B. E. ELECTRONICS AND TELE-COMMUNICATION ENGINEERING ## FOURTH YEAR, SECOND SEMESTER EXAMINATION - 2019 ## **ELECTIVE: INDUSTRIAL ELECTRONICS** | | Time: 3 Hours | Full Marks :100 | |---|---|---| | Assume all rectifiers are AC-Mains operated | | | | 1(A) | a. Define Rectification efficiency (η %) of Half-Wave (HW)-rectifier b. Determine (η %) of a HW-rectifier if diode resistance is $r = 100 \Omega$ & load = 200Ω c. Derive the relation used | 5+5+10 | | OR | | | | (B) | a. What is multi (m)-phase rectifier? b. Determine values of I_{dc} , E_{dc} and $\eta\%$ for m-phase rectifier; assume $R=1K\Omega$ c. Define transformer utilization factor (TUF) for m-phase rectifier. | 4+12+4 | | 2(A) | a. Explain characteristics of SCR; how it is used for controlled rectification | 6+4+10 | | | b. Describe the method of UJT firing angle control c. A RC-relaxation oscillator using UJT (η=0.5) is used for triggering a SCR; Determine the of trigger if R=1K Ω & C=1μF. | ne period (T) | | | OR | | | (B | a. What is Push-Pull power inverter (PPPI) ? b. Determine peak output voltage if $V_{cc} = 6V$, secondary $N_s = 7$ and total $N_p = 20$ | 8+12 | | 3(A) | a. What are the standard test signals for a Servo system b. Transfer function H(s) of a servo system is H = 10K/[s² + 40 s + 10 K]; K ≡ forward path gain Evaluate the relative stability of the system for (i) K=100 (ii) K=50 | 5+15 | | | OR | * | | (B) | a. Define the time-constant of an Industrial liquid level system
b. Such a system has out-flow $q_o = 10 \text{m}^3/\text{s}$ from a storage-tank of Area = 2m^2 ; outflow di (i) Show a sketch of outflow $q_o(t)$ for unit step change in inflow $q_i(t)$ (ii) Calculate $q_o(t)$ $t = 1$ m.sec. | 5 1 5 fferential head =5m. | | 4(A) | a. What is the concept of Resistance Welding (RW) ? b. For a RW, average current rating = 3A; rectified half-sine wave is passed for 1 sec and t idle for 11 sec. What is the maximum safe current | 10+10
hen remains | | (B) | a. Explain the principles of Induction heating(IH) b. What is Curie temperature c. What is Steinmetz equation | 10+5+5 | | 5. | Indicate True(T)/False(F) for following: a. DC current for a 6- Φ rectifier with R=10K Ω is 5A b. Hysterisis power loss in IH is $P = fKB^3$ c. Ratio (E _{dc} /E _m) for a single-SCR HW-rectifier is $2/\pi$ d. Thermal power in dielectric heating is $P_T = 100$ (Mass x Temperature Rise) e. First maximum-value in transient response for a 2 nd -order servo system occurs at $t = \pi/8$ | $5x4$ $\{\omega_n\sqrt{(1-\delta^2)}\}$ | | | | |