B.E. METALLURGICAL AND MATERIAL ENGINEERING SECOND YEAR SECOND SEMESTER EXAM – 2019

Subject: Material Science

Time: Three Hours Full Marks: 30

(Answer any Five from the Following; All parts of a Question must be answered contiguously)

- 1. (a) What is the difference between a crystal and lattice? In tabular form state the parameters for designating all the Bravais Lattices.
- (b) Find the number of atoms per unit cell and the packing density of Magnesium crystal.

4+4 = 8

- (c)Define linear and planar density of atoms in case of crystalline structure. Find the planar density of atoms in case of (110) plane of FCC structure. 4+3 = 7
- 2. State the conditions for formation of extensive binary solid solution. What is meant by random solid solution? What is a superlattice? Give two examples of superlattices along with their crystal structure. What is electron compound? Give two examples of electron compound. Define Phase and how does a phase differ from mixture?

 4+2+2+4+3+2+3 = 20
- **3.** (a) Draw a binary phase diagram of two metals, A and B, having no solid solubility of A in B and limited solid solubility of B in A. Consider that A and B have complete solubility in each other in the liquid state. Give an example of such system and make a correspondence of the system with this phase diagram.

4+4 = 8

- (b) Define Degrees of Freedom. Find the degrees of freedom at the lowest melting point of the above system of A and B (3a). 2+2=4
- (c) Draw the Fe-Cementite phase diagram and identify different phase regions and the important composition and temperature. Why Fe-Cementite phase diagram is not called a true equilibrium diagram?

 6+2=8
- 4. (a) Write down the peritectic reaction in case Fe-C system? Find the degrees of freedom in case of peritectic reaction. Why peritectic reaction does not go to completion?

 2+2+3 = 7
- (b) What is Lever Rule? Under what condition lever Rule is applicable? Find the amount of phases present in 0.6 wt pct plain carbon steel at room temperature. 2+2+3=7
- (c) What are different types of void formed in BCC and FCC crystal structure? Find the size of these voids.

- **5.** (a) Niobium has an atomic radius of 0.1430 nm and a density of 8.57 g/cm³. Determine whether it has an FCC or BCC crystal structure.
- (b) If the atomic radius of lead is 0.175 nm, calculate the volume of its unit cell in cubic meters.
- (c) Calculate the radius of a tantalum atom, given that Ta has a BCC crystal structure, a density of 16.6 g / cm³, and an atomic weight of 180 g/mol.
- (d) Why does solubility of carbon vary with the crystal structure of iron?

5+5+5+5 = 20

- **6.** (a) Describe the crystal structure of Diamond and Graphite and enumerate the properties of these two forms of carbon. 5+5=10
- (b) Find the atomic packing fraction of cubic diamond crystal structure.

5 5

(c) Find the ideal c/a ratio for HCP crystal system.

7. (a) Give an account for metallic bonding and covalent bonding.

5+5 = 10

- (b) The net potential energy between two adjacent ions, E_N , is represented by the following equation
 - $E_N = -\frac{A}{r} + \frac{B}{r^n}$; where A, B and n are constants and r is the distance between two adjacent ions.

Calculate the bonding energy E_o in terms of parameters A, B and n.

6

(c) What is meant by ionic character of a solid and how it represented?

,