B. E. FOOD TECHNOLOGY AND BIO-CHEMICAL ENGINEERING SUPPLEMENTARY EXAM-2019

(1st year, 2nd semester)

Physics - II

Answer any five questions.

Time: Three Hours Full Marks: 100

- 1. (a) What do you understand by matter wave? What was de-Broglie's hypothesis regarding matter waves?
- (b) A proton has a speed of 2.3 X 10⁴ m/s. Determine its de-Broglie wavelength.

(Plank constant $h = 6.63 \times 10^{-34} \text{ J.s.}$, mass of proton = $1.67 \times 10^{-27} \text{ kg}$)

(c) State and explain Heisenberg's uncertainty principle. Diameter of hydrogen atom is 10.6 X 10⁻¹¹ m. Use the uncertainty principle to estimate the uncertainty in momentum of an electron in hydrogen atom.

[8+4+8]

2. Consider a particle trapped in a box where potential is given by,

V(x) = 0

for $0 \le x \le L$

= infinite

otherwise

- (a) Find the wave function and energy eigen values.
- (b) Normalise the wave function.
- (c) Draw the wave function for the ground and first excited states.

[(7+7)+2+4]

- 3(a) Define and explain the terms: microstates, macrostate and thermodynamic probability.
- (b) Discuss the concept of phase space.
- (c) Write down the formula for Boltzmann's entropy and explain each term.
- (d) What do you mean by equipartition of energy?

[9+3+5+3]

- 4.(a) Find the expressions for the growth and the decay of charge on a capacitor connected in series with a resistor. Plot the variation of capacitor charge with time during charging and discharging.
- (b) What do you mean by the time constant of the circuit?
- (c) What is the steady state voltage across the capacitor at the time of charging?

[(12+3)+3+2]

[Turn over

- 5. (a) A voltage $V_0Sin\omega t$ is applied to a series LCR circuit. Derive an expression for the instantaneous current in the circuit.
- (b) What is series resonance in AC? What are the resonant frequency, bandwith and Q factor of this circuit? [12+8]
- 6. (a) What is Ampere's circuital law?
- (b) Show how this law can be applied to find the magnetic field due to an indefinitely long straight conductor carrying a steady current. Plot the variation of magnetic field with distance from the conductor.
- (d) A long straight wire of radius R carrying a current I of uniform current density. Find the magnetic field inside the conductor.

[4+(9+3)+4]

- 7. (a) Write down and explain four Maxwell's equations in electromagnetism.
 - (b) Derive the electromagnetic wave equations from Maxwell's equation in free space.

[10+10]

8. Short notes (Any Two)

[10+10]

- (a) Laws of electromagnetic induction
- (b) Postulates of quantum mechanics
- (c) Growth and decay of current in LR circuit
- (d) Boltzmann's distribution