Bachelor of Metallurgical Engineering 2nd Year 2nd Semester Examination, 2019

Thermodynamics of Materials

Time: Three Hours Full Marks-100

Answer Question No. 1 and any Four from the rest.

- 1. i) Give an example of a gas-phase reaction carried out at a constant temperature which is simultaneously a constant pressure and a constant volume process.
- ii) Why are the Ellingham diagrams for oxides drawn on the basis of 1 mole O₂, not 1 mole metal or 1 mole metal oxide?
- iii) Give the expression for the vibrational (internal) energy for the diatomic gas molecule and derive the corresponding expression for the vibrational heat capacity at constant volume.
- iv) Explain why it is difficult for any substance to attain zero entropy at 0 K. 2
- v) How will you contrast Joule-Thomson cooling with adiabatic cooling? Find the Joule-Thomson coefficient (μ) for an ideal gas.
- vi) Explain how the total pressure of the system may affect the extent of a chemical reaction at equilibrium, even when the temperature, and hence the thermodynamic equilibrium constant, is kept unchanged. For what type of chemical reactions, there is no effect of total pressure?
- Give the integrated form of the Van't Hoff equation (d(ln K)/dT = $\Delta H^0/RT^2$) operating between two temperatures T_1 and T_2 (and the corresponding equilibrium constants K_{T1} and K_{T2}), under the condition that the ΔC_P of the reaction is equal to Δa , a constant. Note that you may involve the standard enthalpy change ΔH^0_{298} in the integrated equation.
- viii) Define the partial molar enthalpy, Hi, in a derivative form, as used in a) chemical equilibrium criterion and b) finding heat of reaction.
- Consider that the air in your examination hall contains 4% moisture and the temperature of the hall is 311 K. Find the activity of H_2O in the air, with respect to a) pure liquid H_2O as standard state and b) 1 atm H_2O (gas) as standard state. Given, for the phase change H_2O (liq) = H_2O (vapor), $\Delta G^0 = 41090 110.12 T J$.
- x) The standard Gibbs free energies (ΔG^0) of formation of SnO₂ (s) and H₂O (gas) at 800 K are -415,053 J/mole and -203,510 J/mole, respectively. a) Find ΔG for the process of

oxidizing 1 mole of Sn (liquid) with H₂O at 0.5 atm pressure to form SnO₂ (s) and H₂ (gas) at 0.5 atm pressure. b) Is this process feasible?

- xi) In which molar ratio will you mix CO and CO₂ to produce a carbon potential of 0.3 at 1000 K and 1 atm total pressure. (See Q. 5 for data)
- 2. i) When coal is gasified with air or oxygen, the process is strongly exothermic; when gasified with steam, the process is strongly endothermic. Thus the process can be thermally balanced by using oxygen and steam together.

Assume that pure C at 298 K, O_2 at 298 K, and H_2O (g) at 500 K are fed to a reactor which yields a gas at 1200 K composed entirely of CO and H_2 . The reactor, which is a constant pressure system, is well insulated so that q = 0 for the process.

Find the consumption rates of O₂ and H₂O each in moles per mole of C fed to the reactor.

Given: Standard enthalpies of formation at 298 K:

CO -110.54 kJ/mol H₂O (g) -241.83 kJ/mol

Enthalpy changes, H_T -H₂₉₈:

T = 500 K	<u>T= 1200 K</u>
6.09 kJ/mol	29.77 kJ/mol
6.92 kJ/mol	13.56 kJ/mol
5.88 kJ/mol	26.80 kJ/mol
5.92 kJ/mol	28.43 kJ/mol
2.38 kJ/mol	16.23 kJ/mol
	6.09 kJ/mol 6.92 kJ/mol 5.88 kJ/mol 5.92 kJ/mol

11

ii) Prove that

$$\alpha^{2} V^{2} T / C_{P} = (\partial V / \partial P)_{S} - (\partial V / \partial P)_{T}$$

- 3. i) A four-step, reversible, cyclic heat engine uses one mole of an ideal monatomic gas as working medium and comprises two constant-temperature steps (at 500 K and 300 K, respectively) and two constant-pressure steps (at 1 atm and 12 atm, respectively).
 - a) Find ΔS for each of the four steps.
 - b) What fraction of heat input at high temperature (500 K) is converted into work in the complete cycle.
 - c) Would the result in b) increase or decrease if the lower temperature were 350 K instead of 300 K? (Preferably do not repeat all previous calculations.)

10

ii) Refer to the two Ellingham diagrams drawn in Figure 1.

- a) What total pressure is required to reduce NiO (s) by C at 650 K?
- b) What temperature is required to reduce NiO (s) by C at 1 atm total pressure?
- 4. i) The standard enthalpy change (ΔH^0) for the reaction Ti (s) + 2 Cl₂ (g) = TiCl₄ (g) is given by the following equation:

$$\Delta H^0 = -726,340 + 14.2 \text{ T} \text{ J}.$$

Derive from this equation another equation giving ΔS^0 as a function of T. Given, ΔG^0 of the reaction at 298 K is -701,190 J.

ii) a) Express the thermodynamic efficiency (%) of gas (CO₂) utilization in terms of the equilibrium constant K and total pressure P for the following carbon gasification reaction with pure CO₂:

b) Find, from the expression found in a), the efficiency corresponding to K = 1 and P = 1 atm.

5. A gas mixture composed of CO_2 : CO: Ar in the ratio 7:3:1 is passed through a bed of carbon at 948 K. Total pressure $(p_t) = 1$ atm. Find

 $CO_2(g) + C(s) = 2CO(g)$

- a) The mol% of CO, CO2, and Ar in the exit gas at equilibrium.
- b) The mole of carbon burnt per mole of inlet gas mixture.

Data:

i.
$$C(s) + \frac{1}{2}O_2(g) = CO(g)$$
; $\Delta G^0 = -111,700 - 87.65T$, J
ii. $C(s) + O_2(g) = CO_2(g)$; $\Delta G^0 = -394,100 - 0.84T$, J

6. Sander and Healey studied the reaction

$$CaS(s) + \frac{1}{2}O_2(g) = CaO(s) + \frac{1}{2}S_2(g)$$

and experimentally found the equilibrium constant K_{1700} = 300. Find the standard entropy $S^0_{\ CaS}$ at 298 K .

Data:	ΔΗ ⁰ 298,	S ⁰ ₂₉₈ ,	H ⁰ ₁₇₀₀ - H ⁰ ₂₉₈ ,	S ⁰ ₁₇₀₀ - S ⁰ ₂₉₈ ,
	J/mol	J/K.mol	J/mol	J/K.mol
CaS (s)	-542,665	?	82,840	96.2
O ₂ (g)		205	47,970	57.6
CaO (s)	-635,550	39.7	72,970	87.7
S ₂ (g)		228	51,150	62.4