 11-13

 2.4 Gaussian Blur 13-17

 2.5 Adaptive Thresholding 17-20

 2.6 Median Blur 21-23

 2.7 Dilation 24-26

Chapter 3: Algorithm of the Proposed System 27-28

Chapter 4: Results 29-37

 4.1 Output window after video image processing 31-34

 4.2 Results of the proposed system 35-36

4.3 Difference between the Existing approach and the

 Proposed approach 36-37

Chapter 5: Conclusion and Future Scope 38-39

Chapter 6: References 40-43

Appendix: Codes 44-56

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 2

CHAPTER 1: INTRODUCTION

1.1. Executive Summary

Personal vehicles have evolved into a need in our daily lives as a result of

the economy's ongoing growth. The majority of the working class can now

afford the commodity, which offers a comfortable standard of living;

nevertheless, on the flip side, numerous issues arise that must be resolved.

Numerous studies on traffic congestion analyses have shown that a

whopping 70% of cars on the road nowadays are looking for good parking.

As a result of the increased time spent on the road by the vehicles, traffic

congestion will worsen. When looking for a parking spot, drivers may also

favour driving slowly. According to this field's research, cars travel at an

average speed of 20 Kmph for an average of 15 minutes while searching for

a parking spot, only covering a distance of half a kilometer. Traffic jams are

a regular side effect. Accidents are more likely to occur while drivers are

looking for parking because they are paying less attention to the road.

These issues can only be solved by an advanced parking system. This is why

there are a lot of research projects being done in this field globally. Any

smart parking system begins with the detection of vacant parking spaces.

There are numerous intricate parking systems in use today, but they are

all expensive to design, implement, and maintain. The counter at the

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 3

checkpoint is used by the management of many parking lots to count the

number of vehicles entering and leaving the lot. Modern technologies

precisely locate the open spaces and direct incoming vehicles accordingly.

Even though some modern cars come equipped with built-in parking

systems, these systems frequently fail to recognize whether a parking place

is actually vacant or not.

There are still places where temporary or urgent parking facilities need

to be set up despite all these strategies; this work provides a useful, image-

based

approach.

 Image Processing techniques is used in this thesis to detect and count

vacant parking spaces in the Captured Stream Videos.

1.2. Literature Survey

The author [1] has conducted a comparison of the different car slot

detection methods used in parking lots. Also demonstrated as a

replacement for sensor-based systems are image processing-based system

models. Based on optical character recognition, this system for identifying

parking spaces is extremely effective and straightforward (OCR). The

camera that is mounted in the parking space records an image of the

parking area and, using OCR, finds any open spots there.

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 4

The author [2] evaluates the state of intelligent transportation today and

suggests a design for a video-based parking space detection system,

providing a program from the hardware and software platform architecture

through the design process for the detection algorithm. Lastly, it presents

the findings of on-site field experiments. The design may make some

allusions to ongoing and upcoming research in intelligent transportation, or

more specifically, to the administration of smart parking lots.

The author [3] used image processing to get videos from a 10 foot-tall

camera from the top view of the parking lot. To improve the ability for

recognition, the system video data has been recorded under diverse

circumstances and temporal changes. Frames are used to separate video.

Then, in order to reduce computer complexity, a key frame is extracted

from each segment and subjected to additional processing. A radio-

controlled toy car's motion is dictated by the main frame subtraction when

you drive into or out of the parking space. The parking arena didn't initially

have any parking lines. The driver manually enters the parking space and

the vehicles intended for parking. The tool automatically generates virtual

parking spaces that account for car size. The maximum number of parking

spaces in this training model is 14. Each parking lot has been assigned a

certain numerical mark. After the parking arena has been divided into

virtual blocks, the device will check for the existence of the car in any block.

A binary filter is applied to the image, and the automobile is removed using

a ROI region. calculates the associated area's ROI interest and sets the

minimum number of reserved parking spaces at more than eighty. For

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 5

divers, the number of free blocks is displayed in green, while the blocks that

are reserved are displayed in red.

The author [4] suggests a image-processing-based approach for giving

parking advice and information. The technology under consideration counts

the number of parked cars and lists the available parking spaces. Instead of

employing electronic sensors buried in the floor, the system identifies autos

using photographs. The entrance to the parking lot has a camera installed.

It will record video clips. Using image matching, the collected photos are

sequentially matched using an image of an automobile as the reference

image. Edge detection has been done for this purpose utilising the Prewitt

edge detection operator, and the incoming driver is given instructions and

information based on the percentage of matches.

The author's [5] goal is to offer an intelligent system for parking space

recognition based on image processing approach that captures and

processes the brown, rounded picture drawn at a parking lot and produces

the information of the empty automobile parking spaces. It will be shown in

real time at the display unit that has seven segments. The number of

parking spaces currently available in the parking area is displayed on the

seven section display. This system proposal has been created on a hardware

and software platform.

Parking Guidance and Information (PGI) systems [6]-[8] provide real-

time parking information via variable message signs to drivers looking for

parking spaces. To gather information about the occupancy of parking

spaces, the system makes use of specialised sensors, notably at the

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 6

entrance and exit gates of the parking lot. The parking lots of commercial

shopping malls and trade centres can swiftly be equipped with these kinds

of equipment.

