Ref. No.: Ex/FTBE/T/213/2019

B.E. FOOD TECHNOLOGY AND BIO-CHEMICAL ENGINEERING SECOND YEAR FIRST SEMESTER - 2019

PRINCIPLES OF FOOD PRESERVATION

Time: Three Hours Full Marks: 100

Use Separate Answer scripts for each part

Different parts of the same question should be answered together Part-I Full Marks-50

Answer question 1 and any two from the rest

1. Explain the following: 4x5a) exhausting before can sealing.b) effect of dehydration on quality of food products.

- d) stationary and falling rate period of dehydration process.
- 2a) Differentiate between:

c) fermentation and putrefaction

- i) critical moisture content and equilibrium moisture content,
- ii) F-value and Z-value
- iii) relative humidity and absolute humidity
- b) Comment on:
 - i) Can size of 401x404
 - ii) salt concentration of 10 degree salometer
- c) A food product contains 20% moisture on wet basis. What will be the moisture content on dry basis?

 7.5+(2.5+2)+3

[Turn over

3.a) What is Osmotic dehydration? Explain the factors which affect the Osmotic dehydration process.

b) State and explain the problems in pickle making.

10+5

4. Write short notes on (any 3):

3x5

- a) Filling liquid for canning of fruits and vegetables.
- b) dehydration of food materials by Tunnel drier.
- c) spoilage of canned foods.
- d) major moisture transfer within the solid during dehydration.

Ref. No. Ex/FTBE/T/213/2019

B.E (FTBE) SECOND YEAR, FIRST SEMESTER EXAMINATION 2019

PRINCIPLES OF FOOD PRESERVATION

TIME: 3 H

FULL MARKS = 100

PART- II (50 MARKS)

USE SEPARATE ANSWER SCRIPT FOR EACH PART

Q1. Answer either (a) or (b) in this block.

(a) Describe the following (any 1):

 $2 \times 2.5 = 5$

- I. Multiple roles of citric acid as a food additive.
- II. Heat removal during freezing of foods (with the aid of graph).

(b) Define the following:

 $5 \times 1 = 5$

- I. Humectants
- II. Fortification
- III. T_E
- IV. Bacteriocins
- V. Tg

Q2. Differentiate between (any 2):

 $2 \times 5 = 10$

- a. Energy requirements in Radappertization and Radpasteurization
- b. Flavoring agents and Flavor enhancing agents
- c. Direct Food Additives and Indirect Food Additives
- d. Homogenous and Heterogeneous nucleation

- (a) Explain why heat transfer, and not mass transfer limits rate of crystallization during freezing. Explain graphically why enzymatic degradation changes are dominant during supercooling.
- (b) Enumerate the factors to be considered in selecting an acidulant for use in food products (provide appropriate examples). Explain why there are concerns in long-term usage of PET bottles for drinking water.
- (c) Explain the advantages of gamma processing of foods. Provide technical specifications of Co-60 source used for industrial scale gamma processing of foods.

Q4. Answer any one from (a) and (b) in this block.

5

- (a) Diagrammatically illustrate the effects of initial concentration on decrease of volume and increase in molality of unfrozen phase in a food product.
- (b) Illustrate graphically the changes that occur in cooking quality of rice due to gamma irradiation.

Q5. Answer any two from (a), (b) and (c) in this block.

10 + 10 = 20

- (a) A worker receives uniform whole-body dose of 8. mGy from γ -rays and 1.2 mGy from 100 keV neutrons ($w_R = 10$). What is the effective dose received by this worker? How does it differ from equivalent dose? Evaluate the strategies/measures you would adopt for radiation hazard control in a gamma radiation facility.
- (b) Critically analyze the causes and the changes a food product undergoes during quick freezing vis-à-vis slow freezing. Explain how addition of maltodextrin enhances storage temperature of ice cream.
- (c) The given table shows data on changes in firmness (measured in kg) of diced Roma tomatoes with different doses (kGy) of γ -irradiation and progression of storage time (days) at 4°C. Critically analyze the data and recommend dose of γ -irradiation to be used and assess the shelf life of the tomatoes. Why does γ -irradiation cause textural changes in tomatoes?

Gamma Irradiation and Firmness (kg) of Diced Roma Tomatoes Stored at 4°C for 15 days

Day	Irradiation dose (kGy)			
	0.0	0.50	1.24	3.70
0	14.53 ± 0.92	10.26 ± 1.12	8.87 ± 1.62	7.60 ± 0.61
3	13.48 ± 1.46	11.33 ± 0.69	10.24 ± 1.06	8.45 ± 0.56
6	13.93 ± 2.42	13.30 ± 1.63	11.03 ± 0.72	8.51 ± 0.23
9	13.13 ± 1.13	11.06 ± 1.25	9.91 ± 1.21	6.99 ± 0.66
12	14.62 ± 1.95	12.91 ± 1.07	8.81 ± 0.32	7.58 ± 0.45
15	13.22 ± 1.56	11.16 ± 1.12	9.33 ± 1.18	6.80 ± 1.30