[6]

- b) Show that the system of equations
 - x + y + z = 6x + 2y + 3z = 10 $x + 2y + \lambda z = \mu$

will have (i) unique solution $\lambda = 3$, if for any value of μ ;

- ii) an infinite number of solutions if $\lambda = 3$, for $\mu = 10$;
- iii) no solution if $\lambda = 3$, for $\mu \neq 10$. 4+6

6. a) Show that

$$\begin{vmatrix} a^{2} + \lambda & ab & ac \\ ab & b^{2} + \lambda & bc \\ ac & bc & c^{2} + \lambda \end{vmatrix}$$
 is divisible by and find the

remaining factor.

b) Use Cayley-Hamilton theorem to find the inverse of the matrix

$$A = \begin{vmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{vmatrix}$$
5+5

7. If
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
, then show that $A^{50} = \begin{pmatrix} -1 & 1 & -1 \\ 3 & -3 & 3 \\ 5 & -5 & 5 \end{pmatrix}$.

Ex/Met/Math/T/122/2019 (Old)

BACHELOR OF ENGINEERING IN METALLURGICAL ENGINEERING EXAMINATION, 2019

(1st Year, 2nd Semester, Old)

MATHEMATICS IIN

Time: Three hours

Full Marks: 100

(50 marks for each part)

Use a separate Answer-Script for each part

Notation/Symbols have their usual meanings.

PART - I

(Answer any five questions)

- a) Show that the necessary and sufficient condition for two proper vectors to be perpendicular is that their scalar product vanishes.
 - b) Show that the three points $\hat{i} 2\hat{j} + 3\hat{k}$, $2\hat{i} + 3\hat{j} 4\hat{k}$ and $-7\hat{j} + 10\hat{k}$ are collinear.
 - c) Show that the line joining the mid points of two sides of a triangle is parallel to the third side and half of its length.
 3+3+4
- 2. a) Given that $\vec{a} = 2\hat{i} + 2\hat{j} \hat{k}$ and $\vec{b} = 6\hat{i} 3\hat{j} + 2\hat{k}$, find $\vec{a} \times \vec{b}$, and the unit vector perpendicular to both \vec{a} and \vec{b} . Also find the sine of the angle between \vec{a} and \vec{b} .

[Turn over

- b) Prove, by vector method, that the angle in a semi-circle is a right angle. 5+5
- 3. a) If $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j}$, find λ such that $\vec{a} + \lambda \vec{b}$ is perpendicular to \vec{c} .
 - b) If $\vec{u}(t)$ and $\vec{v}(t)$ are two vector functions of the scalar variable t, then show that

$$\frac{d}{dt}(\vec{u}\cdot\vec{v}) = \vec{u}\cdot\frac{d\vec{v}}{dt} + \frac{d\vec{u}}{dt}\cdot\vec{v}$$

Hence show that if $\vec{u}(t)$ is of constant magnitude, then \vec{u}

is perpendicular to
$$\frac{d\vec{u}}{dt}$$
. $3+7$

4. a) Show that, if $\vec{R} = \vec{a} \sin \omega t + \vec{b} \cos \omega t$, where \vec{a}, \vec{b} and ω are constants, then

i)
$$\frac{d^2\vec{R}}{dt^2} = -\omega^2\vec{R}$$

ii)
$$\vec{R} \times \frac{d\vec{R}}{dt} = -\omega \vec{a} \times \vec{b}$$

b) Find the directional derivative of $f(x, y, z) = xy^3 + yz^3$ at the point (2, -1, 1) in the direction of $\hat{i} + 2\hat{j} + 2\hat{k}$. 6+4 3. a) Verify that the matrix $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 2 & 3 & 0 \end{bmatrix}$ satisfies its own

characteristic equation and hence find A^{-1} .

b) Find the eigen value of the matrix

$$\begin{pmatrix} 9 & -1 & 9 \\ 3 & -1 & 3 \\ -7 & 1 & -7 \end{pmatrix}.$$
 6+4

4. a) Find the rank of the matrix

$$\begin{pmatrix} 3 & -2 & 0 & -1 \\ 0 & 2 & 2 & 1 \\ 1 & -1 & -3 & 2 \\ 0 & -2 & 2 & 1 \end{pmatrix}$$

b) If $A = \begin{pmatrix} -1 & 1 & -1 \\ 3 & -3 & 3 \\ 5 & -5 & 5 \end{pmatrix}$, then show that A is idempotent.

6+4

5. a) Verify that
$$A = \frac{1}{3} \begin{bmatrix} 1 & -2 & 2 \\ -2 & 1 & 2 \\ -2 & -2 & -1 \end{bmatrix}$$
 is an orthogonal matrix.

[Turn over

PART - II

Answer any five questions

1. a) Show that

$$\begin{vmatrix} a^{2} & bc & c^{2} + ca \\ a^{2} + ab & b^{2} & ca \\ ab & b^{2} + bc & c^{2} \end{vmatrix} = 4a^{2}b^{2}c^{2}.$$

b) Find the value of x, which satisfy the equation

$$\begin{vmatrix} x^{3} - a^{3} & x^{2} & x \\ b^{3} - a^{3} & b^{2} & b \\ c^{3} - a^{3} & c^{2} & c \end{vmatrix} = 0.$$
 5+5

2. a) If
$$A = \frac{1}{3} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{bmatrix}$$
, prove that $A^{T} = A^{-1}$.

b) Find the solution of the following system of equation by matrix method

$$x + y = z = 4$$

 $2x - y + 3z = 1$
 $3x + 2t - z = 1$.
 $5+5$

5. a) If \vec{a} and \vec{b} are irrotational, then prove that $\vec{a} \times \vec{b}$ is solenoidal.

b) If
$$u = x^2yz$$
, $v = xy - 3z^2$, find
i) $\nabla(\nabla u \cdot \nabla v)$
ii) $\nabla \cdot (\nabla u \times \nabla v)$ 4+6

- 6. a) Find the work done in moving a particle in the force field $\vec{F} = 3x^2\hat{i} + (2xz - y)\hat{j} + z\hat{k}$ along the straight line from (0, 0, 0) to (2, 1, 3).
 - b) Apply Green's theorem to prove that the area enclosed by a plane curve is $\frac{1}{2} \int_{C} (xdy - ydx)$. Hence find the area

of an ellipse whose semi-major and semi-minor axes are of lengths a and b. 4+6

7. a) If and ψ be two scalar point functions, then show that

$$\nabla \cdot (\varphi \nabla \psi - \psi \nabla \varphi) = \varphi \nabla^2 \psi - \psi \nabla^2 \varphi.$$

b) A vector field is given by

$$\vec{F} = (y+z)\hat{i} + (z+x)\hat{j} + (x+y)\hat{k}.$$

Show that \vec{F} is irrotational and find ϕ such that $\vec{F} = \text{grad}\phi$. 4+6

[Turn over