1.3. Objective

Our system’s main objective is to

 Build a system that can create or pick parking spaces.

 Detect empty vehicle slot in the picked parking spaces.

In this thesis we are going to use captured stream aerial view videos of

parking lot and then create a system to pick parking spaces from the videos.

The system is very easy to develop and doesn’t always require parking lot to

have properly marked parking spaces. The parking spaces can be created

manually in the system.

 In the second point, we are going to create the main system where we

will be using the previous parking space picker system to detect if the

parking space marked in the video is vacant or not.

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 7

This model will assist in various scenarios such as parking spaces

alongside road in any specified block, temporary parking spaces created

during any occasion, permanent parking spaces with marked parking spaces

and landscaping elements and also parking spaces without slot numbers [1].

1.4. Problem Statement

 The current image feature based approach [1] is not very flexible in real

life implementation because it cannot detect vacant parking spaces without

manually drawn slot numbers in parking spaces.

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 8

2. METHODOLOGY AND IMPLEMENTATION

 Some of the key concepts will be discussed to understand the details of

the algorithm that have been implemented for the detection and counting

of vacant parking spaces in the captured stream videos using Image

Processing techniques.

2.1. ROI Detection

A region of interest (ROI) is a portion of an image or dataset that has

been selected for a specific objective. Here we need to detect the ROI using

the Parking spaces markers on the parking slot. The camera here needs to

be mounted on the roof top of a building from where we can get a clear

aerial view of the parking lot and the camera also needs to be static. Here,

we used captured stream videos of parking lot from the aerial point of view.

Now we need to do some calibration to obtain the ROI, we need to

manually get the dimensions of a parking space and then select the parking

spaces from x, y coordinates, where the point of selection is generally the

top left corner of each parking space. After selecting all the parking spaces,

we have detected all the ROI in the parking space. The main reason behind

doing this is to get the pixel count in each of this parking spaces after going

through proper filtering.

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 9

Fig. 1 shows the ROI marked in all the parking spaces in video 1, with

pink border, for further detection of car and counting of vacant spaces. We

do this by getting a nice and clear frame from the video and using that

image to create ROI for each parking space.

 Fig. 1 ROI marked for each parking space in the parking lot in video 1

Fig. 2 shows the ROI marked in all the parking spaces in video 2

Fig.2 ROI marked for each parking space in the parking lot in video 2

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 10

Fig. 3 shows the ROI marked in all the parking spaces in video 3

Fig.3 ROI marked for each parking space in the parking lot in video 3

2.2. Image Acquisition

In the image acquisition module, image capture and storage of digital

images from the video cameras are the procedures to be involved. For

this, a high-definition camera must be attached to the processing unit

which in turn provides the data for the Pycharm software to process in

real-time. The camera alignment should be done with extreme care. In

order to get a clear top view of the parking lot, the camera should be set

up at a good height. Here in this thesis, we will be using captured stream

videos which are recorded from a top-down perspective and set up at a

good height as shown in Fig. 1, 2 and 3.

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 11

2.3. RGB to Grayscale Conversion

Grayscale is a spectrum of apparent-colorless hues of grey. Black is the

darkest shade that can exist, and white is the lightest shade that can exist.

White denotes total transmission or reflection of light at all visible

wavelengths, while black denotes total absence of transmitted or reflected

light. Equal brightness levels of the three basic colors—red, green, and

blue—represent intermediate shades of grey.

The colored image is converted to grayscale using the Luminosity

method which calculates each resultant gray image pixel. The grayscale

conversion is necessary because the algorithms used are customized to

work only on grayscale images.

Transformations within RGB space like removing the alpha channel,

reversing the channel order, conversion from 16-bit RGB color using

Equation [1].

Y=0.299*R + 0.587*G + 0.114*B …. [1]

The conversion from a RGB image to gray is done with:

cv2.cvtColor(image, cv2.COLOR_BGR2GRAY);

Fig. 4 shows the images of the parking lot with cars converted to

grayscale images in Video 1.

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 12

Fig.4 RGB image of a frame converted to Grayscale image in video 1

Fig. 5 shows the images of the parking lot with cars converted to

grayscale images in Video 2.

Fig.5 RGB image of a frame converted to Grayscale image in video 2

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 13

Fig. 6 shows the images of the parking lot with cars converted to

grayscale images in Video 3.

 Fig. 6 RGB image of a frame converted to Grayscale image in video 3

2.4. Gaussian Blur

Gaussian blur is the application of a mathematical function to an image

in order to blur it. This function can be useful in various cases such as in low

light, the resulting image might have a lot of noise, to mute those noises

Gaussian blur can be used [9]. It is also useful for reducing chromatic

aberration.

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 14

The grayscale images in Fig. may include numerous noises or erroneous

fluctuations in hue or brightness between pixels. Simply put, the large

standard deviation of the pixels in these images shows that there is a lot of

variation within pixel clusters. By generating a normal distribution for those

pixel values, Because a image is two-dimensional, Gaussian blur uses two

mathematical functions (one for the x-axis and one for the y) to create a

third function, also known as a convolution. The third function reduces

some of the randomness. The amount of smoothing depends on the blur

radius that is selected. Each pixel will receive a new value that is based on a

weighted average of the pixels in its immediate vicinity, with closer pixels

receiving more weight than pixels farther away. The image is made fuzzier

as a result of all this arithmetic.

