## B.E. FOOD TECHNOLOGY AND BIOCHEMICAL ENGG. FIRST YEAR FIRST SEMESTER EXAMINATION-2019(OLD)

## MATHEMATICS-I

Time: Three hours
Full Marks: 100
Answer any Ten questions

1. If by an orthogonal transformation without change of origin the expression $a x^{2}+$ $2 h x y+b y^{2}$ becomes $a^{\prime} x^{\prime 2}+2 h^{\prime} x^{\prime} y^{t}+b^{\prime} y^{\prime 2}$, then prove that $a+b=a^{t}+b^{\prime}$ and $a b-h^{2}=a^{\prime} b^{\prime}-h^{2}$.
2. Prove that the transformation of rectangular axes which converts $\frac{x^{2}}{p}+\frac{Y^{2}}{q}$ into
$a x^{2}+2 h x y+b y^{2}$ will convert $\frac{x^{2}}{p-\gamma}+\frac{\gamma^{2}}{q-\gamma}$ into $\frac{a x^{2}+2 h x y+b y^{2}-\gamma\left(a b-h^{2}\right)\left(x^{2}+y^{2}\right)}{1-(a+b) y+\left(a b-h^{2}\right) \gamma^{2}}$.
3. If $l$ and $l^{\prime}$ are the lengths of the segments of any focal chord of the parabola $y^{2}=$ $4 a x$, prove that $\frac{1}{l}+\frac{1}{l^{\prime}}=\frac{1}{a}$.
4. If the origin be at one of the limiting points of a system of co-axial circles of which $x^{2}+y^{2}+2 g x+2 f y+c=0$ is a member, show that the equation of the system of circles cutting them all orthogonally is $\left(x^{2}+y^{2}\right)(g+\mu f)+c(x+\mu y)=0$. Show that the other limiting point is $\left(\frac{-g c}{g^{2}+j^{2}}, \frac{-f c}{g^{2}+j^{2}}\right)$.
5. Show that the straight lines whose d.cs. are given by $a l+b m+c n=0, f m n+$ $g n l+h l m=0$ are perpendicular if $\frac{f}{a}+\frac{g}{b}+\frac{h}{c}=0$ and parallel if $\sqrt{a f} \pm \sqrt{b g} \pm$ $\sqrt{c h}=0$.
6. Prove that the equation $a x^{2}+b y^{2}+c z^{2}+2 f y z+2 g z x+2 h x y=0$ represent a pair of planes, if $a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}=0$, and also prove that the angle between the planes is $\tan ^{-1} \frac{2\left(f^{2}+g^{2}+h^{2}-b c-c a-a b\right)^{\frac{\pi}{2}}}{a+b+c}$
7. Show that the locus of a variable line which intersects the three lines $y=m x, z=$ $c ; y=-m x, z=-c ; y=z, m x=-c$ is the surface $y^{2}-m^{2} x^{2}=z^{2}-c^{2} \quad 10$
8. Find the equation of the sphere for which the circle $x^{2}+y^{2}+z^{2}+2 x-4 y+2 z+$ $5=0, x-2 y+3 z+1=0$ is a great circle.
9. (a)If $y=\left[\log \left(\frac{x+\sqrt{x^{2}-a^{2}}}{a}\right)\right]^{2}+k \log \left(x+\sqrt{x^{2}-a^{2}}\right)$ then find the value of $\left(x^{2}-\right.$ $\left.a^{2}\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}=$ ?
(b) If $f\left(\frac{x+y}{2}\right)=\frac{f(x)+f(y)}{2}, f^{\prime}(0)=a, f(0)=b$, then find the value of $f^{\prime \prime}(x)$, where $y$ is independent of $x$.
10. If $x \cos \theta+y \sin \theta=p$, touch the curve $\left(\frac{x}{a}\right)^{\frac{n}{n-1}}+\left(\frac{y}{b}\right)^{\frac{n}{n-1}}=1$, then find the value of $(a \cos \theta)^{n}+(b \sin \theta)^{n}=?$
11. Show that the equation to the plane containing the line $\frac{y}{b}+\frac{z}{c}=1, x=0$ and parallel to the line $\frac{x}{a}+\frac{z}{c}=1, y=0$ is $\frac{x}{a}-\frac{y}{b}-\frac{z}{c}+1=0$ and if $2 d$ is the S.D., Prove that $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{d^{2}}$.
12. A plane passes through a fixed point $(\alpha, \beta, \gamma)$ and cuts the co-ordinate axes in $A, B, C$. Prove that the locus of the centre of the sphere OABC is given by $\frac{\alpha}{x}+\frac{\beta}{y}+\frac{\gamma}{z}=2 . \quad 10$
