Ref. No.: Ex/FTBE/T/315/2019

B.E. FOOD TECHNOLOGY AND BIO-CHEMICAL ENGINEERING THIRD YEAR FIRST SEMESTER EXAM 2019 Mechanical Operation

Time: 3 hrs.

Full Marks: 100

Part - I

(Answer any three questions from questions 1 to 4 and question no. 5 is compulsory) ($10 \times 3 + 20 = 50$)

- 1. (a) Distinguish 'crushing' and 'grinding' with different devices generally used for these purposes.
 - (b) With the help of following equation: (dE/dx) = (C/xⁿ) (where E is the energy required to produce a change dx in a particle of size x, C and n are consumts), find the equation of the following: (i) Kick's Law (ii) Bond's Law (iii) Rittenger's Law
 - (c) Prove that $\mu > \tan \alpha$ in case of selection of crushing rolls.

(4+4+2)

2. (a) Match the following:

 $\underline{\mathbf{A}}$

<u>B</u>

Material Balance only

Cyclone separator

Balancing the radial drag force and centrifugal force

Electrostatic precipitator

Electrostatic force and net force

Packed filter

- (b) Advantages and disadvantages of electrostatic precipitator
- (c) Difference between cross-current and counter-current flow system (assuming any process)

(3+3+4)

- 3. (a) Classify the methods of measuring fluid
 - (b) Mention the advantages of centrifugal pumps over reciprocating pumps
 - (c) Prove the following operating line equation:

$$y_{n+1} = (L_n x_n / V_{n+1}) + [(V_1 y_1 - L_0 x_0) / V_{n+1}]$$
(2+2+6)

- 4. Write short note on the following (any five)
 - (i) Steady state process
 - (ii) Absolute viscosity and kinematic viscosity
 - (iii) Reynolds Number
 - (iv) Role of friction

- (v) Closed circuit grinding
- (vi) Types of fluid
- (vii) Angle of nip
- 5. Attempt any two of the following questions:
 - (a) What should be the diameter of a set of rolls to take feed of a size equivalent to 1.5 inch spheres and crush to 0.5 inch, if the coefficient of friction is 0.35? (use μ > tan α and action of crushing rolls diagram)
 - (b) The following table shows the size distribution of a dust sample and the friction efficiency of removal in a gas cleaning equipment. Calculate the collector efficiency.

<u>Dust size</u>	Wt. per 100gm of dust (gm)	Fractional efficiency (η _i), %
<5	2	1
5-10	2	7
10-15	4	16
15-20	7	44
20-25	10	67
25-30	. 8	81
30-35	7	88
35-40	10	92
40-50	15	93
50-60	20	95
60-70	10	98
>70	5	100

(c) 150 kg of nicotine-water solution containing 1% nicotine is to be extracted with 250 kg of kerosene at 20°C. Water and kerosene are essentially immiscible in each other. Determine the percentage extraction of nicotine after one stage operation. At dilute condition of the system the equilibrium relationship is Y*= 0.789X where Y and X are kg nicotine / kg kerosene and kg nicotine / kg water, respectively.

Ref. No.: Ex/FTBE/T/315/2019

B.E. FOOD TECHNOLOGY AND BIO-CHEMICAL ENGINEERING THIRD YEAR, FIRST SEMESTER-2019

Subject: MECHANICAL OPERATION

Time: 3 hrs Part Full Marks: 100

Use separate answer scripts for each

Part-II

50 marks

GROUP-A

Answer any one question

 $10 \times 1 = 10$

- 1. What do you mean by free settling and hindered settling. Derive the equation for separation of materials by differences in density.
- 2. Briefly describe about different hydraulic separator.

GROUP-B

Answer any two questions

 $20 \times 2 = 40$

- 3. (a) It is desired to separate quartz particles from galena particles by taking advantage of their different specific gravities. A hydraulic classifier is employed under free settling conditions. The specific gravity of quartz is 2.65 and that of gelena 7.5. the original mixture of particles has a size range from 0.00052 to 0.00250 cm. It is found that three fractions are obtained, one of quartz only, one of galena only and one of a mixture of quartz and galena. What are the size ranges of the two substances in this third fraction?
 - (b) Briefly describe on different hydraulic classifier.

10+10=20

- 4.(a) Write short note on coagulation and flocculation.
 - (b) Biomass present in a filtration broth is to be separated by vacuum filtration. Filter and broth characteristics are given bellow:

 $A = 50m^2$, $\Delta P = 0.01N/m^2$, $C = 15 \text{ kg/m}^3$, $\mu = 0.003\text{kg/m-s}$, $\alpha = 2m/\text{kg}$.

- (i) If rate of filtration has a constant value of dV/dt = 50 l/min, determine the cake and filter resistances at t=30min.
- (ii) Determine the filter surface area (A) required to filter 5000 l broth within 60 min with the same pressure drop across the filter. 6 + 14 = 20
- 5.(a) What are centrifugal factor and centrifugation coefficient? How scale-up of centrifuge is related with centrifugation coefficient?

- (b) Yeast cells are recovered from a fermentation broth by using a tubular centrifuge. Sixty percent (60%) of the cells are recovered at a flow rate of 12 l/min with a rotational speed of 4000 rpm. Recovery is inversely proportional to the flow rate.
- (i) to increase the recovery of cells to 95% at the same flow rate, what should be the rpm of the centrifuge?
- (ii) At a constant rpm of 4000 rpm, what should be the flow rate to result in 95% cell recovery? 6+14=20