In one dimension, the Gaussian function is shown in Equation [2]:

 G(x) =
1

√2𝜋σ2
𝑒
−
𝑥2

2σ2 …. [2]

Where σ is the standard deviation of the distribution. The distribution is

assumed to have a mean of 0.

When working with images we need to use the two dimensional

Gaussian function. This is simply the product of two 1D Gaussian functions

(one for each direction) and is shown in Equation [3]:

G(x, y) =
1

√2𝜋σ2
𝑒
−
𝑥2+𝑦2

2σ2 …. [3]

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 15

The Gaussian Blur works by using the 2D distribution as a point-spread

function. This is achieved by convolving the 2D Gaussian distribution

function with the image. We need to produce a discrete approximation to

the Gaussian function. This theoretically requires an infinitely large

convolution kernel, as the Gaussian distribution is non-zero everywhere.

Fortunately the distribution has approached very close to zero at about

three standard deviations from the mean. 99% of the distribution falls

within 3 standard deviations. This means we can normally limit the kernel

size to contain only values within three standard deviations of the mean.

Gaussian kernel coefficients are sampled from the 2D Gaussian function.

Where σ is the standard deviation of the distribution. The distribution is

assumed to have a mean of zero. We need to discretize the continuous

Gaussian functions to store it as discrete pixels.

OpenCV-Python provides the cv2.GaussianBlur() function to apply

Gaussian Smoothing on the Grayscale image. The syntax used here is,

cv2.GaussianBlur(src, ksize, sigmaX)

src is the Grayscaled image.

ksize is a Gaussian Kernel Size, [height, width]. The height and width

should be odd and can have different values.

sigmaX is a kernel standard deviation along X-axis (horizontal direction).

 Fig. 7 shows the images of grayscale images after Gaussian Blur is

implemented in video 1.

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 16

 Fig. 7 Grayscale image has undergone Gaussian Blur in video 1

Fig. 8 shows the images of grayscale images after Gaussian Blur is implemented

in video 2.

 Fig. 8 Grayscale image has undergone Gaussian Blur in video 2

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 17

Fig. 9 shows the images of grayscale images after Gaussian Blur is implemented

in video 3.

 Fig. 9 Grayscale image has undergone Gaussian Blur in video 3

2.5. Adaptive Thresholding

Adaptive Thresholding is the method to determine the Threshold value,

T for the local regions of our image. In simple terms, Adaptive Thresholding

is used to separate desirable foreground image objects from the

background based on the difference in pixel intensities of each region [11].

The common practice is to use either the Arithmetic mean or the Gaussian

mean of the pixel intensities in each region. In the arithmetic mean, each

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 18

pixel in the vicinity equally contributes to the calculation of Threshold

value, T. Additionally, in the Gaussian mean, pixel values farther away from

the (x, y)-coordinate center of the region have a less effect on the

calculation of Threshold value, T as a whole.

The general formula to compute T is shown in Equation [4].

 T = mean(IL) – C…. [4]

mean is either the arithmetic or Gaussian mean.

 IL is the local sub-region of the image.

C is a constant which we can use to fine tune the threshold value, T.

In OpenCV, you can perform Adaptive threshold operation on an image

 using cv2.AdaptiveThreshold() function. The syntax used here is,

cv2.AdaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType,

blockSize, C)

src is the Grayscaled Blurred image.

maxValue is the output Threshold value.

adaptiveMethod is a variable of integer type representing the adaptive

method to be used. This will be either of the following two values

ADAPTIVE_THRESH_MEAN_C or ADAPTIVE_THRESH_GAUSSIAN_C, we

will be computing the weighted Gaussian mean over the blockSize’s

area, which gives larger weight to pixels closer to the center of the

window.

blockSize is our pixel neighborhood size.

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 19

 C is a constant, which I mentioned above, which lets us fine tune our

Threshold Value.

Fig. 10 shows the images of Gaussian Blurred Grayscale images after

Adaptive Threshold is implemented in video 1.

Fig. 10 Grayscale image converted to Inverse Binary in video 1

Fig. 11 shows the images of Gaussian Blurred Grayscale images after

Adaptive Threshold is implemented in video 2.

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 20

Fig. 11 Grayscale image converted to Inverse Binary in video 2

Fig. 12 shows the images of Gaussian Blurred Grayscale images after

Adaptive Threshold is implemented in video 3.

Fig. 12 Grayscale image converted to Inverse Binary in video 3

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 21

2.6. Median Blur

The Median blur operation processes the edges while removing the

noise. The median of all the pixels in the kernel area serves as the image's

new center component in this case, since the median is robust to outliers,

the salt-and-pepper noise will be less influential to the median [10].

When applying a median blur, we first define our kernel size. Then,

taking into account all pixels in the vicinity of size K times K, where K is an

odd integer. For the median, the kernel size must be square.

OpenCV provides the cv2.medianBlur() function to blur the image with a

median kernel. The syntax used here is,

cv2.medianBlur(src, ksize)

src is the output threshold image.

ksize is a size object representing the size of the kernel.

