Ref. No.: Ex/Met/T/325/2019 ## B.E. METALLURGICAL AND MATERIAL ENGINEERING THIRD YEAR SECOND SEMESTER EXAM-2019 ## **PHYSICS OF METALS** Time: Three Hours Full Marks: 100 ## (Answer any five questions) | 1. | (a) State the fundamental postulates of quantum mechanics. Using the operator formalism find the expression for one dimensional time-dependent Schrodinger wave equation. Find the expression for the time independent Schrodinger wave equation.(b) Find the average position of a free particle in a one-dimensional rigid box. | 3+6+5
6 | |----|--|-------------| | 2. | (a) Define Fermi energy. Find an expression for the Fermi energy of free-electrons.(b) Find the average energy of electrons in the ground state. | 2+10
8 | | 3. | (a) Find the origin of band gaps in solids.(b) Find the expression for the density of states for free electrons in solids. | 14
6 | | 4. | (a) Find the expression for the effective mass of electrons.(b) State and explain the classification of solids based on electrical conductivity from the point of view of zone theory. | 10 | | | | 10 | | 5. | (a) Using the zone theory, explain qualitatively that the stability of different alloy phases is determined by electron concentration. Show that the stability limit of α -phase in the cubic alloy system is up to an electron concentration of about 1.4. (b) Discuss the shortcomings of quantum mechanical free electron theory. | 5+10
5 | | 6. | (a) Discuss the classification of magnetic materials. (b) Show that a current loop of area A and carrying current I produces a magnetic dipole moment of magnitude μ_m , given by, | 10 | | | $\mu_m = IA$ | 10 | | 7. | (a) Using the theory of paramagnetic spin system find an expression for Curie constant.(b) Discuss the characteristic features of ferromagnetic materials. | 12
8 | | 8. | (a) Define translational symmetry, plane of symmetry, and rotational symmetry (b) Theoretically explain the existence of spontaneous magnetization in ferromagnetic materials. | 3+2+3
12 |