b) Show that

$$
\int_{0}^{\pi / 2} \sin ^{\mathrm{m}} \theta \cos ^{\mathrm{n}} \theta \mathrm{~d} \theta=\frac{1}{2} \beta\left(\frac{\mathrm{~m}+1}{2}, \frac{\mathrm{n}+1}{2}\right)
$$

c) Evaluate $\int_{0}^{1} x^{3}\left(1-x^{2}\right)^{5 / 2} d x$.
13. a) Examine the following sequence for convergence :

$$
a_{n}=\frac{n^{2}-2 n}{3 n^{2}+n}
$$

b) Discuss the convergence of the series :

$$
1+\frac{2!}{2^{2}}+\frac{3!}{3^{2}}+\frac{4!}{4^{2}}+\cdots \infty
$$

c) Test for convergence of the series:

$$
\Sigma \frac{(\mathrm{n}!)^{2}}{(2 \mathrm{n})!} \mathrm{x}^{2 \mathrm{n}}
$$

$$
3+3+4
$$

Bachelor of Engineering in Metallurgical \& Material Engineering Examination, 2019

(1st Year, 1st Semester, Old)

Mathematics - IN

Time : Three hours
Full Marks: 100
(50 marks for each Part)
Use a separate Answer-Script for each Part

PART - I

Answer any five questions.

1. a) Find the dimensions of a rectangle with perimeter 1000 meters so that the area of the rectangle is maximum.
b) Find the maximum area of a rectangle that can be inscribed in the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$. Assume that the sides of the rectangle are parallel to the axes. $\quad 5+5$
2. a) Define Continuity of several variables. Consider the two variables real-valued function $f(x, y)=\frac{x^{2}+y^{2}-x^{3} y^{3}}{x^{2}+y^{2}}$ $\forall(\mathrm{x}, \mathrm{y}) \in \mathbf{R}^{2} \backslash\{(0,0)\}$. Determine whether \boldsymbol{f} cna be redefined as \boldsymbol{f}^{\wedge} at the origin such that \boldsymbol{f}^{\wedge} is continuous $\forall(\mathrm{x}, \mathrm{y}) \in \mathbf{R}^{2}$.
b) Define Directional Derivative of a two variables function.

Find the directional derivative of $f(x, y)=2 x^{2}-x y+5$ at $(1,1)$ in the direction of unit vector $\beta=\frac{1}{5}(3,-4) .5+5$
3. a) Examine the existence of the limit:

$$
\lim _{(\mathrm{x}, \mathrm{y}) \rightarrow(0,0)} \frac{\mathrm{x}^{2}}{\mathrm{x}^{2}+\mathrm{y}^{2}}
$$

b) Define: i) Infinite one sided limit, ii) Double limit. $5+5$
4. a) If $y=x \log \left(\frac{x-1}{x+1}\right)$, show that
$y_{n}=(-1)^{n-2}(n-2)!\left[\frac{x-n}{(x-1)^{n}}-\frac{x+n}{(x+1)^{n}}\right]$.
b) Find the nth derivative of $\frac{x}{x^{2}+x+1}$.
5. a) Find the Maclaurin series for $\ln (1+x)$ and hence that for
b) Verify Cauchy's MVT for the functions: $\sin \mathrm{x}$ and $\cos \mathrm{x}$ in [a, b].
$5+5$
6. a) Show that the 1 st order partial derivatives exist but the function is not continuous for the function

$$
f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

b) $\int_{0}^{\infty} \frac{\log \left(1+\mathrm{x}^{2}\right)}{1+\mathrm{x}^{2}} d x$ $5+5$
10. a) Find the length of the arc of the parabola $x^{2}=4 a y$ measured from the vertex to one extremity of the latusrectum.
b) Change the order of integration in

$$
\mathrm{I}=\int_{0}^{4 \mathrm{a}} \int_{x^{2} /(4 a)}^{2 \sqrt{a x}} d y d x
$$

and hence evaluate.

$$
5+5
$$

11. a) Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} \mathrm{e}^{-\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)} \mathrm{dxdy}$ by changing to polar coordinates.
b) Establish the relation

$$
\beta(\mathrm{m}, \mathrm{n})=\frac{\Gamma(\mathrm{m}) \Gamma(\mathrm{n})}{\Gamma(\mathrm{m}+\mathrm{n})} .
$$

12. a) Show that

$$
\beta(\mathrm{m}, \mathrm{n})=2 \int_{0}^{\pi / 2} \sin ^{2 \mathrm{~m}-1} \theta \cos ^{2 \mathrm{n}-1} \theta \mathrm{~d} \theta, \mathrm{~m}, \mathrm{n}>0
$$

[Turn over

[4]

[3]

PART-II

(Notations/Symbols have their usual meanings)
Answer any five questions.
7. Evaluate the following integrals, if possible:
a) $\int_{-\infty}^{\infty} \mathrm{xe}^{-\mathrm{x}^{2}} \mathrm{dx}$
b) $\int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}}$
c) $\int_{1}^{\infty} \frac{d x}{x^{2}}$ $4+3+3$
8. a) Evaluate $\int_{0}^{\infty} \log \left(\left(x+\frac{1}{x}\right) \cdot \frac{d x}{1+\mathrm{x}^{2}}\right.$.
b) Show that the following integral does not exist in general sense, however, itexists in Cauchy principal value sense :

$$
\int_{-1}^{2} \frac{d x}{x}
$$

$$
6+4
$$

9. Evaluate the following integrals:
a) $\int_{0}^{\pi} \frac{x \sin ^{3} x}{1+\cos ^{2} x} d x$
b) Expand $\log _{\mathrm{e}} \mathrm{x}$ in powers of $(\mathrm{x}-1)$ and hence deduce $\log _{\mathrm{e}} 1.1$ correct to 4 decimal places.