Fig. 13 shows the images of output Threshold images after Median Blur

is implemented in video 1

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 22

Fig. 13 Resulting image undergoes Median Blur for further noise reduction in video 1

Fig. 14 shows the images of Gaussian Blurred Grayscale images after

Adaptive Threshold is implemented in video 2.

Fig. 14 Resulting image undergoes Median Blur for further noise reduction in video 2

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 23

Fig. 15 shows the images of Gaussian Blurred Grayscale images after

Adaptive Threshold is implemented in video 3.

Fig. 15 Resulting image undergoes Median Blur for further noise reduction in video 3

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 24

2.7. Dilation

The two different kinds of morphological procedures are erosion and

dilation. Morphological operations [13], as their name suggests, are a group

of procedures that shape-process images. A "structural element" is created

based on the input image that has been provided. Any of the two methods

can be used to accomplish this. These are intended to reduce noise and

smooth out flaws in order to improve the clarity of the image.

Dilation follows convolution with some kernel of a specific shape such as

a square or a circle. This kernel has a centre, which is indicated by an anchor

point. To calculate the maximum pixel value, this kernel is overlaid over the

image. After computation, an anchor is set in the middle of the image. By

using this method, the image size grows as the bright parts' surrounding

areas expand in size.

 OpenCV provides the cv2.dilate() function. The syntax used here is,

 cv2.dilate(src, kernel, iterations)

 src is the output Threshold image.

 kernel is convolved with the image in a matrix of odd size .

iterations is a parameter that will take the number of iterations, which

will determine how much to dilate the image.

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 25

Fig. 16 shows the images of median blurred images after erosion is

implemented in video 1.

Fig. 16 Median Filtered image undergone dilation in video 1

Fig. 17 shows the images of median blurred images after erosion is

implemented in video 2.

 Fig. 17 Median Filtered image undergone dilation in video 2

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 26

Fig. 18 shows the images of median blurred images after erosion is

implemented in video 3.

 Fig. 18 Median Filtered image undergone dilation in video 3

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 27

3. ALGORITHM OF THE PROPOSED SYSTEM

The main steps of the proposed algorithm for vacant parking space detection

and counting are:

i. The system will receive a live stream of parking lot footage from the

camera. Here in our case we have used a recorded stream video.

ii. A frame of the parking lot’s video is saved for ROI detection.

ii i. Calibration is done in this frame by selecting each parking space as

ROI. The ROI’s dimension for each parking space is same.

iv. RGB images are converted to Grayscale images in real-time.

v. The Grayscale image is then filtered using Gaussian Blur.

vi. The resultant image is the converted to Binary image and then into

inverse binary to get the car in white color and the rest of the

background in black using Adaptive Thresholding.

vi i. The resulting image is then filtered using Median Blur to remove the

small tiny white dots in each ROI.

viii. The resulting converted image which is free of noise is then dilated

using the dilation function to make the remaining white color a thick

for differentiation.

ix. Number of nonzero pixels in each ROI is calculated, nonzero pixels

denote white color.

x. The number of pixels to determine if a parking space is vacant or not

is found out manually.

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 28

xi. If the number of nonzero pixels is less than the determining number

of pixels for vacant spaces, then the parking spaces is shown in green

rectangular box.

xi i. Whereas If the number of nonzero pixels is greater than the

determining number of pixels for vacant spaces, then the parking

spaces is shown in Red rectangular box.

Fig. 19 shows the design flow of our system

 Fig. 19 Block Diagram of the proposed Parking system

System Initialization

ROI Detection

ROI Calibration and

selection

Gray Scale Conversion

Binary to Inverse Binary

Conversion

Median Blur

Dilation

Gaussian Blur

Parking Space in Green,

Vacant Space

Parking Space in Red,

Car occupied space

 If status

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 29

4. RESULTS

The captured stream video’s frames are processed to get the grayscale

images and then it undergoes Gaussian Blur to remove noises and then it is

converted into its corresponding binary and then inverse binary to get the car

edges in white color and rest black. After that it is properly filtered again, in

our algorithm we used median blur to remove the little bits of white dots that

was present in the binary image and then applied dilation because sometimes

these pixel values they might get a little bit thin so to make it thicker we use

dilation so that it easy to differentiate between vacant spaces and car occupied

spaces.

Fig. 20 Filtered Binary image of the parking area in video 1

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 30

Now each ROI is checked for pixel count, and try to find out the maximum

pixel count shown in a vacant space and minimum pixel count shown in a

occupied space and we take a value in between to determine whether the

parking space is vacant or not. Generally, using a good camera will show

significant difference in pixel count. Here in our video we found the maximum

pixel count in one of the vacant space to be somewhere around 600 and

minimum pixel count for a occupied space shows somewhere around 1100, so

to be on the safe side we have taken 800 to determine if there is a car or not in

the vacant space.

Here in the following images of a particular ROI undergoing processing in

real-time and giving the desired output as shown with adequate pixel count.

Fig. 21, 23, 25, 27 are the binary images of the particular ROI captured in

screenshot mode with respect to time respectively. Fig. 22, 24, 26, 28 are the

RGB output images of the ROI captured in screenshot mode at the same time

as the binary image on the left.

