B.FTBE (3RD YEAR 2ND SEM) EXAMINATION, 2019

CHEMICAL ENGINEERING KINETICS

Time: Three hours Full Marks: 100

Use separate Answer Script for each Part

PART-I (50 Marks)

- 1. Answer the following questions very specifically and to the point: (Any Four) (2.5 x 4 = 10)
 - (a) What do you mean by the order of a reaction?
 - (b) Express the reaction rates for the equation $x A+ y B \rightarrow zD$.
 - (c) What is called instantaneous rate?
 - (d) What is the temperature dependence of reaction rate?
 - (e) What is the role of a catalyst in determining the reaction order?
 - (f) What is the relationship between half-life and zero order reactions?
 - (g) A reaction is represented by A <u>k1</u> R and R+B <u>k2</u> S.

 What is the rate equation for the disappearance of B?
- 2. Answer any two from the following questions: $(2 \times 5=10)$
 - a) How would you conveniently represent the characteristics of a plug flow reactor?
 - b) What is the significance of the Dispersion Number in a model reactor design system?
 - c) For an irreversible unimolecular type 1st order reaction, determine the rate equation in terms of fraction conversion
- 3. Answer any one from the following questions: (15)
 - a) Show that the equation $\frac{1}{CA} \frac{1}{CAo} = \frac{1}{CAo} (\frac{XA}{1-XA})$ = 2kt Where the ratio = $\frac{CBo}{CAo} = 2$ is valid for a 2nd order irreversible reaction.
 - b) For irreversible reaction in series of type A $\underline{k1}$ R $\underline{k2}$ S determine the ratio of the concentrations of C_R/C_A in terms of the reaction constants k1 and k2.
 - c) For a variable volume batch reactor having the reaction type of $A\rightarrow 4R$, with 30% inert present of at the start, 3 volumes of reactant mixture yield on complete conversion 6 volumes product mixture, determine the rate equation assuming the term of volume expansion ratio.

4. Answer any One from the following questions: (15)

(a) A homogeneous gas phase reaction A \rightarrow 3R has a reported rate at 215C, $-\mathbf{r}_A = 13^{-2}\mathbf{C}_A^{-1/2}$ (mol/litre.sec).

Find the space-time needed for 60% conversion of a 40% A + 60% inert feed to a plug flow reactor operating at 215C and 5 atm (C = 0.0532mol/litre).

(b) The concentration reading in the given Table represent a continuous response to a deltafunction input into a closed vessel which is to be used as a chemical reactor for a liquid decomposing with rate $-\mathbf{r}_A = \mathbf{kC}_A$ where $\mathbf{K}=\mathbf{0}$. 421 min-1.

Find the fraction of reactant unconverted in the real reactor and compare this with unconverted in a plug flow reactor of same size.

Time t(min)	Tracer Output concentration (gm/lit of fluid)
0	2
5	5
10	7
15	9
20	9
25	6
30	3
35	1

(c) Calculate the vessel dispersion number $(\frac{D}{uL})$ for a closed vessel represented by the Dispersion Model and having the following concentration reading:

Time, t(min)	0	5	10	15	20	25	30	35
Tracer Output concentration (gm/lit of fluid)	0	2	4	6	4	3	2	1

Ref. No.: Ex/FTBE/T/326/2019

B.E. FOOD TECHNOLOGY AND BIO-CHEMICAL ENGINEERING THIRD YEAR SECOND SEMESTER EXAM 2019 CHEMICAL ENGINEERING KINETICS

Time -3hr

PART-II

FM: 100

Group-1

Answer any one from the followings

- 1. How plug flow reactor depends on the Axial dispersion model discuss with $D/\mu L < 0.01$ and $D/\mu L > 0.01$
- 2. Develop an overall rate expression for the following situation

 Air bubbles through a tank of liquid which contains dispersed microbes and is taken up
 by the microbes to produce product material.

Group-II

Answer any one from the followings

- 3. Derive an equation for calculating reactor for plug Flow reactor and Mixed flow reactor. When this equation will be the same for plug flow and batch reactor. 15+5=20
- 4. Develop a performance equation for reactor containing porous catalytic particles For both plug plow and mixed flow reactor.

Group-III Answer any one from the followings

- In a dairy industry how can you get the value of processing time when processing temperature varies during operation using Arrhenius kinetic model. Assume a experimental value for thermal destruction of microorganism to explain the application of kinetic model.
- 6. A experimental rate measurement on the decomposition of A is made with a particular catalyst
 - a) Is it likely that film resistance to mass transfer influence the rate?
 - b) Could this run have been made in the regime of strong pore diffusion?
 - c) Would you expect to have temperature variations with in the pallet or across the gas film?

Data: for spherical particle $d_p = 2.4$ mm, effective mass conductivity= $5x10^{-5}$ m³/hr.m cat, $k_{eff}=1.6$ kJ/hr. m cat.K

For gas film, $h=160kJ/hr.m^2$ cat.K, $k_g=300 \text{ m}^3/hr.m^2$ cat

For the reaction, $\Delta H_r = -160 \text{ kJ/mol A}$, $C_{Ag} = 20 \text{ mol/m}^3$, $-r'''_{A.obs} = 10^5 \text{ mol/hr.m}^3 \text{cat}$ Assume the reaction is first order.

20

20