b) Show that the system of equations

$$
\begin{aligned}
& x+y+z=6 \\
& x+2 y+3 z=10 \\
& x+2 y+\lambda z=\mu
\end{aligned}
$$

will have (i) unique solution $\lambda=3$, if for any value of μ;
ii) an infinite number of solutions if $\lambda=3$, for $\mu=10$;
iii) no solution if $\lambda=3$, for $\mu \neq 10$.
$4+6$
6. a) Show that
$\left|\begin{array}{ccc}a^{2}+\lambda & a b & a c \\ a b & b^{2}+\lambda & b c \\ a c & b c & c^{2}+\lambda\end{array}\right|$ is divisible by and find the
remaining factor.
b) Use Cayley-Hamilton theorem to find the inverse of the matrix

$$
A=\left|\begin{array}{lll}
1 & 0 & 2 \\
0 & 2 & 1 \\
2 & 0 & 3
\end{array}\right|
$$

7. If $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$, then show that $A^{50}=\left(\begin{array}{ccc}-1 & 1 & -1 \\ 3 & -3 & 3 \\ 5 & -5 & 5\end{array}\right)$.

Bachelor of Engineering in Metallurgical
Engineering Examination, 2019
(1st Year, 2nd Semester, Old)

Mathematics IIN

Time: Three hours
Full Marks: 100
(50 marks for each part)
Use a separate Answer-Script for each part
Notation/Symbols have their usual meanings.

PART - I

(Answer any five questions)

1. a) Show that the necessary and sufficient condition for two proper vectors to be perpendicular is that their scalar product vanishes.
b) Show that the three points $\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}, 2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$ and $-7 \hat{\mathrm{j}}+10 \hat{\mathrm{k}}$ are collinear.
c) Show that the line joining the mid points of two sides of a triangle is parallel to the third side and half of its length.
2. a) Given that $\vec{a}=2 \hat{i}+2 \hat{j}-\hat{k}$ and $\vec{b}=6 \hat{i}-3 \hat{j}+2 \hat{k}$, find $\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}$, and the unit vector perpendicular to both $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$. Also find the sine of the angle between \vec{a} and \vec{b}.
b) Prove, by vector method, that the angle in a semi-circle is a right angle.
3. a) If $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}$, find λ such that $\vec{a}+\lambda \vec{b}$ is perpendicular to \vec{c}.
b) If $\vec{u}(t)$ and $\vec{v}(t)$ are two vector functions of the scalar variable t, then show that

$$
\frac{\mathrm{d}}{\mathrm{dt}}(\overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{v}})=\overrightarrow{\mathrm{u}} \cdot \frac{\mathrm{~d} \overrightarrow{\mathrm{v}}}{\mathrm{dt}}+\frac{\mathrm{d} \overrightarrow{\mathrm{u}}}{\mathrm{dt}} \cdot \overrightarrow{\mathrm{v}}
$$

Hence show that if $\overrightarrow{\mathrm{u}}(\mathrm{t})$ is of constant magnitude, then $\overrightarrow{\mathrm{u}}$ is perpendicular to $\frac{\mathrm{d} \overrightarrow{\mathrm{u}}}{\mathrm{dt}}$.
4. a) Show that, if $\vec{R}=\vec{a} \sin \omega t+\vec{b} \cos \omega t$, where \vec{a}, \vec{b} and ω are constants, then
i) $\frac{\mathrm{d}^{2} \overrightarrow{\mathrm{R}}}{\mathrm{dt}^{2}}=-\omega^{2} \overrightarrow{\mathrm{R}}$
ii) $\overrightarrow{\mathrm{R}} \times \frac{\mathrm{d} \overrightarrow{\mathrm{R}}}{\mathrm{dt}}=-\omega \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}$
b) Find the directional derivative of $f(x, y, z)=x y^{3}+y z^{3}$ at the point $(2,-1,1)$ in the direction of $\hat{i}+2 \hat{j}+2 \hat{k} . \quad 6+4$
3. a) Verify that the matrix $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 0 & 3 \\ 2 & 3 & 0\end{array}\right]$ satisfies its own characteristic equation and hence find A^{-1}.
b) Find the eigen value of the matrix

$$
\left(\begin{array}{ccc}
9 & -1 & 9 \\
3 & -1 & 3 \\
-7 & 1 & -7
\end{array}\right)
$$