Fig. 23 Binary image 1 of car leaving the

ROI
Fig. 24 Output RGB image 1 with pixel

count of the ROI

Fig. 22 Output RGB image with pixel

count of the ROI
Fig. 21 Binary image of a

ROI with car

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 31

 Fig. 27 Binary image of the ROI after car left

4.1. Output Window after Video Image Processing

The system shows the output window with car occupied parking spaces

in red and vacant parking spaces in green with pixel count at the bottom left

corner of each ROI. At the top left corner of the output window there is shown

the total number of vacant spaces available for parking. In video 1 to achieve

the following we have first selected ROI for each parking space with the

following dimensions, width is 107 and height is 48 and then saved the image

where all the parking spaces are picked, then in the main file we convert the

frames to grayscale then use Gaussian Blur with kernel size, [3, 3] and sigmax

value 1, then we use Adaptive thresholding with maxvalue of 255, blocksize

value 25 and C value 16, then we use Median blur with kernel size 5 and lastly

Fig. 28 Output RGB image with pixel

count of the ROI after car left

Fig. 25 Binary image 2 of car leaving the
ROI

Fig. 26 Output RGB image 3 with pixel

count of the ROI

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 32

we use dilation with kernel size, [3,3] and number of iterations is 1 to get the

best results. Now to check the nonzero pixel count in each ROI and determine

the minimum value of pixel count below which vacancy will be detected is 800.

A typical output window is shown in Fig. 29

Fig. 29 Output Window in Pycharm which displays the real-time status of the parking spaces in the parking
area in video 1

The system shows the output window with car occupied parking spaces

in red and vacant parking spaces in green with pixel count at the bottom left

corner of each ROI. At the top left corner of the output window there is shown

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 33

the total number of vacant spaces available for parking. In video 1 to achieve

the following we have first selected ROI for each parking space with the

following dimensions, width is 75 and height is 160 and then saved the image

where all the parking spaces are picked, then in the main file we convert the

frames to grayscale then use Gaussian Blur with kernel size, [3,3] and sigmax

value 2, then we use Adaptive thresholding with maxvalue of 255, blocksize

value 25 and C value 16, then we use Median blur with kernel size 3 and lastly

we use dilation with kernel size, [3,3] and number of iterations is 1 to get the

best results. Now to check the nonzero pixel count in each ROI and determine

the minimum value of pixel count below which vacancy will be detected is

1800. A typical output window is shown in Fig. 30.

Fig. 30 Output Window in Pycharm which displays the real-time status of the parking spaces in the parking
area in video 2

The system shows the output window with car occupied parking spaces

in red and vacant parking spaces in green with pixel count at the bottom left

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 34

corner of each ROI. At the top left corner of the output window there is shown

the total number of vacant spaces available for parking. In video 1 to achieve

the following we have first selected ROI for each parking space with the

following dimensions, width is 28 and height is 14 and then saved the image

where all the parking spaces are picked, then in the main file we convert the

frames to grayscale then use Gaussian Blur with kernel size, [1,1] and sigmax

value 0, then we use Adaptive thresholding with maxvalue of 255, blocksize

value 37 and C value 28, then we use Median blur with kernel size 1 and lastly

we use dilation with kernel size, [1,1] and number of iterations is 0 to get the

best results. Now to check the nonzero pixel count in each ROI and determine

the minimum value of pixel count below which vacancy will be detected is 64.

A typical output window is shown in Fig. 31.

. Fig. 31. Output Window in Pycharm which displays the real-time status of the parking spaces in the parking
area in video 3

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 35

4.2. Results of the Proposed System

The images used for testing purposes show three parking lots with 69, 34 and

546 parking spaces, respectively, and were taken from fixed cameras. Video 1

has a total number of 679 frames, video 2 has a total of 330 frames and video 3

has a total of 1396 frames.

For assessing the rate of parking spaces detection, the tests were performed

for each video. One can find below the results from different videos with the

total number of frames.

In order to evaluate the system performance, the following rates were

calculated: false positive (FP), false negative (FN), true positive (TP), true

negative (TN), and accuracy (ACC).

 ACC =
𝑇𝑃+𝑇𝑁

𝐹𝑃+𝐹𝑁+𝑇𝑃+𝑇𝑁

where FP is the total number of available parking spaces labeled as occupied,

FN is the total number for occupied parking spaced labeled as available, TP is

the total number of available spaces correctly labeled, and TN the total

number of occupied spaces correctly labeled.

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 36

Table 1. Accuracy results of videos using the proposed image processing

algorithm.

4.3. Difference between the existing approach and the

proposed approach:

Existing Approach Proposed Approach

Images are taken by camera when a

vehicle enters or exit the parking lot.

Real-time image video processing is

done.

