B. E. FTBE Second Year Second Semester Examination 2019 THERMAL ENGINEERING

Time: Three hours Full Marks: 100

Answer any *five* questions.

All parts of the same question must be answered at the same place.

Q.1

Write the first law of thermodynamics for a closed system undergoing a thermodynamic cycle. Hence, derive the first law for a closed system, undergoing a change of state. Simplify the derived equation for a stationary closed system undergoing a change of state. Also find the heat transfer and work transfer for such a system undergoing an isobaric change of state, in terms of its properties at the initial and final states. Show the process on P-v diagram. [2+8+2+6+2=20]

Q.2

- (a) Write the steady state steady flow energy equation for a control volume with one inlet and one outlet. Make a neat sketch of the control volume and state what each symbol represents. [8]
- (b) Utilising the steady state steady flow energy equation for a control volume, derive an expression for the velocity at the exit of a steam nozzle in terms of appropriate properties at the inlet and the outlet of the nozzle, stating all the assumptions. [7]
- (c) The following data are obtained from a throttling calorimeter:

Pressure in the steam main = 0.8 MPa

Pressure after throttling = 0.1 MPa

Temperature after throttling = 125 °C

Determine the dryness fraction of the steam in the main pipeline.

Q.3

- (a) State the assumptions made during an air standard cycle analysis. What is the utility of air standard cycle analysis? [6]
- (b) Derive an expression for the thermal efficiency of an air standard Otto cycle in terms of compression ratio and index of isentropic compression. [7]
- (c) Using *T-s* plot, compare the efficiencies of air standard Otto cycle and air standard Diesel cycle for the same maximum pressure and same heat input. [7]

Q.4

- (a) Plot the following processes for steam, identifying the saturation zone in each case. The initial state is wet steam and the final state is superheated. On each plot, draw a pair of graphs, indicating their relative magnitudes. [6]
 - (i) isobaric process on h-s plane
 - (ii) isothermal process on P-v plane
- (b) Comment on the slope of the isobars in the saturation zone and in the superheated zone on the *h-s* plane. Justify your answer. **[6]**
- (c) A piston-cylinder arrangement contains 0.5 kg of steam with an initial dryness fraction of 0.5 and a pressure of 800 kPa. The steam is heated isobarically to a

[5]

[12]

final temperature of 230 ^oC. Find the heat and work transferred during the process. [8]

Q.5

- (a) In a steam power plant, working on simple Rankine cycle, discuss the effect of increasing the temperature of steam at the inlet of the turbine on the following quantities:
 - (i) quality of exit steam from the turbine, (ii) condenser heat duty, (iii) thermal efficiency of the cycle and (iv) pump work.
 - Your answer should be in the form of either of 'increases', 'decreases' or 'remains unchanged'. Give brief justification for each of your answer. Assume that all other parameters remain unchanged. [12]
- (b) Draw the schematic diagram of a simple steam power plant working on simple ideal Rankine cycle and draw the corresponding cycle on *T-s* diagram. [8]

Q.6

- (a) Draw the schematic diagram of a steam power plant running with regenerative open feed water heater. Plot the cycle on *T-s* diagram. Compare an open feed water heater and a closed feed water heater. [10]
- (b) Draw the schematic diagram of a steam power plant with three stages of turbine expansion and two stages of reheating. Plot the cycle on *T-s* diagram. What happens to the net work of the cycle during reheating?. [10]

<u>Q.7</u>

- (a) Draw a neat sketch of a fire tube boiler and label its different parts.
- (b) What are the functions of safety valve, water level indicator, economizer and air preheater in a boiler? Against each item, state their location and indicate whether they are mountings or accessories. [8]

T _{sat}	P _{sat}	Vf	V_g	h _f	h _g	S_f	S_g			
(°C)	(kPa)	(m³/kg)	(m³/kg)	(kJ/kg)	(kJ/kg)	(kJ/kgK)	(kJ/kgK)			
95	84.609	0.0010401	1.9808	398.09	2667.6	1.2504	7.4151			
120.21	200	0.001061	0.88578	504.71	2706.3	1.5302	7.1270			
170.44	800	0.0011149	0.2441	721.13	2769.1	2.0462	6.6628			

Table 1: Properties of saturated steam

Table 2: Properties of superheated steam

	P=1	00 kPa		P=800 kPa				
T _{sup}	v	h	и	T_{sup}	v	h	u	
(°C)	(m³/kg)	(kJ/kg)	(kJ/kg)	(°C)	(m³/kg)	(kJ/kg)	(kJ/kg)	
100	1.6959	2675.8	2506.2	200	0.2609	2839.8	2631.1	
150	1.9367	2776.6	2582.9	250	0.2932	2950.4	2715.9	