4. a) Find the rank of the matrix

$$
\left(\begin{array}{cccc}
3 & -2 & 0 & -1 \\
0 & 2 & 2 & 1 \\
1 & -1 & -3 & 2 \\
0 & -2 & 2 & 1
\end{array}\right)
$$

b) If $\mathrm{A}=\left(\begin{array}{ccc}-1 & 1 & -1 \\ 3 & -3 & 3 \\ 5 & -5 & 5\end{array}\right)$, then show that A is idempotent.
5. a) Verify that $\mathrm{A}=\frac{1}{3}\left[\begin{array}{ccc}1 & -2 & 2 \\ -2 & 1 & 2 \\ -2 & -2 & -1\end{array}\right]$ is an orthogonal matrix.

PART - II

Answer any five questions

1. a) Show that

$$
\left|\begin{array}{ccc}
a^{2} & b c & c^{2}+c a \\
a^{2}+a b & b^{2} & c a \\
a b & b^{2}+b c & c^{2}
\end{array}\right|=4 a^{2} b^{2} c^{2}
$$

b) Find the value of x, which satisfy the equation

$$
\left|\begin{array}{lll}
x^{3}-a^{3} & x^{2} & x \\
b^{3}-a^{3} & b^{2} & b \\
c^{3}-a^{3} & c^{2} & c
\end{array}\right|=0
$$

2. a) If $\mathrm{A}=\frac{1}{3}=\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1\end{array}\right]$, prove that $\mathrm{A}^{\mathrm{T}}=\mathrm{A}^{-1}$.
b) Find the solution of the following system of equation by matrix method

$$
\begin{array}{r}
x+y=z=4 \\
2 x-y+3 z=1 \\
3 x+2 t-z=1
\end{array}
$$

$$
5+5
$$

5. a) If \vec{a} and \vec{b} are irrotational, then prove that $\vec{a} \times \vec{b}$ is solenoidal.
b) If $u=x^{2} y z, v=x y-3 z^{2}$, find
i) $\nabla(\nabla u \cdot \nabla v)$
ii) $\nabla \cdot(\nabla \mathbf{u} \times \nabla \mathrm{v})$
6. a) Find the work done in moving a particle in the force field $\overrightarrow{\mathrm{F}}=3 \mathrm{x}^{2} \hat{i}+(2 x z-y) \hat{j}+z \hat{k}$ along the straight line from $(0,0,0)$ to $(2,1,3)$.
b) Apply Green's theorem to prove that the area enclosed by a plane curve is $\frac{1}{2} \int_{\mathrm{C}}(x d y-y d x)$. Hence find the area of an ellipse whose semi-major and semi-minor axes are of lengths a and b.

$$
4+6
$$

7. a) If and ψ be two scalar point functions, then show that

$$
\nabla \cdot(\varphi \nabla \psi-\psi \nabla \varphi)=\varphi \nabla^{2} \psi-\psi \nabla^{2} \varphi .
$$

b) A vector field is given by

$$
\overrightarrow{\mathrm{F}}=(\mathrm{y}+\mathrm{z}) \hat{\mathrm{i}}+(\mathrm{z}+\mathrm{x}) \hat{\mathrm{j}}+(\mathrm{x}+\mathrm{y}) \hat{\mathrm{k}} .
$$

Show that \vec{F} is irrotational and find φ such that $\overrightarrow{\mathrm{F}}=\operatorname{grad} \varphi$.