Slot numbers needs to be manually

marked in parking spaces for system

Slot numbers are not required to be

marked

Video File Total No.

of Frames

tested

FP (%) FN (%) TP(%) TN (%) ACC (%)

Video 1 679 0.202 0 18.755 81.043 99.798

Video 2 330 0.5 0.29 48.529 50.711 99.24

Video 3 1396 1.074 0.106 18.025 80.795 98.82

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 37

to work

Binary image contains only nonzero

pixels of slot numbers

Binary image contains nonzero pixels

of car edges for detection

Optical Character Recognition is used

for empty slot detection

Optical Character Recognition is not

required

Detection accuracy depends

completely on OCR

Detection accuracy depends on

proper filtering of nonzero pixels and

gives more than 98% accuracy

The video files used for processing and testing are downloaded from the

internet. The following source destination of the video files is given below:

Video File 1: https://youtu.be/5G_wMSwrLXc

Video File 2: https://www.youtube.com/watch?v=uVZQSUXYqSQ

Video File 3: https://www.youtube.com/watch?v=yojapmOkIfg&ab

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 38

5. CONCLUSION AND FUTURE SCOPE

5.1. Conclusion

A vision-based car parking lot management system is proposed in this paper.

The vision-based method makes it possible to manage large area by just using

camera from a top-down view. It is consistent in detecting vacant parking

spaces due to decrease in nonzero pixel count when a car leaves the parking

space. This image processing based empty parking lot identification has made

the system simple as well as cheap and efficient and can easy-installed because

of the simple equipments.

5.2. Future Scope

Although our research has yielded some results, there are still many places

that need to improve. Our future efforts will expect to make a breakthrough in

the following areas.

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 39

1. The test results have demonstrated that the current algorithm is not ideal in

terms of false alarm rates, so one of our future research priorities will be to

figure out how to successfully reduce the false alarm rate.

 2. Environmental conditions can affect video detecting techniques. Although

the current algorithms are somewhat self-adaptive, there is still potential for

development. We will work to reduce how much the environment affects the

accuracy of the detection.

3. Give full play to the advantage of the hardware algorithm. The hardware

algorithm has a speed advantage that the software algorithm cannot be

compared with. Further strengthen the advantage is not only for speed

considerations, but also to reduce the burden of processor, thus can improve

overall system performance.

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 40

6. REFERENCES

[1] Athira A. , Lekshmi S. , Pooja Vijayan and Boby Kurian, “Smart Parking

System Based On Optical Character Recognition” in IEEE Transactions on

Trends in Electronics and Informatics (ICOEI 2019).

[2] Zhang Bin, Jiang Dalin, Wang Fang and Wan Tingting, “Smart Parking

System Based On Optical Character Recognition” in IEEE Transactions on

Trends in Electronics and Informatics (ICOEI 2019).

[3] T. Lin, H. Rivano and F. Le Mouël, "A Survey of Smart Parking Solutions," in

IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 12, pp.

3229-3253, Dec. 2017.

[4] Ms.Sayanti Banerjee, Ms. Pallavi Choudekar, Prof .M.K.Muju, “Real Time

Car Parking System Using Image Processing” in IEEE Transactions

[5] R. Yusnita, Fariza Norbaya, and Norazwinawati Basharuddin, “Intelligent

Parking Space Detection System Based on Image Processing” in International

Journal of Innovation, Management and Technology, Vol. 3, No. 3, June 2012

[6] Y. Ji, W. Guo, P. Blythe, D. Tang, and W. Wang, “Understanding drivers’

perspective on parking guidance information,” IET Intell. Transport Syst., vol. 8,

no. 4, pp. 398–406, June 2014.

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 41

 [7] H. Guan, L. Liu, and M. Liao, “Approach for planning of parking guidance

and information system,” J. Highway Transport. Res. Develop., vol. 1, pp. 034,

2003.

[8] F. Caicedo, “Real-time parking information management to reduce search

time, vehicle displacement and emissions,” Transport. Res. D, vol. 15, no. 4, pp.

228–234, 2010.

[9] E. S. Gedraite and M. Hadad, "Investigation on the effect of a Gaussian Blur

in image filtering and segmentation," Proceedings ELMAR-2011, 2011, pp. 393-

396.

[10] Sin Hoong Teoh and Haidi Ibrahim, “Median Filtering Frameworks for

Reducing Impulse Noise from Grayscale Digital Images: A Literature Survey”

International Journal of Future Computer and Communication, Vol. 1, No. 4,

December 2012.

[11] P. Roy, S. Dutta, N. Dey, G. Dey, S. Chakraborty and R. Ray, "Adaptive

thresholding: A comparative study," 2014 International Conference on Control,

Instrumentation, Communication and Computational Technologies (ICCICCT),

2014, pp. 1182-1186, doi: 10.1109/ICCICCT.2014.6993140.

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 42

[12] Francis Huo Yen Chan, F. K. Lam, and Hui Zhu. "Adaptive Thresholding by

Variational Method." IEEE Transactions on Image Processing 7:3 (1998), 468–

473.

[13] Mary L. Comer, Edward J. Delp III, "Morphological operations for color

image processing," J. Electron. Imag. 8(3) (1 July 1999)

[14] Rashid, M. M., Musa, A., Rahman, M. A., Farahana, N.: Automatic parking

management system and parking fee collection based on number plate

recognition. International Journal of Machine Learning and Computing, vol. 2,

no. 2, p. 94 (2012)

[15] Jian, M. S., Yang, K. S., and Lee, C. L. Modular RFID parking management

system based on existed gate system integration. WSEAS Transactions on

Systems, vol. 7, no. 6, pp. 706–716 (2008)

[16] Tsiropoulou, E. E., Baras, J. S., Papavassiliou, S., Sinha, S., RFID-based smart

parking management system. CyberPhysical Systems, vol. 3, no. 1–4, pp. 22–41

(2017)

[17] Wei, L., Wu, Q., Yang, M., Ding, W., Li, B., and Gao, R., Design and

implementation of smart parking management system based on rfid and

internet. In: International Conference on Control Engineering and

Communication Technology, pp. 17–20 (2012)

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 43

[18] Bi, Y., Sun, L., Zhu, H., Yan, T., Luo, Z., A parking management system

based on wireless sensor network. Acta Automatica Sinica, vol. 32, no. 6, p.

968 (2006)

[19] Vera-Gómez, J. A., Quesada-Arencibia, A., García, C. R., Suárez Moreno, R.,

Guerra Hernández, F., An intelligent parking management system for urban

areas. Sensors, vol. 16, no. 6, p. 931 (2016)

[20] Gandhi, B. K., Rao, M. K., A prototype for IoT based car parking

management system for smart cities. Indian Journal of Science and

Technology, vol. 9, no. 17, pp. 1–6 (2016)

[21] Sadhukhan, P., An IoT-based E-parking system for smart cities. In:

International Conference on Advances in Computing, Communications and

Informatics (ICACCI), pp. 1062–1066 (2017)

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 44

Appendix:

Code Snippets:

Video File 1:

Frames.py

import cv2

vidcap = cv2.VideoCapture('CarPark.mp4')

success,image = vidcap.read()

count = 0

while success:

cv2.imwrite("frame%d.png" % count, image)

success,image = vidcap.read()

print('Read a new frame: ', success)

count += 1

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 45

ParkingSpacePicker.py

import cv2

import pickle

img = cv2.imread('carParkImg.png')

width, height = 107, 48

try:

with open('CarParkPos', 'rb') as f:

posList = pickle.load(f)

except:

posList = []

def mouse_click(events, x, y, flags, params):

if events == cv2.EVENT_LBUTTONDOWN:

posList.append((x, y))

if events == cv2.EVENT_RBUTTONDOWN:

for i, pos in enumerate(posList):

x1, y1 = pos

if x1 < x < x1 + width and y1 < y < y1 + height:

posList.pop(i)

with open('CarParkPos', 'wb') as f:

pickle.dump(posList, f)

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 46

while True:

img = cv2.imread('carParkImg.png')

for pos in posList:

cv2.rectangle(img, pos, (pos[0] + width, pos[1] + height), (255, 0,

255), 2)

cv2.imshow("Image", img)

cv2.setMouseCallback("Image", mouse_click)

cv2.waitKey(1)

main.py

import cv2

import pickle

import cvzone

import numpy as np

cap = cv2.VideoCapture('carPark.mp4')

with open('CarParkPos', 'rb') as f:

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 47

posList = pickle.load(f)

width, height = 107, 48

def check_parking_space(imgPro):

 spacecounter = 0

for pos in posList:

x, y = pos

imgCrop = imgPro[y:y + height, x:x + width]

count = cv2.countNonZero(imgCrop)

cvzone.putTextRect(img, str(count), (x, y+height-3), scale= 1,

thickness= 2, offset= 0)

if count < 800:

color = (0, 255, 0)

thickness = 5

spaceCounter+=1

cvzone.putTextRect(img, str(count), (x, y + height - 3),

scale=1, thickness=2, offset=1, colorR=(0, 255, 0))

else:

color = (0, 0, 255)

thickness = 2

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 48

cvzone.putTextRect(img, str(count), (x, y + height - 3),

scale=1, thickness=2, offset=1, colorR=(0, 0, 255))

cv2.rectangle(img, pos, (pos[0] + width, pos[1] + height), color,

thickness)

cvzone.putTextRect(img, f'Vacant Spaces: {spaceCounter}/{len(posList)}',

(15, 2 + height - 3), scale=3, thickness=4, offset=5, colorR=(0, 200, 0))

while True:

if cap.get(cv2.CAP_PROP_POS_FRAMES) ==

cap.get(cv2.CAP_PROP_FRAME_COUNT):

 cap.set(cv2.CAP_PROP_POS_FRAMES, 0)

success, img = cap.read()

imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

imgBlur = cv2.GaussianBlur(imgGray, (3, 3), 1)

imgThreshold = cv2.adaptiveThreshold(imgBlur, 255,

cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 25, 16)

imgMedian = cv2.medianBlur(imgThreshold, 5) kernel = np.ones((3, 3),

np.uint8)

 imgDilate = cv2.dilate(imgMedian, kernel, iterations=1)

check_parking_space(imgDilate)

cv2.imshow("Image", img)

cv2.waitKey(10)

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 49

Video File 2:

ParkingSpacePicker.py

import cv2

import pickle

img = cv2.imread('carParkImg2.png')

width, height = 75, 160

try:

with open('CarParkPos2', 'rb') as f:

posList = pickle.load(f)

except:

posList = []

def mouse_click(events, x, y, flags, params):

if events == cv2.EVENT_LBUTTONDOWN:

posList.append((x, y))

if events == cv2.EVENT_RBUTTONDOWN:

for i, pos in enumerate(posList):

x1, y1 = pos

if x1 < x < x1 + width and y1 < y < y1 + height:

posList.pop(i)

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 50

with open('CarParkPos2', 'wb') as f:

pickle.dump(posList, f)

while True:

img = cv2.imread('carParkImg2.png')

for pos in posList:

cv2.rectangle(img, pos, (pos[0] + width, pos[1] + height), (255, 0,

255), 2)

cv2.imshow("Image", img)

cv2.setMouseCallback("Image", mouse_click)

cv2.waitKey(1)

main.py

import cv2

import pickle

import cvzone

import numpy as np

cap = cv2.VideoCapture('carPark2.mp4')

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 51

with open('CarParkPos2', 'rb') as f:

posList = pickle.load(f)

width, height = 75, 160

def check_parking_space(imgPro):

 spacecounter = 0

for pos in posList:

x, y = pos

imgCrop = imgPro[y:y + height, x:x + width]

count = cv2.countNonZero(imgCrop)

cvzone.putTextRect(img, str(count), (x, y+height-3), scale= 1,

thickness= 2, offset= 0)

if count < 1800:

color = (0, 255, 0)

thickness = 4

spaceCounter+=1

else:

color = (0, 0, 255)

thickness = 2

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 52

cv2.rectangle(img, pos, (pos[0] + width, pos[1] + height), color,

thickness)

cvzone.putTextRect(img, f'Vacant Spaces: {spaceCounter}/{len(posList)}',

(25, 70 + height - 3), scale=3, thickness=4, offset=5, colorR=(0, 200, 0))

while True:

if cap.get(cv2.CAP_PROP_POS_FRAMES) ==

cap.get(cv2.CAP_PROP_FRAME_COUNT):

 cap.set(cv2.CAP_PROP_POS_FRAMES, 0)

success, img = cap.read()

imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

imgBlur = cv2.GaussianBlur(imgGray, (3, 3), 1)

imgThreshold = cv2.adaptiveThreshold(imgBlur, 255,

cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 25, 16)

imgMedian = cv2.medianBlur(imgThreshold, 5) kernel = np.ones((3, 3),

np.uint8)

 imgDilate = cv2.dilate(imgMedian, kernel, iterations=1)

check_parking_space(imgDilate)

cv2.imshow("Image", img)

cv2.waitKey(50)

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 53

Video File 3:

ParkingSpacePicker.py

import cv2

import pickle

img = cv2.imread('carParkImg3.png')

width, height = 28,14

try:

with open('CarParkPos3', 'rb') as f:

posList = pickle.load(f)

except:

posList = []

def mouse_click(events, x, y, flags, params):

if events == cv2.EVENT_LBUTTONDOWN:

posList.append((x, y))

if events == cv2.EVENT_RBUTTONDOWN:

for i, pos in enumerate(posList):

x1, y1 = pos

if x1 < x < x1 + width and y1 < y < y1 + height:

posList.pop(i)

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 54

with open('CarParkPos3', 'wb') as f:

pickle.dump(posList, f)

while True:

img = cv2.imread('carParkImg3.png')

for pos in posList:

cv2.rectangle(img, pos, (pos[0] + width, pos[1] + height), (255, 0,

255), 2)

cv2.imshow("Image", img)

cv2.setMouseCallback("Image", mouse_click)

cv2.waitKey(1)

main.py

import cv2

import pickle

import cvzone

import numpy as np

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 55

cap = cv2.VideoCapture('carPark3.mp4')

with open('CarParkPos2', 'rb') as f:

posList = pickle.load(f)

width, height = 28,14

def check_parking_space(imgPro):

 spacecounter = 0

for pos in posList:

x, y = pos

imgCrop = imgPro[y:y + height, x:x + width]

count = cv2.countNonZero(imgCrop)

cvzone.putTextRect(img, str(count), (x, y+height-3), scale= 0.6,

thickness= 1, offset= 0)

if count < 64:

color = (0, 255, 0)

thickness = 1

spaceCounter+=1

else:

color = (0, 0, 255)

SCHOOL OF EDUCATION TECHNOLOGY,
JADAVPUR UNIVERSITY 56

thickness = 1

cv2.rectangle(img, pos, (pos[0] + width, pos[1] + height), color,

thickness)

cvzone.putTextRect(img, f'Vacant Spaces: {spaceCounter}/{len(posList)}',

(25, 20 + height - 3), scale=3, thickness=4, offset=5, colorR=(0, 200, 0))

while True:

if cap.get(cv2.CAP_PROP_POS_FRAMES) ==

cap.get(cv2.CAP_PROP_FRAME_COUNT):

 cap.set(cv2.CAP_PROP_POS_FRAMES, 0)

success, img = cap.read()

imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

imgBlur = cv2.GaussianBlur(imgGray, (1, 1), 0)

imgThreshold = cv2.adaptiveThreshold(imgBlur, 255,

cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 37, 28)

imgMedian = cv2.medianBlur(imgThreshold, 1)

kernel = np.ones((1, 1), np.uint8)

 imgDilate = cv2.dilate(imgMedian, kernel, iterations=0)

check_parking_space(imgDilate)

cv2.imshow("Image", img)

cv2.waitKey(10)

